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Change in the melting temperature of metals with an increase in pressure
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A new analytical (i.e., without computer modeling) method for calculating the dependence of the melting

temperature Tm of a single-component crystal on pressure P is proposed. The method is based on the delocalization

melting criterion and does not contain fitting constants. The baric dependences of the melting temperature Tm(P)
and its pressure derivative T ′

m(P) for gold, platinum and niobium in the pressure range: P = 0−1000GPa were

calculated by this method. It was shown that the dependences calculated by this method for gold and platinum

agree better with the experimental data than the dependences obtained by computer simulation methods. For

niobium, the calculated dependence Tm(P) turned out to be steeper, i.e., the value T ′

m(P) turned out to be larger

than in the experiment. It was indicated that this discrepancy might be due both to a decrease in the Lindemann

parameter with increasing pressure and to a redistribution of electrons on the s−d-orbitals during compression of

transition metals with a BCC structure.
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1. Introduction

Dependence of melting temperature Tm on pressure P has

bee studied for a long time, however, dependence Tm(P) is

still debated even for single-component substances [1–10].
The problem is that the experiments with substance melting

at high static pressures and even more so under dynamic

have an error which grows with T−P parameters [1–6].
As to theoretical assessments of dependence Tm(P), due to

the lack of a theory of the liquid state, there is no theory

of melting (or vice versa: due to the lack of a theory of

melting, there is no clear idea of single-component liquid).
Therefore, it is still not understood why a crystal cannot be

overheated above Tm(P), though, a liquid can be overcooled

down to 0.8Tm(P) easily enough [7].

The main issue with the calculation of substance pro-

perties in crystal−liquid phase transition (C−L PT) is the

criterium established to determine this transition. Theoreti-

cal studies use various phenomenological melting criteria to

assess dependence Tm(P) [7,8], and the majority of current

studies chose the Lindemann melting criterion [9,10]. The

Lindemann melting criterion states that [11,12]: the ampli-

tude of atom vibrations assigned to interatomic distances

between the nearest atoms at the melting temperature

is constant for crystal with the same structure. The

Lindemann criterion was successfully used for theoretical

study of melting of single-component crystals with various

structures and to calculate the melting parameters of macro-

and nanocrystals of various substances [7]. But for a

crystallization process, this criterium is not applicable.

Therefore, crystallization criteria for a single-component

liquid based on diffusion properties of a substance were

offered in [13–16].
In [13,14], a Monte Carlo computer-based simulation

method was used to investigate argon atom clusters interac-

ting via the Lennard-Jones potential (6−12). It was shown

that at the freezing temperature (TN), the self-diffusion

coefficient is constant: Df(TN) ∼= 10−5 cm2/s, and is inde-

pendent of the cluster size. Therefore, [13,14] suggested

Df(TN) ∼= const as a crystallization criterion. But since the

value of the constant may vary for various substances, this

posed a significant limitation for applicability of the crite-

rion. In [15,16] used computer-based molecular dynamics

simulation of liquids to offer a
”
dynamical criterion for

freezing“, according to which the following relation is met

at the freezing temperature

Df(TN)

Df(IG)
∼= 0.1,

where Df(TN) is the self-diffusion coefficient in a liquid

phase of the interacting particles at the freezing temperature,

Df(IG) is the Brownian self-diffusion coefficient for the

same particles without interaction. It was shown that this

crystallization criterion is suitable for various interatomic

interaction potentials both for three-dimensional (3D) and

two-dimensional (2D)systems. This criterion is applicable

to computer-based crystallization simulation of 3D- and

2D-liquids [17], but is not applicable to melting due to

uncertainty of function Df(IG) for a crystal.

In [18,19], we have offered a delocalization criterion for

C−L PT according to which C−L PT (in forward and

backward direction) starts when the number of delocalized
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atoms Nd achieves a certain fraction of the total number of

atoms in the system

xd(S ↔ L) =
Nd(S ↔ L)

N
∼= 10−2. (1)

Here, S ↔ L means that this value relates to the

solid (S)−liquid (L) transition both in forward and back-

ward directions. It was shown in [18,19] that the delocali-

zation criterion of C−L PT (1) switches to the Lindemann

criterion in case of melting, and is reduced to the Löwen

criterion in case of crystallization, i.e. it is a generalizing

criterion. It was shown in [20,21] that criterion (1) is also

applicable to the liquid–glass transition.

