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Brittle fracture of a conductor in a strong pulsed magnetic field
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The main factors resulting in conductor failure under the action of a strong pulsed magnetic field are analyzed.

The theoretical model describes the geometry of a cylindrical thick-walled solenoid and considers magnetic field

diffusion, ohmic heating of the material and mechanical stresses arising in it. The magnetic field amplitude at which

induced stresses in the material reach the von Mises yield criterion is used as the Bth threshold field separating

the areas of safe (non-destructive) and dangerous fields. In the case of an initially uniform material, the maximum

heating temperature corresponding to this limit, which predetermines the thermomechanical stress, has been derived

analytically. In the general case, based on the analysis of the calculated threshold field, the influence of various

parameters (magnetic pulse characteristics, elastic moduli of the material, etc.) on the conductor resistance in the

pulsed magnetic field is studied and ways of increasing the threshold field are proposed, in particular, by using

different spatial profiles of the initial resistivity. It is shown that in comparison with a uniform material, a modified

layer with increased resistivity formed on the surface allows to significantly increase the amplitude of the magnetic

pulse withstood by the material without fracture.

Keywords: Magnetic field diffusion, plastic deformation, thermomechanical stress, yield strength, von Mises yield

criterion.
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Introduction

Currently, highly promising methods of magnetic pulse

processing of materials attract the increased attention of

many researchers. Technologies based on these methods are

used for experiments on high-speed uniaxial stretching [1],
compression of nanoscale powders [2,3], deformation of

conductive shells [4], creation of a strong bond between

dissimilar materials [5,6] and much more. One of the

limitations for the widespread use of such technologies is

the low lifespan of inductor systems that generate pulsed

magnetic fields. At the moment, it amounts to dozens

of pulses with a magnetic field amplitude of about 50 T

and a pulse duration of the order of units of dozens of

microseconds. The reason for the short service life is

the rather rapid cracking of the working surface of the

conductive material (the inner surface of the inductor, or

the surface of the magnetic flux concentrator) [7,8]. Cracks
are mainly caused by presence of strong thermomechanical

stresses due to rapid, almost adiabatic, ohmic heating of

the conductive material. Further operation of the inductor

(concentrator) with incipient cracks on the surface leads

to their rapid growth from -for
”
saw effect“ [8,9] and,

ultimately, to the destruction of the material.

Cracks are initiated on the initially smooth surface of the

conductor through the mechanism of low-cycle fatigue in

case of a material with some plasticity resource [10–14]. In
this case, exceeding the yield strength corresponding to a

certain threshold amplitude of the magnetic field B th during

the first pulse is not a prerequisite for further destruction.

Minor plastic deformation, occurring at the ohmic heating

stage, during subsequent cooling inevitably leads to the

appearance of residual elastic stresses stretching the surface

in tangential directions. Such a material turns out to be

”
prepared“ for subsequent magnetic field pulses and can

withstand them without re-reaching the yield strength level.

The low-cycle fatigue mechanism will be triggered if the

material reaches the yield threshold [15] twice during the

first pulse: during ohmic heating and subsequent cooling.

At the same time, even a single achievement of the yield

strength at the very first heating can be destructive in the

case of a relatively brittle material that does not have a

sufficient plasticity resource [16]. This (brittle) destruction

of the conductive material is the subject of study in

this paper. The tendency for brittle fracturing will be

assessed based on the yield strength in the form of Mises

stresses. Therefore, in the future we will use the minimum

amplitude of the magnetic field on the surface of the

conductor as a criterion of destruction, at which the induced

thermomechanical stresses in the material satisfy the Mises

plasticity condition, i.e., the material reaches the yield point.

We will call this minimum amplitude the threshold field B th,

separating the areas of safe (non-destructive) and dangerous

fields.

Various approaches can be applied to increase the lifespan

of inductor systems: optimization of the shape of the exter-

nal magnetic pulse B0(t) [17,18], the use of a diamagnetic

shield with inertial confinement [19], etc. However, the

most attractive method is the one discussed in [19,20],
which consists in creating a gradient resistance profile in
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Figure 1. The geometry of a model conductor (hollow cylinder)
simulating the inner region of an inductor or a magnetic flux

concentrator.

a conductive material. The main current and heating in a

material with a specific electrical resistance decreasing from

the surface are shifted deep into the material [17,18,21],
which can noticeably increase its resistance in pulsed fields.

It is worth noting that the studies of [17,18,21] did not

take into account the change in electrical resistance during

heating. This factor becomes decisive for strong magnetic

fields with an amplitude of about 30 T or more, in particular,

it is due to the well-known
”
peak effect“ [22,23].

