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The article presents the results of a qualitative study of the model of a modern magnetic memory cell, in

which the spin Hall effect is used for recording. Cells of square cross-section with longitudinal anisotropy

of the active layer are considered. Based on the Landau−Lifshitz−Gilbert vector equation, a mathematical

model for controlling the process of writing zero and one into a cell is constructed. In the approximation

of a uniform distribution of magnetization, a system of equations is derived that describes the dynamics of

magnetization under the action of a magnetic field and spin current. The parameters of the qualitatively equivalent

dynamics of the model are determined. It has been established that at zero currents and fields in both cases

there are two main stable equilibrium positions. These equilibria, depending on the mutual orientation of the

magnetization vector of the active and reference layers, correspond to zero and one, written in the cell. The

transition from one cell state to another is described by solving a system of differential equations. A bifurcation

diagram of a dynamical system in the variables
”
field−current“ is constructed. It is shown that with a given

configuration of the memory element, external influences transfer the magnetization to an intermediate state in

the plane of the free layer, which, when the current and field are turned off, leads to writing zero or one to

the memory cell. The critical switching current is estimated as a function of the applied external magnetic

field.
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Introduction

The effect of magnetization control in a thin ferro-

magnetic film using spin-orbital torque (SOT) generated

by a flow of moving electrons is an alternative to mag-

netization control using spin-transfer torque (STT). This

effect is of great interest in connection with its applica-

tions in the magnetic random-access memory (MRAM)
technology (see, for example, review [1]). Compared

to STT-MRAM, the use of SOT can additionally lower

the power consumption of the memory device, increase

the speed and wear resistance, which makes it an ideal

candidate for use in an embedded RAM or a computer

cache memory. These perspectives stimulate R&D of

both the physics of the SOT effect (see overview [2])
and the corresponding devices using the SOT effect (for
example, [3]). The advantages of SOT-MRAM in com-

parison with STT-MRAM became obvious already at the

stage of pilot studies, namely separate circuits for reading

and writing information and a symmetrical scheme for

recording zero and one, which the cells of STT-MRAM

lacked.

Much attention during SOT studies is paid to the study

of materials that demonstrate high efficiency of converting

charge current into spin current (SOT efficiency), as well

as the development of suitable layered structures with their

application. Such materials as topological insulator BixSe1−x

or alloys Pt1−xAux , which have spin-Hall angles larger than

unit and high spin-Hall conductivity, are of great interest for

this purpose in addition to heavy metals Pt, Ta and W [4–6].
Several variants of SOT-MRAM schemes with an in-plane

or perpendicular magnetic anisotropy [7] were proposed for

the second purpose. A mathematical model of a SOT-

MRAM memory element with an in-plane anisotropy of

the free layer placed in a magnetic field parallel to the axis

of light magnetization is investigated in this paper. This

configuration differs from those discussed in [7].

1. Mathematical model of the
SOT-MRAM element based on the
spin Hall effect

The SOT-MRAM memory element considered here con-

sists of an active ferromagnetic layer (FL — free layer),
which is sandwiched between a conductive busbar and an

insulator layer (tunnel barrier — TB), a reference layer

(PL — pinned layer) with fixed magnetization is located

above the insulator. The recording current Ic is passed

through the HM (HM-heavy metal) bus in one direction
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Figure 1. Geometry of the SOT-MRAM model with the in-plane

anisotropy of the free layer. The external magnetic field H is co-

directed with the anisotropy field. The values of the geometric

dimensions of the element used in calculation: the thickness of

the active layer d = 5 nm, the cross-sectional area of the element

S = 10× 10 nm.

or the other, depending on whether zero or one is being

recorded. The reading current is passed perpendicular to

the plane of the layers. Depending on the relative position

of the axis of light magnetization of ferromagnetic layers

and the current density vector, several types of SOT-MRAM

elements can be distinguished — X -, Y - and Z-types with

different operating and critical characteristics of [7]. A

common design feature of the three elements considered

in [7] is the orthogonality of the direction of the external

field to the anisotropy axis of the active ferromagnetic

layer. However, these types do not exhaust all possible

options for the relative location of the external field, the

axis of anisotropy and the direction of electron flow. Figure

1 schematically shows the configuration of the element

considered in this paper. The anisotropy axis of the free

layer material is parallel to the external magnetic field H.

