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Synthesis of thin single-crystalline α-Cr2O3 layers on sapphire substrates

by ultrasonic-assisted chemical vapor deposition
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Single-crystalline α-Cr2O3 layers were synthesized on a sapphire substrate with a basal orientation in a laboratory

reactor using ultrasonic-assisted chemical vapor deposition in the temperature range of 700−850◦C. The influence

of the growth temperature on the structural quality of the layer was studied by X-ray diffraction. At a growth

temperature of 800◦C, continuous layers with a thickness of about 1µm were obtained. The layers were transparent

in the visible region with a slightly greenish tint and showed some light transmission up to wavelengths of ∼ 350 nm.

The full width at half maximum of the rocking curve for reflection 0006 was ∼ 300 arcsec.
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Films of p-type semiconductor oxides, such as CuO, NiO,

Co3O4, α-Ir2O3, α-(Rh,Ga)2O, and Cr2O3, hold promise for

the fabrication of new semiconductor devices [1–4].

In our view, α-Cr2O3 stands out in the above list of

crystals as remaining thermally stable up to the melting

point (Tm = 2435◦C) and featuring a corundum-type close-

packed lattice R3c (N 167), a high density of 5.22 g · cm−3,

mechanical strength, and chemical resistance. In addition,

it has a high value of Eg > 3 eV; the only other oxide from

the above list with a similar value is NiO. Another techno-

logically important feature is that the lattice parameters of

α-Cr2O3 are better suited for epitaxy on sapphire than the

parameters of other compounds.

Samples of chromium oxide (α-Cr2O3) for studies per-

formed to date have been prepared by hydrothermal synthe-

sis [5]; magnetron sputtering [6,7]; pyrolysis of aerosols [8];
molecular beam epitaxy [9]; pulsed laser deposition [10];
low-temperature carbonyl chemical vapor deposition [11];
and mist CVD epitaxy in a hot-wall reactor (a process

similar to ultrasonic chemical vapor epitaxy) with ammo-

nium dichromate, chromium chloride [12], and chromium

acetylacetonate [13] used as chromium precursors.

The present study is essentially a report on the results of

further development of the last of the listed techniques. The

authors of [9] limited themselves to examining the growth

of an epitaxial layer in a mist reactor at a temperature

of 700◦C or lower and, consequently, did not fabricate

a layer of a sufficient crystalline quality. The probable

reason behind this is that the authors intended to obtain

solid solutions of chromium oxide with metastable α-Ga2O3,

which undergoes a polymorphic transition at a temperature

slightly higher than 500◦C. The potential of α-Cr2O3 used as

a buffer for improving the quality of α-Ga2O3 layers grown

on sapphire has been examined in our earlier studies; layers

of chromium oxide with a thickness of 150µm have been

formed by magnetron deposition with subsequent annealing

at T = 500−800◦C. It has been demonstrated that a α-

Cr2O3 layer applied beforehand facilitates the formation

of a monopolymorphic film of gallium oxide, suppresses

the growth of phases with their structure differing from

the corundum one, and reduces the density of threading

dislocations by a factor of 4 [14].

In the present study, the chromium precursor

(chromium(III) tris-acetylacetonate, Cr(acac)3) was synthe-

sized in a slightly different process that was characterized

in detail in [15]. A weighted portion of 26.6 g (0.1mol)
chromium(III) chloride hexahydrate (CrCl3 · 6H2O) was

dissolved in a mixture of 200ml of water and 100ml

of 95%-pure ethanol. Acetylacetone (0.1mol, 30 g/30.8

ml) was added to the obtained solution, and 0.3mol

(20.4 g/22.5ml) of a 25% aqueous solution of ammonia

were instilled by drops at room temperature under vigorous

stirring. The solution was then heated to 60◦C, stirred for

5 h, and left at rest for the night. To purify the product,

it was dissolved in 300ml of boiling 95%-pure ethanol,

diluted slowly with an equal volume of hot water, and

cooled to room temperature under stirring. The product

yield was 29 g (83%). Cr(acac)3 was then dissolved in

water. The solubility of chromium(III) tris-acetylacetonate

in water at 20◦C is very low (∼ 1.87 · 10−3 mol/l [16]). A
0.1M solution of hydrochloric acid was used to enhance

the solubility of Cr(acac)3 . It was determined gravimet-

rically that the solubility of Cr(acac)3 in this system is

5.7 · 10−3 mol/l. To prepare the needed solution, 2.0 g of
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Figure 1. Diagram of the ultrasonic chemical vapor epitaxy (mist

CVD) reactor. 1 — Ultrasonic evaporator, 2 — substrate, 3 —
furnace, and 4 — bubbler.