Thus, in this paper we investigate the effect of a strong,

about 30 T, pulsed magnetic field on a brittle conductive

material in the form of a hollow cylinder with both a

spatially homogeneous initial resistivity and with different

profiles of initial electrical resistance on the inner (working)
surface. The cylindrical geometry of the conductor implies

the use of the results obtained to increase the lifespan of

inductor systems. The amplitude of the fields studied in

this work is tens of teslas, which, on the one hand, makes

it possible to neglect the effects of magnetic hysteresis

observed in weak fields [24–27], and on the other hand,

to avoid the melting and explosion of the conductor

occurring in super-strong magnetic fields (more than 100 T),
which requires the use of wide-range equations of state of

matter [22,28–31].

1. Theoretical model

We will consider the hollow cylindrical conductor shown

in Fig. 1. The natural
”
weak point“ of such a conductor

is the inner surface near the sharp end edge. In practice,

this edge is smoothed to level out undesirable edge effects

in the manufacture of magnetic flux concentrators [7].
Experimental data on the destruction of such concentrators

show that the nucleation of cracks on their surface can

occur in the middle part of the concentrator [7], i.e. it is

not related to the geometry of the end part. Therefore,

we will consider the conducting cylinder to be sufficiently

extended to simplify the theoretical model, neglecting the

edge effects of [32,33]. In such a statement, using a

cylindrical coordinate system (r, ϕ, z ) with z - axis aligned

with the axis of the conductor, it can be argued that the

displacement of the material w is possible only in the radial

direction, i.e. w = (w, 0, 0), magnetic field induction B has

only z -component, i.e. B = (0, 0, B), etc. In this case, all

the desired functions depend on the radius r and the time t .
The spatial distributions of the magnetic field B(r, t) and

the current density j(r, t) are determined by the well-known

magnetic diffusion equation [22]:

µ

ρe

∂B
∂t

=
∂2B
∂r2

+

(

1

r
+

1

ρe

∂ρe

∂r

)

∂B
∂r

,

j(r, t) = −
1

µ

∂B
∂r

, (1)

where µ = 4π · 10−7 H/m is a magnetic constant. The initial

condition for the differential equation (1) is the absence

of a magnetic field in the conductor at the moment t = 0.

We will use the absence of a magnetic field at the outer

boundary of the conducting cylinder (B = 0 at r = R2)
and the pulse of the magnetic field in the inner cavity as

a boundary condition, i.e. at the boundary of r = R1, in the

form of four periods of a decaying sine wave:

B0(t) = Bm exp

(

−
t

Te

)

sin

(

2πt
Ts

)

, 0 < t < 4Ts , (2)

with parameters Te = 20µs and Ts = 24µs, which corre-

sponds to typical magnetic field pulses in experiments [7,34].
The electrical resistivity ρe of the material was set as follows:

ρe(r, t) = ρ∗

e [γe(r) + kρT (r, t)], (3)

where ρ∗

e is the initial electrical resistance (before heating)
of the material away from the modified surface, multiplier

kρ is the temperature coefficient of resistance, T is the tem-

perature increment relative to the initial (room) value. The

dependence γe(r), which determines the initial electrical

resistance in the modified layer, was set as [15]:

γe(r) = 1 + γ0 exp[−(x/x c)
Nγ ], x = r − R1, (4)

where γ0 is the
”
amplitude“ of the modifications, x c is the

effective depth of the modified layer and Nγ ≥ 1 is the

parameter characterizing the sharpness of the transition at

the boundary of the modified layer. The larger the Nγ ,

the smaller the transition region between the surface (near
r = R1) highly resistive (at γ0 > 0) layer and the inner

region of the conductor. For a sharp (Nγ → ∞) step profile

γe = 1 + γ0 at x < x c and γe = 1 at x > x c . The minimum

value Nγ = 1 corresponds to the smoothest, exponential

profile of the initial resistivity.

The temperature increment T is described by the thermal

conductivity equation as

c
∂T
∂t

=
λ

r
∂

∂r

(

r
∂T
∂r

)

+ ρe j2 + σ i j ∂εi j

∂t
, (5)
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where c is the volumetric heat capacity, λ is the thermal con-

ductivity coefficient, the second term on the right describes

ohmic heating, and the third term is the mechanical work

(σ i j and εi j are the stress and strain tensors, respectively).
The initial condition for equation (5): T (r) = 0 at t = 0.

The adiabaticity of the inner and outer surfaces was used

as boundary conditions, i.e. ∂T/∂r = 0 with r = R1 and

r = R2.