A relatively simple analytical (i.e. without computer-

based simulation) method for calculation of dependence

Tm(P) is offered herein on the basis of criterion (1). The

method enables this dependence to be calculated on the

basis of only four parameters of the paired Mie−Lennard-

Jones interatomic potential, crystal structure, atomic mass

and Tm(0) — melting temperature at P = 0.

2. Calculation method

To define xd(P, T ), assume a system (crystal or liquid of

a single-component substance) consisting of N atoms in the

form of a structure composed of N + Nv cells of the same

size, where Nv cells are vacant and uniformly distributed

over the system volume V . It will be assumed herein that

atoms in the system may be in two states: localized and

delocalized. In the localized state, an atom is enclosed in

a cell formed by the nearest neighbors and has only the

vibrational degrees of freedom. In the delocalized state, an

atom has access to the whole system volume and has only

the translational degrees of freedom. As shown in [19,22],
the fraction of delocalized atoms at the given temperature T
and specific volume v = V/N of the system is described by

the following incomplete gamma-function:

xd(v, T ) =
Nd(v, T )

N
=

2√
π

∞
∫

Ed/(kBT )

√
t exp(−t)dt

= 2 exp

(

−
Ed

kBT

)
√

Ed

πkBT
+ 1− erf

(
√

Ed

kBT

)

, (2)

where Ed is the energy required for atom transition from the

localized to delocalized state, kB is the Boltzmann constant,

and the probability integral is as follows [23]:

erf(x) =
2√
π

x
∫

0

exp(−t2)dt. (3)

Equation (2) is a result of the fact that the number

of delocalized atoms having kinetic energy from a certain

range of values obeys the Maxwell–Boltzmann distribution

which is valid not only to a gas, but also to a liquid,

amorphous and crystalline phase [24,25].

Using the Einstein model for the vibrational spectrum of

a crystal, the following expression was derived for the atom

delocalization energy [18,19,22]:

Ed =

(

3

8π2

)

m

(

3cokB2o

4~ 3
√

kp

)2

f y (yw). (4)

Here, ~ is Planck’s constant, m is the atomic mass,

co = [6kpV/(πN)]1/3 is the center-to-center distance be-

tween the nearest cells in the initial (not relaxed into a

vacancy-activated state) vacancy-free (with Nv = 0) virtual

lattice (indicated by
”
o“), 2o is the Debye temperature for

a vacancy-free lattice, kp is a packing index of a structure

composed of N + Nv spherical cells.

The f y (yw) function is included in (4) in order to

consider quantum effects and is written as

f y (yw) =
2[1− exp(−yw)]

yw [1 + exp(−yw)]
, yw =

32o

4T
.

From (1)−(4) it follows that the following is satisfied

during crystal melting

Ed

kBTm

=

(

3

8π2

)

kBm
Tm

(

3co2o

4~ 3
√

kp

)2

f y(yw) ∼= 5.672. (5)

Expression (5) implies a relation which is functionally

in line with the dependence derived by the Lindemann

criterion

Tm =

(

3

8π2

)

kBm
5.672

(

3co2o

4~ 3
√

kp

)2

f y (yw)

= L2
mEkB

m
3

(

3co2o

4~

)2

f y(yw), (6)

where the Lindemann parameter for the vibrational spec-

trum of the crystal in the Einstein model is defined by the

relation [19]:

LmE =
3

π
√
8 · 5.672 · 3

√

kp

=
0.142
3
√

kp

.

Assuming that LmE does not vary with pressure growth,

the following expression is easily derived from equation (6)

Tm(P) = Tm(0)

[

co(P)2o(P)

co(0)2o(0)

]2 f y (yw(P))

f y(yw(0))
. (7)

To calculate dependence co(P)2o(P), an equation of

state and thermal expansion coefficient of the vacancy-free

system shall be known. To define these functions, use the

method offered by us in [26].
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The pair interatomic interaction will be assumed as

the Mie−Lennard-Jones 4-parameter potential written as

follows

ϕ(r) =
D

(b − a)

[

a

(

ro
r

)b

− b

(

ro
r

)a]

, (8)

where D and ro are the depth and position of the potential

minimum, b > a > 1 are the parameters.