The dynamics of the magnetization vector in the free

layer is described by the Landau-Lifshitz-Gilbert vector

equation — (LLG) [8,9]:

∂M

∂t
= −|γ|µ0[M×Heff] +

α

Ms

[

M× ∂M

∂t

]

+ TSOT. (1)

Here µ0 = 4π · 10−7 N/A2 is the vacuum mag-

netic permeability, γ is the gyromagnetic ratio:

γ = gµB/~ = 1.76 · 1011 T−1 · s−1, α is the dimensionless

dissipation coefficient, Ms is the saturation magnetization,

Heff is the effective magnetic field reflecting those types

of physical interactions that are taken into account in the

model. In the monodomain approximation

Heff = H + H f + Ha ,

where H is the external magnetic field, H f = −Mzez is

the effective demagnetization field, Ha = 2Kaex is the

effective magnetic anisotropy field. The last term in the

equation (1) is the rotational magnetic moment (torque)
acting on the magnetization of the free layer from the

spin-polarized Hall current. The effective magnetic field

of the exchange interaction will be considered negligible

(the Stoner-Wohlfarth approximation). The moment of

force acting on the magnetization in the free layer can

be decomposed into three components. One of these

components coincides with the direction of magnetization,

i.e., creates zero rotational moment, the other two are

mutually orthogonal and are written as follows:

T = TFL + TDL = |γµ0| jθSH χDL
[

M× [M× ey ]
]

+ |γµ0| jθSH χFLMs [M× ey ], (2)

where

j = θSHη J/Jnorm, Jnorm =
dg|e|µ0M2

s

~
,

J — charge current density, d — free layer thickness,

µB — Bohr magneton, g — factor Lande, e — electron

charge, θSH = j s/ jc — spin-Hall coefficient of efficiency

characterizing the ratio of vertical spin current density to

horizontal charge current density (spin-Hall effect angle),
η < 1 — polarization efficiency coefficient (the character-

istic of the insulating layer). Typical values of the spin

Hall effect angle lie in the range 0.3−0.4 [10]. In our

calculations we put ηθSH = 0.4. The ratio J/Jnorm is

a dimensionless value of the control charge current jc .

Note the difference in the direction of spin polarization in

this case and in STT-MRAM with longitudinal anisotropy,

considered earlier in [11–13]: here the spins are oriented

along the direction ey perpendicular to the direction of

the free layer anisotropy field, whereas in the case of

STT-MRAM with the same configuration of the elements

the spins are polarized along the direction ex . The first

term in the expression (2) is the damping component of the

rotational moment created by spin-polarized electrons, the

second term is the field component. The influence of the

field component on the critical switching characteristics was

considered in work [14].
The normalizations transform equation (1) to a dimen-

sionless form

∂m

∂τ̃
= −[m× heff] + α

[

m× ∂m

∂τ̃

]

+ t, (3)

where heff = Heff/Ms , t = T/γµ0M2
s , m = M/Ms , |m| = 1

time τ̃ is measured in units of (γµ0Ms )
−1. Here

heff = happ + ha + h f . In the case of an external field

happ directed along the axis OX , the summand has the

form happ = hex . The effective anisotropy field in this model

is also oriented along OX

ha = k(m, ex )ex = kmxex ,

where k = 2Kaµ
−1
0 M−2

s , Ka is the magnetic anisotropy con-

stant. In calculations, we used a normalized dimensionless
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cobalt anisotropy coefficient equal to 0.43. The demagneti-

zation field h f is determined by the ratio h f = −q̂m, where

the tensor q̂ is the demagnetization form factor. It can be

assumed that in the geometry of a square-section memory

element the tensor q̂ has only one non-zero component in

the last line on the main diagonal and, consequently, the

demagnetization field has the form h f = −mz ez . Thus, the

effective magnetic field in the normalized Landau−Lifshitz

equation for this configuration will be equal to

heff = happ + ha + hf = (h + kmx)ex − mz ez .