The occurrence of mechanical stresses in the thickness of

the conductive material when current flows through it j(r, t)
is caused, in -first, by the action of the volumetric Ampere

force f a = [j× B], for the radial component of which we

have

f a = −
1

µ
B
∂B
∂r

,

and, in-second, thermoelastic stresses, which we will

describe in the framework of the linear elastic body

model [35,36]:

σi =
Eν

(1− 2ν)(1 + ν)
tr(εi j ) +

E
(1 + ν)

εi −
E

(1− 2ν)
βV T,

(i = r, ϕ, z ), (6)

where βV is the coefficient of linear thermal expansion, E is

the Young’s modulus, ν is the Poisson’s ratio. The problem

of the distribution of mechanical stresses and deformations

is analyzed in a quasi-static approximation that corresponds

to the condition of mechanical equilibrium [36]:

∂σr

∂r
+

σr − σϕ

r
=

1

µ
B
∂B
∂r

. (7)

The following was used as boundary conditions for the

mechanical problem (6), (7): absence of radial stresses

at the inner boundary σr (R1) = 0 [12] and absence of

displacements at the outer boundary w(R2) = 0. The Mises

yield criterion is used to determine the ultimate elastic

stresses and deformations [36]

(σr − σϕ)2 + (σr − σz )
2 + (σϕ − σz )

2 = 2σ 2
s ,

σs (T ) = σs ,0

(

1−
T

Tmelt

)

, (8)

where σs is the yield strength of the material under

uniaxial tension, approximated by linear dependence on

temperature, Tmelt is the melting point. The values of

σs ,0 = 1GPa and Tmelt = 1400◦C, corresponding to the steel

30XGSA [37], were used for calculations.

The results obtained within the framework of

the formulated theoretical model for a cylindrical

conductor with radii R1 = 5mm, R2 = 13mm and

parameters corresponding to steel 30XGSA [37] are

provided below: ρ∗

e = 42 · 10−8 � ·m, c = 461 J/(kg·K),
kρ = 1.38 · 10−3 K−1, λ = 39W/(m·K), E = 205GPa,

ν = 0.3, βV = 13 · 10−6 K−1.

2. Results and discussion

2.1. Homogeneous material: the effect of various
parameters on the threshold field value

We investigate in this section the effect of a pulsed

magnetic field on a homogeneous conductive material, i.e.

when in (4)
”
the amplitude“ of the modification γ0 = 0, and

at the initial moment the resistivity ρe = ρ∗

e in the entire

conductor. As noted in the introduction, one of the ways to

increase the resource of the inductor system is to optimize

the shape of the external magnetic pulse B0(t) [17,18]. This
possibility can be realized by varying the parameters Te and

Ts of the pulse (2) within the framework of the theoretical

model formulated in the previous section. These parameters

are determined by the resistance and inductance of the

inductor system, and also the capacity of the capacitor bank

used in real experimental setups [7,34].
Figure 2 shows the dependences of the calculated thresh-

old field B th on the value Te at a fixed value Ts = 24µs

and, conversely, on the value Ts at a fixed Te = 20µs.

Similar dependencies obtained in the plane geometry [15],
i.e. corresponding to the limit R1 → ∞ are provided there

for comparison. The dependence B th(Te) shows that it is

preferable to use a circuit with rapid attenuation (small

values Te), i.e. with relatively high values of electrical

resistance to increase the resource of the inductor system.

This is explained by the fact that the main (
”
working“) half-

period, which creates the main maximum of the magnetic

field, is the first half-period, at t < Ts/2, while subsequent

electrical oscillations lead only to additional (
”
parasitic“)

heating of the conductive material. Thus, it would be most

promising to use a circuit that completely cuts off the flow

of current through the inductor at the end of the first half-

cycle of oscillations [15].
The dependence B th(Ts ), shown in Fig. 2 on the right,

shows that the threshold field increases markedly when

using relatively long pulses (2), the period Ts of which

exceeds the characteristic attenuation time Te . In - of the

first, this is again due to the effective
”
quenching of “

subsequent (
”
parasitic“) oscillations at Ts > Te . In addition

to this factor, an increase in Ts leads to an increase in

the thickness of the skin-layer, δ =
√

ρeTs/(πµ0), which

reduces the sharp localization of surface heat generation and

distributes heat more evenly over the conductive material.

This, in turn, reduces the heating temperature on the

surface, which makes it possible to realize a higher magnetic

field without the threat of destruction.

It can also be noted here that in flat geometry, unlike

cylindrical, the material demonstrates greater durability,

i.e., large values of threshold fields B th. The latter is

attributable, -firstly, to a higher concentration of current in

a cylindrical conductor in the region of small radii [22],
which is mathematically related to the presence of a term

proportional to r−1 in (1), and, secondly, to-, with an

additional source of stress growth when heating curved

layers — a term proportional to r−1 in (7).
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Figure 2. Threshold field dependencies B th for a steel cylindrical conductor (R1 = 5mm) at a pulse in the form of (2) from parameter

Te at fixed Ts = 24 µs (left) and from parameter Ts at fixed Te = 20 µs (right). Dashed lines — flat geometry (R1 → ∞).