Then, as shown in [27], within the
”
only nearest neigh-

bors interaction“ approximation, the Debye temperature

may be calculated as

2o(k
o
n, co) = Aw(ko

n, co)ξ

(

−1 +

√

1 +
8D

kBAw(ko
n, co)ξ2

)

,

(9)
where ko

n is the total number of cells (both occupied and

vacant) nearest to the atom, Aw(ko
n, co) arises due to the

consideration of
”
zero vibration“ energy of atoms in the

system

Aw(ko
n, co) = KR

5ko
n · ab(b + 1)

144(b − a)

(

ro
co

)b+2

,

KR =
~
2

kBr2om
, ξ =

9

ko
n
. (10)

Based on the potential (8), within the
”
only nearest

neighbors interaction“ approximation, the following expres-

sion may be derived for the equation of state P and the

isothermal modulus of elasticityBT [26]:

P =

[

ko
n

6
DU ′(R) +

9

4
kB2oγoEw(yw)

]

1

v
, (11)

BT = −v

(

∂P
∂v

)

T

= P +

[

ko
n

18
DU ′′(R)

+
9

4
kB2oγo(γo − qo)Ew(yw) − 3kBγ

2
oT FE(yw)

]

1

v
. (12)

Here, R = ro/co = (v0/v)1/3 is the relative linear density

of the system,

Ew(yw) = 0.5 +
1

[exp(yw) − 1]
,

FE(yw) =
y2
w exp(yw)

[exp(yw) − 1]2
, v0 =

πr3o
6kp

,

U(R) =
aRb − bRa

b − a
,

U ′(R) = R

[

∂U(R)

∂R

]

=
ab(Rb − Ra)

b − a
,

U ′′(R) = R

[

∂U ′(R)

∂R

]

=
ab(bRb − aRa)

b − a
. (13)

Expressions for the first (γo) and second (qo) Gruneisen

parameters for a vacancy-free system that are included

in (11) and (12) can be derived from (9). They are written

as follows

γo = −
(

∂ ln2o

∂ ln v

)

T

=
b + 2

6(1 + Xw)
,

qo =

(

∂ ln γo

∂ ln v

)

T

= γo
Xw(1 + 2Xw)

(1 + Xw)
. (14)

Here, Xw = Awξ/2o is introduced, which determines the

role of quantum effects in calculating the Gruneisen para-

meters.

Since, according to (9), the Debye temperature does

not depend on temperature during isochoric heating of the

system, the isochoric heat capacity and isobaric coefficient

of thermal volumetric expansion for the vacancy-free crystal

can be calculated as follows [28]:

Cv = 3NkBFE

(

32o

4T

)

,

αp =
1

v

(

∂v

∂T

)

P

= γ
Cv

V BT
=

γCv

N BT [πr3o/(6kp)]

(

v0

v

)

.

(15)
Expressions (8) to (15) define the baric dependence of

co(P)2o(P) along a certain isotherm. For isotherm Tm(0),
we derive the following expression from (7)

Tm(P, Tm(0)) = Tm(0)

[

co(P, Tm(0))2o(P, Tm(0))

co(0, Tm(0))2o(0, Tm(0))

]2

×
f y (yw(P, Tm(0)))

f y(yw(0, Tm(0)))
. (16)

With isothermal pressure growth, co(P, Tm(0)) decreases,

but Tm(P, Tm(0)) from (16) grows. Growth of Tm(P, Tm(0))
should result in the corresponding increase in co(P, Tm(0)).
To consider this effect, the contribution made by the

functions included in (16) shall be addressed. At high

temperatures (i.e. at T ≫ 2o), f y (yw) is close to unity:

f y (yw ≪ 1) ∼= 1. Therefore, the ratio of these functions

in (16) may be assumed equal to 1. Under the condition

(that is satisfied for all metals)

8D
kBAw(ko

n, co)ξ2
≫ 1,

equation (9) may be simplified to:

2o(k
o
n, co) ∼=

[

8DAw(ko
n, co)

kB

]1/2

=

[

5~
2Dko

nab(b + 1)

18k2
Bmr2o(b − a)

(

ro
co

)b+2]1/2

.