2. Dynamical system

Let us rewrite equation (3) in the form of

∂m

∂τ̃
= −

[

m× (heff − b jmey − b jey )
]

+ α

[

m× ∂m

∂τ̃

]

(4)

and introduce a new effective field vector that takes into

account the effect of the spin-Hall current:

f = heff − b jmey − b jey = (h + kmx + b jmz )ex

− b jey + (−b jmx − mz )ez .

Next, we solve the Landau-Lifshitz-Gilbert equation with

respect to the time derivative and obtain its expression in

the normal form:

∂m

∂τ
= −[m× f ] + αf− αm(m, f). (5)

The equation (5) has the following form in the coordinate

notation:



































dmx

dτ
= (mz f y − my f z ) + α f x − αmx L,

dmy

dτ
= (mx f z − mz f x ) + α f y − αmy L,

dmz

dτ
= (my f x − mx f y ) + α f z − αmz L,

(6)

where

L = (m, f) = km2
x + hmx − b jmy − m2

z .

Its expanded coordinate view is written below

(cf. with the dynamical system for STT-MRAM with

longitudinal anisotropy [12,13]):

dmx

dτ
= P̃(mx , my , mz ) = −b jmz + b jmx my + my mz

+ a(h + kmx + b jmz − hm2
x − km3

x + b jmx my + mx m2
z ),

dmy

dτ
= Q̃(mx , my , mz ) = −b jmx − mx mz − hmz − kmx mz

− b jm2
z + a(my m2

z − hmx my − kmy m2
x − b jm2

x − b jm2
z ),

dmz

dτ
= S̃(mx , my , mz ) = hmy + kmx my + b jmy mz + b jmx

+ a(b jmy mz + m3
z − b jmx − mz − hmx mz − km2

x mz ).
(7)

Just as in the case of STT-MRAM, the system (7) has

the first integral and is a system with two degrees of

freedom. When h = 0, j = 0 when the field and current

are disconnected, the system (7) degenerates to form

dmx

dτ
= P̃0(mx , my , mz ) = my mz + a(kmx − km3

x + mx m2
z ),

dmy

dτ
= Q̃0(mx , my , mz ) = −mx mz − kmx mz

+ a(my m2
z − kmy m2

x),

dmz

dτ
= S̃0(mx , my , mz ) = kmx my + a(m3

z − mz − km2
x mz ).

(8)
Its singular points (equilibrium points) are points

T1,2(±1, 0, 0), T3,4(0, 0,±1), T5,6(0,±1, 0): points T1,2 are

stable foci, points T3,4 — unstable foci, T5,6 — saddles.

However, unlike the case of STT with nonzero currents and

fields, the points T1,2(±1, 0, 0) are not equilibrium positions

of the magnetization vector of the free layer (they are not

singular points of the dynamical system). The points T3−6

change their position depending on the control parameters.

The equation for determining mx (x -coordinates singular

points) is obtained by equating the right parts of the system

to zero (7) and sequentially excluding from it the variables

my and mz :
6

∑

i=0

A6−im
6−i
x = 0, (9)

where

A6 = (k + 1)2(b2 j2 − k)2,

A5 = 2h(k + 1)(b2 j2 − 2k − 1)(b2 j2 − k),

A4 = 4b2 j2k − k2 + 6kh2 − 4b4 j4 + b2 j2 − 4kb4 j4 − 2k3

+ 5k2b2 j2 − k4 + 6k2h2 + h2 − 4h2b2 j2 + 2k3b2 j2

+ h2b4 j4 − 6kh2b2 j2,

A3 = −2h(−2b2 j2 + 3k2 − 2kh2 + k − 5kb2 j2 − 3k2b2 j2

+ 2b4 j4 + 2k3 − h2 + h2b2 j2),

A2 = −6kh2 − 2kb4 j4 − 6k2h2 + 4b6 j6 + h4 + 5h2b2 j2

+ 6kh2b2 j2 + k2b2 j2 − k2b4 j4 − b4 j4 − h2,

A1 = −2h(h2 + 2kh2 − h2b2 j2 − kb2 j2 + b4 j4 + kb4 j4),

A0 = −h2(h2 − b2 j2 + b4 j4).