Values of the influence coefficient (9) for heat capacity c, thermal

expansion coefficient βV , Young’s modulus E, Poisson’s ratio ν and

parameter σs,0

χ c βV E ν σs,0

Pχ 0.49 −0.44 −0.44 −0.23 0.44

Next, we will analyze the impact of various individual

properties of the material (heat capacity, Young’s modulus,

etc., etc.) on its resistance to a magnetic pulse (2) with

fixed parameters Te = 20µs and Ts = 24µs. Of course,

it is difficult to change individual properties of a given

material (for example, by doping), but such an analysis can

be useful for selecting the starting material at the stage of

manufacturing an inductor system. We will use

Pχ =
χ

B th

(

∂B th

∂χ

)

. (9)

as a value characterizing the impact of a certain parameter

(denoted as χ) on the resistance of the conductive material

The table shows the values of the influence coefficients

Pχ for parameters such as heat capacity c , thermal

expansion coefficient βV , Young’s modulus E , Poisson’s

ratio ν and yield strength at room temperature σs ,0 . The

dependencies B th(χ) for all these parameters are close to

linear within the limits of their variation characteristic of

various steels [37]. We see that the heat capacity c has

the greatest influence on the threshold field. Higher values

of heat capacity correspond to an increase in resistance,

since this reduces the heating temperature. An increase

in the elastic parameters E and ν , as well as an increase

in βV , leads to an increase in thermoelastic stresses at

a given heating, which reduces the threshold field. The

increase in yield strength had the same effect on B th as

the decrease in the three previous parameters. Thus, the

analysis shows that, all other things being equal (first of

all, with the same specific conductivity), it is preferable

to use a material with high values of heat capacity

and tensile strength and low values of the coefficient of

thermal expansion and elastic parameters as an inductor

material.

In contrast to the individual parameters listed in the

table, the change of which for a given material is difficult

to implement, the resistivity of the material ρ∗

e seems

to be a more convenient parameter for varying within

a sufficiently wide range. Firstly-, the resistivity values

are very different for different conductive materials, and

-secondly, even for a given material, a sufficiently wide

change in the value of ρ∗

e is possible due to doping,

ionically-plasma processing, powder technologies, the use

of composite (for example, bimetallic) conductive materials,

0 10020 6040 80

B
th

,
T
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28

r We
* ·10 , ·m8
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Figure 3. Dependence of the threshold field on the resistivity for

a homogeneous cylindrical conductor (R1 = 5mm, solid line) and

in flat geometry (R1 → ∞, dashed line).
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etc., etc. [16,20,38,39]. In this regard, we will analyze the

dependence of B th(ρ
∗

e ) in the range from the resistance of

copper (ρ∗

e = 1.7 · 10−8 � ·m) to the resistance of high-

resistive steels (ρ∗

e ≈ 100 · 10−8 � ·m). At the same time,

all other parameters of the material and the temperature de-

pendence of the resistance, i.e., the derivative dρe/dT , will

be recorded at values corresponding to the steel 30XGSA.

The dependence B th(ρ
∗

e ) obtained in this way is shown in

Fig. 3. We see that an increase in the electrical conductivity

of the material, i.e., a decrease in ρ∗

e , increases the threshold

field values from B th ≈ 16.9 T at ρ∗

e = 100 · 10−8 � ·m

to B th ≈ 26.4 T at ρ∗

e = 1.7 · 10−8 � ·m. It is interesting

to note that the threshold field increases with a decrease

of ρ∗

e as shown in Fig. 4 (left) despite the higher values of

the current density realized in the surface layer of a highly

conductive material. The increase of current density with

a decrease of ρ∗

e is caused in the first approximation by

a change in the thickness of the skin-layer, j ∝ ρ−1/2
e , and,

consequently, the surface heating rate (c∂T/∂t), determined

by the term ρe j2 in (5), should not depend on the resistivity

of the material. In particular, with a monotonous increase

in the magnetic field on the surface of the conductor

cT ≈ B2/(2µ) [22,40]. In our case, the heating of a highly

conductive material with ρ∗

e = 1.7 · 10−8 � ·m is noticeably

lower than the heating of high-resistive steel for a given

amplitude of the magnetic field (Fig. 4 on the right). This is
attributable to the following factors.