Hence, the following relation can be easily derived

[

co(P)2o(P)
]2 ∼=

5~
2Dko

n · ab(b + 1)

18k2
Bm(b − a)

(

ro
co(P)

)b

.
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Thus, the contribution of the increase in co(P, Tm(0))
with baric growth of the melting temperature from Tm(0)
to Tm(P, Tm(0)) may be considered by introduction of

additional term into (16)

Tm(P) ∼= Tm(P, Tm(0))

× exp

[

−
b
3
αp(P, Tm(0))

[

Tm(P, Tm(0)) − Tm(0)
]

]

, (17)

where αp(P, Tm(0)) is the thermal expansion coefficient at

pressure P calculated using equation (15) along isotherm

Tm(0).

3. Calculation results

3.1. Gold

Gold (Au, m(Au) = 196.967 a.m.u.) at P =0 has a

melting temperature equal to Tm(0)=1337K [5]. Gold has a

face-centered cubic (FCC) structure (ko
n = 12, kp = 0.7405)

and does not experience polymorphic phase transitions up

to 220GPa [29]. Therefore, FCC-Au is used as a pressure

standard [30].
The parameters of pair interatomic potential for

FCC-Au (8) were determined by us using a self-consistency

method in [31], and have the following values:

ro = 2.87 · 10−10 m, D/kB = 7446.04K,

b = 15.75, a = 2.79. (18)

The equation of state and FCC-Au parameters with

interatomic potential parameters (18) were calculated by the

method from (8)−(15) in [26]. The results obtained in [26]
showed good agreement with the experimental data. There-

fore, to calculate Tm(P), we used (18). When using poten-

tial parameters (18), the following expressions were derived

using equations (9)−(15) along isotherm Tm(0) = 1337K

at P = 0 for the parameters included in equation (16):

co(0, Tm(0)) = 2.93432 · 10−10m,

2o(0, Tm(0)) = 168.28K.

Figure 1 shows baric dependences both for the

melting temperature Tm(P) (left graphs) and for the

melting temperature derivative with respect to pressure:

T ′

m(P) = dTm/dP (right graphs) for FCC-Au. Functions

T ′

m(P) were calculated by means of numerical differentiation

of isothermal dependences from (16) and (17) with respect

to pressure. The upper graphs show the low pressure region

0−20GPa; the central graphs show 0−150GPa region;

the lower graphs show 0−1000GPa region. Dotted lines

show dependences Tm(P) and T ′

m(P) calculated by us using

equations (16) (upper line) and (17) (lower line). Experi-

mental data for Tm(P) are shown by the following symbols:

crosses — from [2] and circles — from [5]. Solid lines —

Table 1. Experimental and theoretical (in brackets) values of the

melting line inclination at P = 1 bar for FCC-Au

Authors — year dTm/dP , K/GPa Ref.

Mitra et al. — 1967 59.7± 3 (60−66) [1]
Akella & Kennedy — 1971 57.3 (60−66) [2]
Mirwald & Kennedy — 1979 57.0 [3]
Errandonea — 2010 47± 3 (37) [4]
Hieu & Ha — 2013 (38.18−42.66) [32]
Weck et al. — 2020 39.55∗ (46.6)∗ [5]
Ashwini et al. — 2022 (43.32) [9]
Van Nghia et al. — 2022 (40.4) [34]
This work:

Eq. (16) (63.410)
Eq. (17) (35.824)

Comme n t. ∗ Defined using equation (20) with parameters from the

referenced paper.

.

are the dependences obtained in [4] and [5] by fitting the

experimental data to the Simon–Glatzel equation written as:

Tm(P) = Tm0

[

1 +
P
P0

]cs

, (19)

T ′

m(P) =
dTm(P)

dP
= Tm0

cs

P0

[

1 +
P
P0

]cs−1

. (20)

In [4] for FCC-Au for the pressure region up

to 6GPa, Tm0 = 1339K, P0 = 16.1GPa, cs = 0.57.

were obtained In [5] for FCC-Au for the region

up to 106GPa, Tm0 = 1337K, P0 = 22.265 ± 1.83GPa,

cs = 0.662± 0.03 were obtained.

Also, in [5], dependence Tm(P) was calculated by the

molecular dynamics method. For this dependence at

pressures up to 107GPa, Tm0 = 1181K, P0 = 17.94GPa,

cs = 0.709 were obtained. This calculated dependence is

shown by a dashed line in Figure 1.

