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A generalization of the wavelet-transform modulus maxima method to the case of multifractal analysis is

proposed, in which the cooperative dynamics of subsystems and the change in the interaction between them

are characterized using a joint singularity spectrum. On the example of the phenomenon of chaotic synchronization

in the model of interacting Lorenz systems, the possibility of diagnosing a change in the functioning regime in

terms of the wavelet-based multifractal formalism is illustrated.

Keywords: multifractal analysis, random process, scaling, singularity spectrum.

DOI: 10.21883/TPL.2023.05.56027.19505

Multifractal analysis is used widely to quantitatively

characterize complex scaling, which is typical of the

dynamics of various systems in nature [1–4]. A considerable

number of experimentally recorded signals with a very

complex structure belong to the class of multifractal objects.

The use of multifractal formalism concepts is one of the

methods for their statistical analysis (especially relevant to

strongly inhomogeneous and nonstationary processes [5]).
Several approaches to quantitative description of complex

signals in terms of a singularity spectrum or a scaling

spectrum are used at present [6–8]. One of such approaches

is the wavelet transform modulus maxima method [5].
It is relevant to the study of cooperative dynamics of

systems (e.g., complex networks) to extend the concept of

multifractal analysis of signal structures to the examination

of mutual dynamics of subsystems (or network fragments)
over several simultaneously recorded processes. In the

present study, we consider a generalization of the method

from [5] to the case of multifractal analysis with a version

of a singularity spectrum characterizing the cooperative

dynamics of subsystems and changes in the interaction

between them.

The proposed method involves the calculation of wavelet

transforms [9,10] of signals x(t) and y(t) of interacting

subsystems in accordance with the following formulae:
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where parameters a and b characterize the scale and trans-

lation of basis function ψ, and a real function (e.g., MHAT-

wavelet) is often chosen as a wavelet for analysis. Following

the calculation of coefficients Wx (a, b) and Wy(a, b), one

extracts skeletons (lines of local maxima and minima of

wavelet transforms that contain the key information on

them).

A modification of the algorithm for calculation of gen-

eralized partition functions [6] is proposed to be used to

calculate the joint singularity spectrum characterizing the

cooperative dynamics of subsystems:
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à, b j(à)
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where L1(a), L2(a) are the sets of all skeleton lines of

wavelet transforms Wx(a, b), Wy(a, b) on scale a and bi(á),
b j(à) represent the positioning of maxima corresponding to

lines i , j on scales á 6 a , à 6 a . As in the algorithm for a

scalar signal [6], power-law dependence

Z(q, a) ∼ a τ (q), (3)

is analyzed, and scaling exponent τ (q) and the singularity

spectrum are calculated in accordance with it based on the

Legendre transform:

D(h) = qh − τ (q),

h =
dτ (q)

dq
. (4)

In contrast to [5,6], the D(h) singularity spectrum calculated

this way is representative of the joint dynamics of subsys-

tems producing signals x(t) and y(t). Let us illustrate the

application of the proposed method using the example of

synchronization of chaotic oscillations in the dynamics of
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interacting Lorenz systems

dx1,2

dt
= σ (y1,2 − x1,2) + γ(x2,1 − x1,2),

dy1,2

dt
= r1,2x1,2 − x1,2z 1,2 − y1,2,

dz 1,2

dt
= x1,2y1,2 − z 1,2c (5)

with parameters σ = 10, r1 = 28.8, r2 = 28, and c = 8/3

and coupling parameter γ being varied. Series of return

times to secant planes x2
1 + y2

1 = 30, x2
2 + y2

2 = 30, z 1 = 30,

and z 2 = 30 served as the input signals for the considered

modified algorithm. The dynamics of model (5) is specific

in that it behaves atypically with an increase in the coupling

parameter: desynchronization becomes more pronounced in

the γ < 2 range, but gives way to synchronous dynamics as

parameter γ grows further. As was demonstrated in [11], if
each Lorenz system is characterized by a certain frequency

of rotation (around one of the equilibrium states) and

switching frequency (with systems regarded as bistable

ones), the difference between the corresponding frequencies

(of both rotation and switching) for each system of the

model increases as γ grows approximately to γ = 2, and

their expected tuning with an increase in the coupling

parameter occurs only at γ > 2. Let us compare the

nonsynchronous (γ = 2) and synchronous (γ = 7) dynam-

ics modes of model (5) using the series of return times

to Poincaré sections x2
1 + y2

1 = 30 and x2
2 + y2

2 = 30 as

analyzed signals of the proposed method. The results of

calculation of joint singularity spectra are presented in the

figure (panel a). One may note that, first, the average

Hölder exponent value corresponding to the maximum

of the singularity spectrum decreases and, second, this

spectrum becomes narrower upon synchronization. This

agrees with the results of earlier studies for one of the

state variables of interacting systems with self-sustained

oscillations [12]; however, in the present case, functions

D(h) characterize the mutual dynamics of subsystems of

model (5). The average Hölder exponent value for the

chosen secant planes decreases from 1.03 to 0.85 (i.e.,
by 17%), and the singularity spectrum width decreases

from 1.99 to 1.17 (by 41%). If one examines the series of

return times to Poincaré sections z 1 = 30 and z 2 = 30, the

changes in singularity spectra become more apparent (see
the figure, panel b): the average Hölder exponent value

decreases from 0.93 to 0.31 (by 67%), and the spectrum

width goes down from 1.41 to 0.59 (a 58% reduction).
Thus, it may be concluded that the proposed gen-

eralization of the multifractal formalism to cooperative

dynamics of interacting systems provides an opportunity

to detect changes both in correlation characteristics, which

are characterized quantitatively by Hölder exponents [13]),
and in the complexity of mutual dynamics, which is

characterized by the range of variation of Hölder exponents

(singularity spectrum width). The proposed method, which

was illustrated in the present study using the example of
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Joint singularity spectra for nonsynchronous (triangles) and syn-

chronous (circles) oscillations in the dynamics of interacting

Lorenz systems with the series of return times to Poincaré sections

x2
1 + y2

1 = 30, x2
2 + y2

2 = 30 (a) and z 1 = 30, z 2 = 30 (b) serving

as analyzed signals.

a pair of coupled systems with self-sustained oscillations,

may be applied in the examination of behavior of more

complex objects (e.g., complex networks of interacting

elements). It is relevant to the analysis of dynamics of

complex systems based on experimental data, including,

in particular, multichannel electroencephalograms recorded

in different body states. In this latter case, complexity

estimates may be used to perform various diagnostic tasks,

such as identifying the effects of healthy aging in motor

functional tests [14,15].
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