Firstly-, the reduction of ρ∗

e with a fixed derivative

dρe/dT enhances the nonlinear nature of magnetic dif-

fusion. As you know [22], the characteristic field of

manifestation of nonlinear effects corresponds to an increase

in resistivity by 2 times. This conditional criterion is

not achieved by heating a highly resistive material and is

relatively quickly overcome at low values of ρ∗

e . Therefore,

in a highly conductive material, we observe the formation

of a so-called nonlinear diffusion wave (Fig. 4, left), which

shifts the main heat release, i.e., the maximum current

density, deep into the material [40.41]. This factor is

attributable to a rather rapid increase of the threshold field

in Fig. 3 in the region of small values ρ∗

e , observed both for a

curved surface (R1 = 5mm) and in a flat limit (R1 → ∞).
Secondly-, reduction of the thickness of the skin-of layer

from the value of δ ≈ 2.5mm at ρ∗

e = 100 · 10−8 � ·m to

δ ≈ 0.3mm at ρ∗

e = 1.7 · 10−8 � ·m noticeably enhances

the role of heat exchange, which also reduces heat gener-

ation on the surface, striving to distribute it more evenly

over the material. And finally, thirdly-, as already noted

above, the current tends for concentrating in the area of

smaller radii on a curved surface, which contributes to

a stronger heating of such a surface compared to a flat

boundary. The role of this factor becomes especially

noticeable at large values ρ∗

e , when the thickness of the

skin- of the layer becomes comparable to the radius of

curvature R1. This explains the increase of the discrepancy

between the curves B th(ρ
∗

e ) in Fig. 3 for a curved and

flat surface with an increase of ρ∗

e . The effect of surface

curvature on the threshold field and surface heating of the

conductor will be discussed in more detail in the next

section.

2.2. Homogeneous material: the effect of surface

curvature

The dependence B th(R1) for a steel

(ρ∗

e = 42 · 10−8 � ·m) cylindrical conductor with a

thickness of R2 − R1 = 8mm is shown in Fig. 5.

The threshold field value rapidly tends to a flat

limit B th,∞ ≈ 23 T in the region of high values of the surface

radius (R1 > δ ≈ 1.6mm). At the opposite limit (R1 → 0),

the threshold field decreases down to zero (B th ≈ B1/2
1 ),

i.e., the resistance of the inductor (or concentrator) will

decrease fairly quickly with an increase in the curvature

of its working surface. The decrease of the threshold field

with a decrease of R1 is attributable to an increasingly

sharp concentration of current in the surface layer, which

even with a decrease in the magnetic field down to zero

ensures that a sufficiently high surface heating temperature

is reached (Fig. 5, right). It is the inhomogeneous heating,

i.e., an increase in surface temperature, that determines the

level of thermoelastic stresses in the material, and, as a

consequence, the achievement of the Mises condition (8).
The magnetic field at the same time acts only as a tool that

provides the energy supply necessary for heating.

As shown in Fig. 5 (right), the heating temperature of the

working surface Tplast , corresponding to the achievement

of the yield strength of the material, demonstrates a non-

monotonic dependence on the radius of curvature. The

limit value Tplast,∞, (for R1 → ∞), marked with a dashed

line in the figure, as obtained in our previous work [15], is
determined by the ratio

Tplast,∞ =
1− ν

EβV
σs (Tplast,∞), (10)

which in our case gives Tplast,∞ ≈ 221K. When the radius

decreases R1 , the threshold heating temperature Tplast first

decreases, reaches a minimum (≈ 209K) at R1 ≈ 3δ, and

then increases again to the value Tplast ≈ Tplast,∞ when

R1 → 0. A fairly accurate analytical estimate can be

derived for it despite such a rather complex nature of the

dependence Tplast(R1). Let’s show it.

The solution of a system of equations (6) and (7) for

azimuthal and axial stresses σϕ and σz on the working

surface (r = R1) has the following form in the field of elastic

deformations

σϕ =
ν

(1− ν)

B2
0

2µ
−

E
(1− ν)

βV T +
E

(1 + ν)

2c1

(1− 2ν)

+
R2
1

r2
B2
0

2µ
,

σz =
ν

(1− ν)

B2
0

2µ
−

E
(1− ν)

βV T +
E

(1 + ν)

2νc1

(1− 2ν)
,
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Figure 4. Radial (x = r − R1) dependences of current density at the moment t = Ts/4 (left) and temperature at the moment of maximum

surface heating (right) for a homogeneous cylindrical conductor (γ0 = 0, R1 = 5mm) at the amplitude of the magnetic field Bm = 30T

and the resistivity values ρ∗

e = 1.7 · 10−8 � ·m (curves 1) and 100 · 10−8 � ·m (curves 2). Dashed lines — same for flat geometry

(R1 → ∞).
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Figure 5. The dependence of the threshold field B th (left) and the maximum temperature Tplast of heating the surface (right) corresponding
to this threshold field on the inner radius R1 of the cylindrical conductor. The dashed lines correspond to the flat limit R1 → ∞. Dashpoint

curve — analytical evaluation Tplast (15).

c1 = −
1 + ν

E

(

1− 2ν

1− ν
JB +

EβV JT

1− ν
+

B2
0

2µ
R2
1

)/

(

R2
2

+
R2
1

1− 2ν

)

,

JB =

R2
∫

R1

B2

2µ
rdr, JT =

R2
∫

R1

Trdr.