Cr(acac)3 (0.006mol) were introduced slowly into a 0.1M

solution of hydrochloric acid under vigorous stirring. The

mixture was stirred for 5−6 h at a temperature of 80◦C,

introduced into an ultrasonic bath for 30min, and left at

rest for 24−48 h at room temperature for equilibration. If

needed, the solution was filtered through filter paper.

Layers were grown in a reactor of a proprietary design for

ultrasonic chemical vapor epitaxy (mist CVD) with an ul-

trasonic radiator operated at 2.4MHz, which provides vapor

droplets 10−100 nm in size [17]. Chromium oxide Cr2O3

was synthesized from an aqueous solution of Cr(acac)3
(0.0056mol/l), which was vaporized and transported from

the radiator to a hermetically sealed hot-wall quartz reactor

by transport gas (Ar). Oxygen was supplied via the second

channel (Fig. 1). The ratio of flows of argon with the CR

precursor and oxygen was 10:1. A sapphire substrate was

positioned parallel to the gas flow on a special support in

the reactor. The growth area was heated by a resistance
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Figure 2. θ−2θ X-ray diffraction pattern of a Cr2O3 film on the (0001) sapphire substrate.

furnace. Temperature was monitored by a proportional-

integral-derivative controller with a thermocouple. Gas was

discharged from the reactor through a bubbler with distilled

water, which provided the needed excess pressure and accu-

mulated the gas condensate. The substrate temperature was

varied within the range of 700−850◦C in a series of growth

experiments with a duration up to 180min. The quality of

layers was inspected using a DRON X-ray diffractometer in

single-crystal and double-crystal geometries with a CuKα1

source with an emission wavelength of 1.5406 Å. The layer

surface was examined with a Phenom PRO X scanning

election microscope (SEM), the optical transparency was

monitored with a SPECORD UV-VIS spectrophotometer,

and the surface profile was studied using a MarSurf PS 10

profilometer.

The θ−2θ X-ray diffraction pattern (Fig. 2) reveals

the presence of an epitaxial layer of chromium oxide

with a corundum-type crystal structure (α-Cr2O3) with

its orientation being the same as that of the (0001) α-

Al2O3 (sapphire) substrate. The FWHM of the rocking

curve (FWHM of reflection 0006) is 300 arcsec, which is

indicative of a fine structural quality of the obtained layer.

The maximum layer thickness estimated by examining a

cleaved face of the sample was ∼ 1 µm. Thus, the mean rate

of growth along the normal to the substrate was 0.3µm/h.

This value is comparable to the mean growth rates of α-

Ga2O3 in a similar reactor [18] and is slightly lower than

the maximum growth rates (1 µm/h) achieved in similar

experiments [19]. The films grown at 750−800◦C were

transparent in the visible region with a slightly greenish tint
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Figure 3. Formation of an epitaxial α-Cr2O3 film on the substrate. a — Prior to the complete coalescence of islands (growth time, 1 h),
b — after the formation of a continuous film (growth time, 3 h).

and retained a certain optical transmission up to λ ∼ 350 nm

(i.e., up to the α-Cr2O3 absorption edge, 3.4 eV [7]).
The surface morphology of an epitaxial α-Cr2O3 layer

is illustrated in Fig. 3, where two SEM images obtained

prior to the complete coalescence of growth islands and

after the formation of a continuous film are presented.

According to profilometry data, the surface roughness of

a continuous film was Ra = 0.056 µm. The continuous α-

Cr2O3 layer grown at 800◦C had a high electric resistance

(approximately 70M� under the probe).
Continuous epitaxial α-Cr2O3 layers with a maximum

thickness of approximately 1 µm were fabricated. The

structural and surface quality of these layers is sufficiently

high for subsequent epitaxy of oxide semiconductors in the

process of formation of a heterophase p−n junction.
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