As shown in Figure 1 and Table 1 for FCC-Au, our de-

pendence (17) is in line with the experimental dependences

from [4,5] better than the dependence obtained in [5] by the

molecular dynamics method up 200GPa. But it should be

considered that dependence (19) was obtained in [4] for the
pressure region up to 6GPa, and in [5] — for the region up

to 106GPa.

It should be noted that dependence Tm(P) for

FCC-Au was also calculated by various analytical methods

in [9,32–34], where good agreement with the experimental

data was achieved (see Table 1). However, in [9,32]
for transformation of volumetric dependences into baric

dependences, various phenomenological equations were

used. In [9], the Stacey equation of state was used. In [32],
for this purpose, the Vinet equation of state and relation

γ = γ0(V/V0)
q, where q = 1 was postulated for the second

Gruneisen parameter. In [33,34], calculations were carried

out using the statistical moments method, SMM. SMM

from [33,34] is also based on the Mie−Lennard-Jones pair

interatomic interaction potential (8). However, SMM is

Physics of the Solid State, 2023, Vol. 65, No. 5
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Figure 1. Baric dependences of melting temperature Tm(P) (left graphs) and functions T ′

m(P) (right graphs) for FCC-Au. Experimental

data for Tm(P) are shown by the following symbols: crosses — from [2], circles — from [5]. Solid lines — dependences (19) and (20)
obtained in [4,5] on the basis of the experimental data. Dashed lines — calculated dependences (19) and (20) obtained in [5]. Dotted

lines — our calculations using equations (16) — upper line, and (17) — lower line.

much more sophisticated that our method from (8)−(17).
Moreover, we use the potential parameters (8), that were
defined using a self-consistency method from (8)−(15)
in [31]. For calculations within SMM, potential parame-

ters (8) were taken from other studies, where these

parameters were defined by other methods. In [33],
for transformation of volumetric dependences to baric

dependences, power approximation of the equation of state

of gold obtained at T = 0K was used. In [34], dependences
P(V, T ) for Au were not presented. Therefore, the issue

Physics of the Solid State, 2023, Vol. 65, No. 5
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of correct pressure calculation by the method used in [34]
remains open.

3.2. Platinum

Baric dependence Tm(P) for platinum was experimentally

studied in [1,35–38]. Platinum (Pt, m(Pt) = 195.08 a.m.u.)
has a FCC structure (ko

n = 12, kp = 0.7405) and does

not experience polymorphic phase transitions up to

200GPa [37,38]. Therefore, platinum, along with gold,

is used as a pressure standard [30]. However, the

experimental data from [1,35–38] for dependence Tm(P) is

very inconsistent which is caused by the refractory property

of this metal [39]. At P = 0 the melting point of platinum

is equal to Tm(0) = 2041.7K [37].
Pair interatomic potential parameters (8) for FCC-Pt

were calculated by the self-consistency method in [31]
according to the calculations using the equation of state,

thermal expansion coefficient, modulus of elasticity and

other properties. They are as follows:

ro = 2.766 · 10−10m, D/kB = 11400.7K,

b = 11.65, a = 3.05. (21)

When using potential parameters (21), the following

expressions were derived using equations (9)−(15) along

isotherm Tm(0) = 2041.7K at P = 0 for the parameters

included in equation (16):

co(0, Tm(0)) = 2.82146 · 10−10m,

2o(0, Tm(0)) = 221.477K.

Figure 2 shows baric dependences both for the melting

temperature Tm(P) (left graphs) and for the melting tempe-

rature derivative with respect to pressure: T ′

m(P) = dTm/dP
(right graphs) for FCC-Pt. The upper graphs show the

low pressure region 0−20GPa; the central graphs show

0−150GPa region; the lower graphs show 0−1000GPa

pressure region. Dotted lines show dependences Tm(P) and

T ′

m(P) calculated by us using equations (16) (upper line)
and (17) (lower line). Solid circles show experimental data

for Tm(P) from [38]. Solid lines — are the dependences

obtained in [35,36,38] by fitting the experimental data to

the Simon–Glatzel equation (19) with parameters

Tm0 = 2042K, P0 = 21.5GPa, cs = 0.50 from [35],

Tm0 = 2046K, P0 = 23.0GPa, cs = 0.28 from [36],

Tm0=2041K, P0=15.1GPa, cs=1/2.6=0.3846 from [38].