Since we are interested in the moment of maximum

heating, which occurs approximately at the end of the

magnetic pulse, i.e. at B0 ≈ 0, we neglect the corresponding

terms, which gives

σϕ =
−E
1− ν

βV T − βV JT
2E

(1− ν)
/[(1− 2ν)R2

2],

σz =
−E
1− ν

βV T − βV JT
2νE

(1− ν)
/[(1− 2ν)R2

2]. (11)

These stresses should be substituted into the Mises

criterion (8) to obtain the desired temperature Tplast , which

on the surface r = R1, due to the boundary condition

σr = 0, takes the following form

σ 2
ϕ − σϕσz + σ 2

z = σ 2
s , (12)

It is easy to see that in the flat limit (R1, R2 → ∞) we

have

σϕ = σz = −EβV T/(1− ν),

which leads to the ratio (10) when substituting in (12).
At R1 6= 0 , the sought temperature Tplast depends on the

value of the integral JT . The calculated dependence JT (R1)
is shown in Fig. 6. Due to the contraction of the current
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flow region to the surface r = R1 in the limit R1 → 0, the

integral JT tends to zero. At the same time, the second

terms on the right in equations (11) also disappear, which

explains the return of the temperature Tplast in Figure 5 to

the value Tplast,∞ at R1 → 0.

In the general case, to obtain the dependence JT (R1),
it is required to solve a system of magnetic diffusion

equations (1) and thermal conductivity (5). We neglect

the impact of temperature on the value of resistivity for the

possibility of an analytical solution (1). In this case, the

magnetic diffusion equation (1) becomes independent and

can be solved using the Laplace transform [42]. It is possible
to obtain the temperature field T (r, t) and the sought

integral JT using the current density determined by this

solution j(r, t), from the thermal conductivity equation (5)
ignoring the heat exchange and mechanical work. The result

of such an analysis is represented in Fig. 6 by a dashed line.

We see that the result obtained using the Laplace method

allows describing the dependence JT (R1) with a sufficiently

high accuracy. However, the expressions obtained using

the Laplace method are rather cumbersome, so we do

not provide them. Instead, we will present a much easier

derivation, which allows us to obtain the integral JT with a

slightly lower, but still quite acceptable accuracy.

Figure 6 shows that with the exception of a relatively

small area of radii, namely the area R1 < δ ≈ 1.6mm, the

dependence JT (R1) is close to linear (JT = kJR1). It is

possible to obtain the proportionality coefficient kJ of this

dependence by estimating the value of the integral JT in the

region of large radii R1. In this case , the magnetic diffusion

equation takes the form

∂B(x , t)
∂t

=
ρe

µ

∂2B(x , t)
∂x2

, (13)

where x = r − R1. Using now instead of condition (2)
stationary boundary condition

B(0, t) = Bm sin

(

2πt
Ts

)

,

it is not difficult to write the solution (13) for the so-called

steady state [22]:

B(x , t) = Bm exp
(

−
x
δ

)

sin

(

2πt
Ts

−
x
δ

)

.

Substituting this solution into the thermal conductivity

equation (5) and performing half-cycle integration (from
t = 0 to t = Ts/2) in disregard of heat exchange and

mechanical work, we obtain for the temperature field:

T (x) = T0 exp

(

−
2x
δ

)

, T0 =
πB2

m

2µc
.

Using this temperature field to estimate the desired

integral JT , in the approximations R1 ≫ δ and R2 − R1 ≫ δ

we obtain

JT =
1

2
T0δR1. (14)

The linear dependence JT (R1), determined by the result-

ing expression, is represented in Fig. 6 by a dotted line.

Substituting this dependence into equations (11) and (12),
we obtain the ratios for the value of the surface temperature

leading to the achievement of the yield threshold T0 = Tplast

Tplast =
1− ν

EβV

σs (Tplast)
√

m2(ν2 − ν + 1) + m(1 + ν) + 1
,

m =
R1δ

R2
1 + (1− 2ν)R2

2

, δ =

√

Tsρe(Tplast)

πµ0
, (15)

where the temperature dependences of the yield strength at

uniaxial tension σs (T ) and the resistivity ρe(T ) in our case

are determined by the relations (8) and (3) respectively. It

can be seen that (15) becomes an expression for the flat

case (10) both for large radii R1 and R2, and for R1 → 0.

The dependence Tplast(R1), defined by (15), is shown in

Fig. 5 (right). It can be seen that the obtained analytical

estimate agrees well with the result of direct numerical

calculation over the entire range of radii R1.

