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Phase transitions in a two-dimensional weakly diluted 4-state Potts

model on a hexagonal lattice
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The Monte Carlo method is used to study phase transitions in a two-dimensional weakly diluted 4-state Potts

model on a hexagonal lattice. Systems with linear dimensions L = 21÷ 336 at spin concentrations p = 1.00, 0.90

are considered. The use of the fourth-order binder cumulants method and histogram data analysis showed that

the introduction of nonmagnetic impurities has a stabilizing role in the implementation of the second-order phase

transition in the Potts model under study on a hexagonal lattice.
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1. Introduction

Analysis of models that have nontrivial behavior during

first and second order phase transition (PT) is essential for

theoretical study of PT and at the same time allows to cal-

culate accurately a partition function. Such models usually

seldom ensure indirect comparison with the experiment,

but are very useful for understanding of PT physics [1].
By now, there are several solvable models, including — the

two-dimensional Ising square-lattice model [2]. The Potts

model with q = 2 is isomorphic to the Ising model for

which the exact solution was obtained on a hexagonal lattice

more than seventy years ago [3]. However, in attempts

to calculate critical parameters for the 4-state (q = 4)
Potts model on various lattices, analytical methods face

insuperable difficulties. This resulted in the development

of some hypotheses allowing to assess approximately the

critical points according to polynomial expressions whose

validity is not proved [4,5].
For the Potts models on various lattices, there is still no

exact solution. Study of magnetic and thermal properties of

these models on various two-dimensional lattices is of high

fundamental and practical importance. This is associated

with the fact that many objects and phenomena observed

in condensed matter physics, in particular, intercalation of

alkali metal atoms into the graphite lattice as well as inert

gas adsorption on graphite type adsorbents are described

by low-dimensional Potts hexagonal-lattice models [1,4] and
their study is of great current interest. Thus, the interest

in the Potts hexagonal-lattice model [4,5] is associated with

the variety of its structural properties. Substances with a

hexagonal lattice structure may be illustrated on adsorbed

films: adsorbed hydrogen atoms (2× 2) — 2H/Ni(111) on

Ni(111) surface are located in hexagonal lattice points [6].

Phase transitions in such adsorbed structures are described

by the class of versatility of the two-dimensional Potts
models with q = 4 [7]. Moreover, it should be noted that

the Potts models may be used to check the aspects of

impacts induced by impurities on phase transitions and to
determine their role in implementation of a certain type

of PT. In accordance with the Harris criterion [8], for

the two-dimensional Potts models with q = 3 or q = 4,

the impurities shall also influence their critical behavior,
because for these models in pure conditions α = 1/3

and α = 2/3, respectively. In [9], for 4-state (q = 4)
standard model, and in [10] — for Potts vertex model —
with impurity concentration c = 0.1 (c = 1− p), a square

lattice was used to show that critical behavior of this

model is slightly exposed to weak disorder in the form of

nonmagnetic impurities. At the same time, for the Potts
hexagonal-lattice model with q = 4, there are almost no

literature data describing the way how the frozen disorder

impacts phase transitions and its critical behavior. Critical

temperatures were not determined and the aspects of impact
induced by disorder on thermodynamic properties such

as magnetization m, susceptibility χ, energy E , thermal

capacity C and Binder cumulants UL and VL, depending
on the linear dimensions L of the studied systems.

Therefore, the main goal of this study is to investigate the

influence of nonmagnetic impurities on phase transitions

and various thermodynamic properties in a standard two-
dimensional Potts hexagonal-lattice model depending on L.

2. Two-dimensional weakly diluted
4-state Potts model

A two-dimensional standard weakly diluted 4-state Potts

model used to describe a wide range of objects and
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phenomena in the condensed matter physics will be defined

here. In the model under consideration, the impurities are

distributed in a canonical way [11]. When building such

model, the following aspects shall be taken into account:

1. Spins Si are present in the hexagonal lattice points,

which can be oriented in 4 symmetric directions of the

hypertetrahedron in space with dimension q − 1 so that

the angles between any two spin directions are equal

(see Fig. 1). The nonmagnetic impurities are randomly

distributed and fixed on various lattice points (quenched
disorder).
2. The bond energy between two points is equal to zero,

if they are in different states (whichever) or, if at least

one point contains a nonmagnetic atom, and is equal to J,
if the interacting points are in the identical states (again,
whichever).
Taking into account these features, a microscopic Hamil-

tonian of such system can be written as [4]:

H = −
1

2
J

∑

i, j

ρiρ jδ(Si , S j), Si = P1, P2, P3, P4, (1)

where summation covers all nearest neighbors, J is the

exchange interaction parameter (J > 0), Pq is the number

of various states of a selected spin Si , ρi = 1, if point i is

occupied by a magnetic atom, and ρi = 0, if point i contains
a nonmagnetic impurity,

δ(Si , S j) =

{

1, if Si = Si

0, if Si 6= Si

.