Dashed lines in Figure 2 show the dependences (19)
and (20) found in [37] by ab initio calculations using

Z-method and approximated by dependence (19) with

parameters

Tm0 = 2041.7K, P0 = 44.0GPa, cs = 0.85.

As shown in Figure 2 and Table 2 for FCC-Pt, our

dependence (17) agrees with the experimental points

Table 2. Experimental and theoretical (in brackets) values of the

melting line inclination at P = 1 bar for FCC-Pt

Authors — year dTm/dP , K/GPa Ref.

Mitra et al. — 1967 42± 7 [1]
Errandonea — 2013 47 [35]
Patel & Sunder — 2018 25 [36]
Anzellini et al. — 2019 (39.4)∗ [37]
Geballe et al. — 2021 ∼ 40 (52)∗ [38]
This work:

Eq. (16) (45.441)
Eq. (17) (33.185)

Comme n t. ∗ Defined using equation (20) with parameters from the

referenced paper.

from [38] better than the dependence calculated in [37]
using Z-method. But it should be considered that de-

pendence parameters (19) were obtained in [35] for the

pressure region up to 30GPa, and in [38] — for the region

up to 107GPa.

3.3. Niobium

Niobium is more refractory material than platinum:

Tm(0) = 2750K [40]. Therefore, experimental dependence

Tm(P) for niobium has been measured only recently in [40].
Niobium (Nb, m(Nb) = 92.9064 a.m.u.) has a body-

centered cubic (BCC) structure (ko
n = 8, kp = 0.6802),

though, it is reported that BCC-Nb at P > 6GPa can

transfer to orthorhombic Pnma-phase [40]. Dependence

Tm(P) for BCC-Nb was theoretically calculated in [40–44]
by various methods.

BCC-Nb parameters of pair interatomic potential (8) were
determined using a self-consistency method in [42], and

have the following values:

ro = 2.8648 · 10−10 m,

D/kB = 30200K, b = 5.81, a = 1.88. (22)

The equation of state and various BCC-Nb properties

with interatomic potential parameters (22) were calculated

in [42,43] by the method from (8)−(15). In [42], the baric

dependences of various BCC-Nb properties were calculated

along isotherms 300 and 3000K in the pressure range

P = 0−200GPa, and the results show good agreement

with the experimental and calculated data obtained by

others. These calculations were generalized in [43] for a

nanocrystal from a finite number of atoms and variations

of baric dependences were studied with reduction of

nanocrystal size or shape deformation BCC-Nb. However,

dependence Tm(P) for BCC-Nb in [42,43] was calculated

using equation (16) at Tm(0) = 2742K. Here, we also

calculated dependence Tm(P) using both equations (16)
and (17) at Tm(0) = 2750K.

When using potential parameters (22), the following

expressions were derived using equations (9)−(15) along
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Figure 2. Baric dependences of melting temperature Tm(P) (left graphs) and functions T ′

m(P) (right graphs) for FCC-Pt. Solid circles

show experimental data for Tm(P) from [38]. Solid lines — dependences (19) and (20) obtained in [35,36,38] on the basis of the

experimental data. Dashed lines — calculated dependences (19) and (20) obtained in [37]. Dotted lines — our calculations using

equations (16) — upper curve, and (17) — lower curve.

isotherm Tm(0) = 2750K at P = 0 for the parameters

included in equation (16):

co(0, Tm(0)) = 2.94338 · 10−10m,

2o(0, Tm(0)) = 255.4587K.

Figure 3 shows baric dependences both for the melting

temperature Tm(P) (left graphs) and for the melting temper-

ature derivative with respect to pressure T ′

m(P) = dTm/dP
(right graphs) for BCC-Nb. The upper graphs show the

low pressure region 0−20GPa; the lower graphs show
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Figure 3. Baric dependences of melting temperature Tm(P) (left graphs) and functions T ′

m(P) (right graphs) for BCC-Nb. Solid lines

show dependences (19) and (20) experimentally measured in [40]. Dashed lines — theoretical dependences (19) and (20) calculated

in [40]. Dash-dot curves show theoretical dependences (23) calculated in [41]. Dotted lines — our calculations using equations (16) —
upper curve, and (17) — lower curve.