Thus, the obtained result (15) makes it possible to carry

out an analytical assessment of the heating of the surface,

which poses a threat of destruction for a relatively brittle

initially homogeneous material due to the achievement of

a critical level by thermoelastic stresses, i.e., the yield

strength. An effective reduction of the surface heating of

the conductor in an external pulsed magnetic field, i.e., a

reduction of the threat of its destruction, can be achieved

by using an initially inhomogeneous material with increased

resistivity near the working surface [15,22]. The following

section is devoted to the study of this possibility within the

framework of modified profiles (4).
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Increasing of the durability of the material due to

the formation of an inhomogeneous profile of the

initial resistivity

Figure 7 (left) shows the dependencies of the threshold

field B th on the
”
depth“ of the modified layer x c for

various types of modification profile (4), which correspond

to certain values of the parameter Nγ from the most smooth

(exponential) at Nγ = 1 to stepwise at Nγ → ∞. As the
”
of

the amplitude“ modification for all profiles γe(r), γ0 = 1.5

is used, i.e., in the initial (non-heated) state, the resistivity

on the surface is 2.5 times greater than its value in depth:

ρe(R1) = (1 + γ0)ρ
∗

e = 105 · 10−8 � ·m, which practically

coincides with the upper limit of the resistance range of

high-resistive steels, shown in Fig. 3.

Unmodified material with ρe = ρ∗

e = 42 · 10−8 � ·m has

a threshold field B th ≈ 21.1 T. An increase of the resistivity

of the entire material, as can be seen, in particular, in Fig. 3,

reduces the threshold field to about 19.6 T. At the same time,

as Figure 7 shows, an increase of the initial resistivity in a

relatively small surface layer with a depth of x c of no more

than 1mm makes it possible to significantly increase the

threshold magnetic field. The dependence B th(x c) demon-

strates a non-monotonic character with a maximum at some,

most optimal,
”
depth“ of the modified layer x c = x c,max.

The coordinates of this maximum (x c,max and B th,max)
are different for different profiles. So, for an exponential

profile x c,max ≈ 0.24mm and B th,max = 25.9 T, and for a

sharp (stepped) x c,max ≈ 0.46mm and B th,max = 26.1 T.

In works [17,18] it is stated that the most advantageous

resistance profile ρe(x) is exponential (Nγ = 1). However,

the analysis carried out by the authors of [17,18] did not

take into account the increase in resistivity with temperature.

Our calculations, taking into account this factor, show that

a profile with a sharper transition corresponding to the

value Nγ ≈ 2.3 is most preferable for 30XGSA steel at

”
amplitude“ modification γ0 = 1.5. The threshold field for

this field increases to the value B th,max = 27.1 T, i.e., by

about 28% relative to the unmodified material as shown

in Fig. 7.

The radial dependences of the maximum heating T (x),
which is achieved, as a rule, by the end of the magnetic

field pulse (t = 4Ts) is considered to explain the effect of

the modified layer on the threshold field value and the

nature of the change B th with an increase of the
”
depth“

of this layer. These dependencies for Bm = 30T, γ0 = 1.5

with the modification thickness optimal for each profile are

shown in Fig. 7 on the right. The heating of unmodified

material is shown there for comparison with the same

amplitude of the magnetic pulse. The increased resistivity

of the surface layer shifts a significant proportion of the

heating deep into the material, in the region x > x c . This

leads to a significant decrease of the surface temperature

at x = 0 and the formation of an alternative
”
weak“ area

of the conductive material in the inner layers, where a

local temperature maximum occurs. For shallow modified

layers (at values of x c < 10µm, shown in the box to Fig. 7

on the left), a significant influence on the formation of

the radial temperature distribution in the vicinity of the

maximum is exerted by the process of heat exchange with

the surface, which leads to a particularly rapid increase in

the threshold field. In the future, the surface temperature

turns out to be lower than the temperature of the local

maximum Tmax in the depth of the material with an increase

in the parameter x c to the value x c,max, and an increase

in the threshold field is associated with a decrease of Tmax

due to its removal from the surface and the distribution of

absorbed heat over an increasing volume.