A concentration of the magnetic spins is determined using

the expression

p =
1

L2

L2

∑

i=1

ρiδ(Si , q). (2)

Then p = 1 corresponds to the pure Potts model, while

p = 0 corresponds to an empty, entirely impurity lattice.

3. Research procedure

Wolff algorithm — is currently one of the most ef-

fective cluster algorithms within the Monte Carlo (MC)
method [12]. The algorithm procedure is addressed in detail

in [13,14]. Herein, this algorithm is used as follows.

1. Two random numbers define coordinates i, j of the

hexagonal lattice point. If this point contains a nonmagnetic

impurity, then new random numbers are generated until

magnetic spin coordinates Si are generated.

2. All the nearest neighborsS j of this spin Si are consi-

dered. If an adjacent point is occupied by a magnetic spin,

then with probability

P = 1− exp(−K), (3)

where K = J/kBT , kB is the Boltzmann constant, T is

the temperature, a bond is activated between Si and S j ,
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Figure 1. Two-dimensional standard 4-state wekly diluted Potts

model on a hexagonal lattice.

if Si and S j are equal at J > 0. Note that for the Potts

model, in order to express the probability of spin inclusion

in the cluster (3), exponent 2, which is typical of the

corresponding probability of the Ising model, disappears.

Thus, it can be claimed that the Potts model with spin state

q = 2 is equivalent to the Ising model with accuracy of

number factor 2 in the exchange constant J .
3. If the bond between Si . and S j is activated, then the

spin in point j is included in the cluster. It should be noted

that, like for the Ising model with impurities, the same spin

can be included in the cluster only once, whereas it can be

checked for inclusion in the cluster several times.

4. After all nearest neighbors of the selected spini have

been checked, the first spin included in the cluster becomes

”
central“ and the process of bond activation between this

spin and its nearest neighbors starts. This process continues

until all nearest neighbors of all spins included in the cluster

are checked or the system boundaries are achieved.

5. All bonded spins form
”
a cluster“.

6. The resulting cluster is flipped with probability equal

to 1. For the Potts model, cluster flip means that a new spin

value S′

i other than the old value Si , will be assigned to all

spins included in the cluster, with equal probability among

all of its states q. Then proceed the step 2.

The efficiency of the single-cluster Wolff algorithm appli-

cable to the Potts model can be assessed by critical index z ,
which characterizes the efficiency of the algorithm. In par-

ticular, the study of the clean two-dimensional Potts model

with q = 4 based on the single-cluster Wolff algorithm has

demonstrated that critical index z = 0.60± 0.02, while the

traditional Metropolis algorithm gives z ≈ 2 [15]. According
to the above-mentioned Wolff algorithm [12], the Markov

process was implemented for the systems with periodic

boundary conditions. The calculations were carried out

for the systems with linear dimensions L = 21÷ 336 and

number of spins N = 2× p × L × L/3. Configurations were
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initially specified in such a way that all spins were ordered

along one of the axes X , Y or Z. For system equilibration,

a nonequilibrium section with length τ0 was cut off for

the system with linear dimension L. This nonequilibrium

section was discarded. For each chain, averaging was carried

out for a Markov chain section with length τ = 360τ0 .

For the largest system L = 336, τ0 = 2 · 103 MC-steps/spin.

In addition, configurational averaging was carried out or

1000 various impurity configurations.

4. Simulation results

With numerical study of phase transitions, thermody-

namic properties U , m, C, χ were calculated for an

individual sample using the following equations [1,16]:

U =
1

N
[〈H〉], (4)

m =

[

q
(Nmax

N

)

− 1
]

q − 1
, (5)

C = (NK2)
⌊

〈U2〉 − 〈U〉2
⌋

, (6)

χ = (NK)
⌊

〈m2〉 − 〈m〉2
⌋

, (7)

where K = J/kBT , Nmax = max{N1, N2, N3, N4}, Ni is the

number of spins in state with q = i , N = (2/3)pL2 is the

number of magnetic atoms; angle brackets mean thermo-

dynamic averaging, while square brackets mean averaging

over the impurity configurations.