0−250GPa pressure region. Dotted lines show dependences

Tm(P) and T ′

m(P) calculated by us using equations (16)

(upper line) and (17) (lower line). Solid line shows the

dependence obtained in [40] by fitting seven experimental

points measures within 0−120GPa to the Simon–Glatzel

equation (19) with parameters

Tm0 = 2750K, P0 = 48GPa, cs = 0.45.

The dashed line — is the dependence obtained in [40]

by fitting six points calculated in the range from −7.9

to 287GPa by the quantum molecular dynamics method

to the Simon–Glatzel equation (19) with parameters

Tm0 = 2750K, P0 = 22.6GPa, cs = 0.30.

The dot-dash curve show the dependence obtained

in [41] by approximation of 11 points Tm(P) calculated by

the molecular dynamics method within 0−2.5GPa. This

Table 3. Experimental and theoretical (in brackets) values of the

melting line inclination at P = 1 bar for BCC-Nb

Authors — year dTm/dP , K/GPa Ref.

Errandonea et al. — 2020 25.8 (36.5) [40]
Fellinger et al. — 2010 (53.9± 0.3) [41]
Kramynin & Ahmedov — 2019 (62) [42]
Kramynin — 2022 (65.8) [43]
Hieu et al. — 2022 (22.4) [44]
This work:

Eq. (16) (63.730)
Eq. (17) (52.568)

dependence is written as

Tm(P) = Tm0 + αP + βP2, T ′

m(P) = α + 2βP, (23)

where T0 = 2685.8 ± 0.2K, α = 53.9± 0.3K/GPa, β =
= −3.4± 0.1K/GPa2.
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As shown in Figure 3 and Table 3 for BCC-Nb, our de-

pendence (17) deviates considerably from the experimental

dependence from [40] and theoretical dependences obtained

by both molecular dynamic method in [40] and analytical

statistic method of moments in [44]. However, for calcu-

lations in [44], interatomic potential parameters (8) were

taken from other studies, where they were defined by other

methods. Moreover, [44] did not provided any calculations

of the equation of state, i.e. dependences P(V, T ), for

BCC-Nb within the statistic method of moments used to

calculate dependence Tm(P). Thus, the issue of correct

pressure calculation is still open.

Deviation of out dependence Tm(P) from the experimen-

tal one in [40] may be explained both by the proximity

of our calculations for BCC-Nb and other reasons. For

example, the following reasons may be provided.

1. This may be attributable to the reduction of the

Lindemann parameter from criterion (6) with pressure

growth. Similar reduction of the Lindemann parameter

with the pressure growth was detected in [10] when melting

curves of zirconium (Zr) and hafnium (Hf) were analyzed

by the quantum molecular dynamic method.

2. This may be associated with the redistribution of

electrons on s−d-orbitals in compression of transition

metals with BCC structure. This effect was experimentally

found in [45] during investigation of electronic and elastic

properties of single-crystal molybdenum (Mo). Variation

of electronic density with pressure growth shall result in

change of pair interatomic interaction potential parame-

ters (8).

4. Conclusions

A relatively simple analytical (i.e. without computer-

based simulation) method for calculation of the melting

temperature dependence of a single-component crystal

on pressure is offered. The method is based on the

Mie−Lennard-Jones paired 4-parameter interatomic inter-

action potential and delocalization melting criterion and

contain no fitting constants.

It is shown that the delocalization criterion of crystal–
liquid transition (1) used by us switches to the Lindemann

criterion in case of melting, and is reduced to the Löwen

criterion in case of crystallization.

The developed method was used to calculate baric depen-

dences of melting temperatures and melting temperature

derivative with respect to pressure for gold, platinum and

niobium in the pressure range of P = 0−1000GPa. It

is shown that the dependences calculated by this method

for gold and platinum better agree with the experimental

data that the dependences obtained by the computer-based

simulation methods.

For niobium, the calculated dependence Tm(P) was

steeper, i.e. T ′

m(P) was higher than the experimental data

obtained in [40]. It is shown that the difference may be

attributable to various causes: for example, reduction of

the Lindemann parameter with pressure growth [10] or

redistribution of electrons on s−d-orbitals in compression

of transition metals with BCC structure [45].
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