The yield strength with the threshold value of the

magnetic field is reached in the vicinity of the internal local
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maximum temperature in the range of values x c < x c,max

for profiles with Nγ > 1. With an increase of the depth

of the modified layer, the temperature decrease on the

surface stops, and starting from x c = x c,max, the
”
weak“

place returns to the working surface of the conductor at

x = 0. This leads to the presence of a break point on

the curves B th(x c) at the maximum point at Nγ > 1. The

most optimal depth of the modified layer x c = x c,max is

characterized by the achievement of the yield threshold by

stresses simultaneously at the point of the local maximum

temperature in the depth of the material and on the working

surface (x = 0). The values of temperature on the sur-

face T0 and in the local maximum Tmax coincide in the plane

geometry (R1 → ∞), i.e. T0 = Tmax = Tplast,∞ [15]. This,

in particular, makes it possible to use an analytical estimate

of critical heating (10) for a flat working surface for both

homogeneous and surface-modified conductors. In cylin-

drical geometry optimal conditions are characterized by a

higher temperature at the local maximum with finite R1 than

on the surface (T0 < Tmax), which is associated, as noted

above, with an additional source of stress growth when

heating curved layers – is a term proportional to r−1 in (7).
Therefore, in particular, the analytical estimate of the limit

heating (15) loses its rigor for a curved modified surface.

For an exponential profile with Nγ = 1, the return of the

weak“ place from the depth to the surface with an increase

in the parameter x c occurs to the left of the maximum on

the dependence B th(x c), and the corresponding break point

is less noticeable in Fig. 7.

An increase of the
”
amplitude“ γ0 of the resistivity

modification makes it possible to achieve higher values

of the threshold field B th as shown in Fig. 8. It is

interesting to note here that with a decrease in the value

of γ0, the profile corresponding to the value of Nγ = 2.3

loses its advantages at amplitudes of γ0 < 0.5, and is most

effective for increasing the resistance of the conductive

material, although with extremely minor differences in

magnitude B th, the resistivity profiles become sharper, up

to a stepwise one (Nγ → ∞). At the same time, the step

profile becomes the most inefficient of those presented in

Fig. 8 at high amplitudes of modification, starting from

γ0 ≈ 1.7. The dependencies of the maximum coordinate

of the threshold field x c,max on the value of γ0 for the

four analyzed types of the modification profile are shown

in Fig. 8 on the right. We see that an increase of the

durability of the material with an increase in the amplitude

of modification γ0, as a rule, implies the need for the

formation of deeper modified layers. The exception is

the area of weak modifications at γ0 < 0.3. Here, the

optimal
”
depth“ of the modified layer x c,max is stabilized

at values from 85 µm for a stepped profile up to 125 µm for

exponential profile due to the increased role of heat transfer

at small values x c .

Conclusion

As a result of the conducted study, the probability of

destruction of a brittle conductive material in the form of a

hollow cylinder under the action of a strong pulsed magnetic

field with an induction of about 30 T in its internal cavity

is analyzed. The geometry of the problem corresponds to

the well-known actual problem of destruction of inductor

systems — the inner surface of a solenoid or a magnetic

flux concentrator in case of a generation of pulses of a

strong magnetic field. The theoretical model takes into

account the diffusion of the magnetic field, ohmic heating

of the conductive material, its thermal conductivity and the

mechanical stresses arising in it. The amplitude of the mag-

netic field at which the induced thermomechanical stresses

in the material meet the Mises plasticity condition is used

as a threshold field B th separating the regions of safe (non-
destructive) and dangerous fields. An analytical expression

is obtained in case of a homogeneous material that allows
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estimating with high accuracy the corresponding maximum

heating temperature, which determines the achievement of

a critical level of thermomechanical stresses.

Based on the analysis of the calculated values of the

threshold field B th , the influence of various parameters

(magnetic pulse characteristics, elastic modules of the mate-

rial, etc., etc.) on the resistance of the conductor in a pulsed

magnetic field is investigated. It is shown that electrical

circuits with relatively rapid attenuation of electromagnetic

oscillations are preferred to increase the lifespan of the

inductor system with characteristic attenuation time Te less

than the oscillation period Ts . This is explained by the fact

that the main (
”
working“) half-period, which creates the

main maximum of the magnetic field, is the first half-period

at t < Ts/2, while subsequent electrical oscillations lead

only to additional (
”
parasitic“) heating of the conductive

material. The most significant characteristic of the material

for the resistance of the inductor is the specific heat capacity.

All other things being equal (first of all, with the same

specific conductivity), it is preferable to use a conductor

with a high value as an inductor material.

The possibility of increasing the resistance of a conductive

material due to the formation of a modified surface layer

in it with an increased value of the initial resistivity ρe

is investigated in detail. Various profiles of the initial

resistance from a smooth (exponential) profile ρe(r) to the

sharpest (stepwise) are considered. It is found that, the

formation of a modified surface layer makes it possible

to significantly increase the amplitude of the magnetic

pulse field sustained by the material without destruction in

comparison with a homogeneous material. In particular, it

is possible to increase the threshold field B th of the steel

inductor at the most optimal shape and depth profile ρe(r)
by about 28% or from 21.1 to 27.1 T with the

”
amplitude“

modification γ0 = 1.5, i.e. when the resistivity on the

surface is 2.5 times higher than the corresponding value

in the depth of the material.
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