Figures 2 and 3 show typical magnetization dependences

for the pure (p = 1.00) and weakly diluted (p = 0.90) Potts
model on the temperature, respectively. Hereinafter, data

error in all Figures does not exceed the dimensions of

symbols used for plotting diagrams. These Figures show

that, for all considered systems, behavior typical for second

order PT is observed.

A Binder second-order cumulant method is proven to be

the most efficient for PT analysis [17]:

VL(T, p) = 1−
〈E4(T, p; L)〉L

3〈E4(T, p; L)〉2L
, (8)

UL(T, p) = 1−
〈m4(T, p; L)〉L

3〈m4(T, p; L)〉2L
, (9)

where E is the energy and m is the magnetization of a

system with linear dimension L. Expressions (8) and (9)
ensure high-accuracy calculation of PT temperature Tl(p)
for first- and second-order PT, respectively. It should

be noted that the Binder cumulants also ensure reliable

calculation of PT order in the spin system in question.

Second-order phase transitions are characterized by the

following features [18]: averaged VL(T, p) tends to nontrivial

value V ∗ according to

V (T, p) = V ∗ + bL−d (10)

with L → ∞ and T = Tl(L), where V ∗ = 2/3, and tempera-

ture dependence curves of Binder cumulants UL(T, p) in the
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Figure 2. Temperature dependence of magnetization m for

the weakly diluted 4-state Potts model with spin concentration

p = 0.90 on hexagonal lattice.
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Figure 3. Temperature dependence of energy U/|J| for

the weakly diluted 4-state Potts model with spin concentration

p = 0.90.

critical region have a clearly pronounced point of intersec-

tion. The listed features for fourth-order Binder cumulants

VL(T, p) and UL(T, p) are demonstrated in Figures 4 and 5,

respectively, for ferromagnetic weakly diluted Potts model

with q = 4 on hexagonal lattice with spin concentration

p = 0.90. PT order calculation procedure by this method is

described in detail in [9,10].
Bar diagram data analysis carried out for the two-

dimensional weakly diluted 4-state Potts model on hexag-

onal lattice with p = 0.90 also proves the second-order

PT is present. It is shown in Figure 6 for the spin

system with the linear dimension L = 336. This Figure

shows energy distribution bar diagrams for spin systems

with three various temperatures in vicinity of the critical
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temperature Tc (Curie temperature). Figure 6 shows that

dependences of probability P on system energy E for

three various temperatures in vicinity of Tc have one well

pronounced maximum. Such behavior is also typical of the

second order PT.

Analysis of data calculated using the MC method cluster

algorithm for the 4-state pure Potts model on square

lattice [14] and on hexagonal lattice [19] has demonstrated

the second-order PT. At the same time, the study of

this model on hexagonal lattice by direct Wang–Landau
method in [20] has detected the first-order PT. Later, using

a modified version of the Wang–Landau method in [21],
inaccuracy of statements made in [20] was demonstrated

and importance of accuracy control for system state density

assessment was shown. The modified version of the Wang–
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Figure 4. Temperature dependence of Binder cumulants VL(T )
for the weakly diluted 4-state Potts model with spin concentration

p = 0.90.
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Figure 5. Temperature dependence of Binder cumulants UL(T )
for the weakly diluted 4-state Potts model with spin concentration

p = 0.90.
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Figure 6. Energy distribution bar diagram for two-dimensional

weakly diluted 4-state Potts model on hexagonal lattice.

Landau method allowed the authors of [21] to achieve the

results identical to [19,22], that were obtained using the

cluster algorithms within the MC method.

Thus, introduction of disorder in the form of nonmagnetic

impurities into the spin lattice system described by the

4-state Potts model on hexagonal lattice results in stabiliza-

tion of the second-order PT. In addition, the study of critical

behavior of a disordered model on hexagonal lattice is of

great interest and will the addressed separately.

5. Conclusion

The cluster algorithm within the Monte Carlo method

was used herein to study phase transitions in a two-

dimensional 4-state ferromagnetic Potts model in a weakly

diluted mode on hexagonal lattice. The findings of our

investigations carried out using the fourth-order Binder

cumulant method and bar diagram data analysis show that

the weakly disordered 4-state Potts model on hexagonal

lattice and pure Potts model with q = 4 have the second-

order PT [10,17]. Introduction of nonmagnetic impurities

into the Potts model in question results in stabilization of

the second-order PT.
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