Note here the symmetry of the coefficients A1−6 with

respect to the parameter j and their antisymmetry relative

to h. In other words, the sign of the magnitude mx will

change when the direction of the field changes h, i.e., the
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Figure 2. Distribution of the number of singular points on the

plane of control parameters
”
field−current“: in region I singular

points six, in region II — four, in region III — two.

location of the singular point relative to the zero meridian

will change. This is essential when the trailing edge of

the control pulse travels, as it indicates which equilibrium

attraction pool the trajectory of the end of the magnetization

vector on a unit sphere will fall into.

Further, mz and my is calculated, for example, from the

following intermediate relations after determining from (9)
the coordinate mx of the magnetization vector:

mz = −b j r1/r2 (mx 6= 0, h 6= 0),

where

r1 = (k2 − 1)m4
x + 2hkm3

x + (2b2 j2 + h2 − k2)m2
x

− 2hkmx − h2,

r2 = (k + 1)(b2 j2 − 1)m3
x + h(b2 j2 − 1)m2

x

− (k − 1)b2 j2mx − hb2 j2,

and

my = −r3/r4,

where

r3 = amx m2
z − (1− a)b jmz + a(kmx + h)(1− m2

x),

r4 = mz − (a + 1)b jmx .

Two singular points with coordinates

(0,−b j,+
√

1−b2 j2 ) and (0, +b j,−
√

1−b2 j2 ) are

found by direct substitution in (7) if simultaneously mx = 0

and h = 0.

The diagram of the distribution of the number of

singular points on the plane of the control parameters

”
field−current“ is shown in Fig. 2. The methods of Sturm

and Laguerre were used for calculations [15]. Two nested

rhombus-like regions can be distinguished depending on the

magnitude of the field and current on the plane: equa-

tion (9) has six real roots in the region I (Fig. 3) satisfying

the condition |mx | ≤ 1; there are four real roots in region II

(Fig. 4), there are two real roots in region III (Fig. 5).
These roots correspond to a pair of foci in region III

such as stable and unstable (see Table. 1 and Fig. 5).
On lines L1, L2, L3, L4 imaginary parts of the eigenvalues

of the linearization matrix of the system (7) turn to zero.

The corresponding singular point becomes a node. The

direction of rotation of the trajectory of the end of the

magnetization vector around a singular point changes when

the control parameters pass through these lines. There are

four singular points in region II — two unstable foci, a

stable focus and a saddle, there are six singular points in

region I two stable and two unstable foci, and two saddles.

Table 1 shows the coordinates of singular points T1−6 in

the regions I−III of the bifurcation diagram at three charac-

teristic points R1 (h = 0.1, j = 0.1), R2 (h = 01, j = 0.8),
R3 (h = 0.1, j = 1.5) and the corresponding eigenvalues of

a dynamical system linearized in the neighborhood of each

of the points T1−6:

dmx/dτ ≈ P(mx0
, my0

, mz 0
) + ∂P/∂mx

∣

∣

T0
(mx − mx0

)

+ ∂P/∂my

∣

∣

T0
(my − my0

) + ∂P/∂mz

∣

∣

T0
(mz − mz 0

),

dmy/dτ ≈ Q(mx0
, my0

, mz 0
) + ∂Q/∂mx

∣

∣

T0
(mx − mx0

)

+ ∂Q/∂my

∣

∣

T0
(my − my0

) + ∂Q/∂mz

∣

∣

T0
(mz − mz 0

),

dmz/dτ ≈ S(mx0
, my0

, mz 0
) + ∂S/∂mx

∣

∣

T0
(mx − mx0

)

+ ∂S/∂my

∣

∣

T0
(my − my0

) + ∂S/∂mz

∣

∣

T0
(mz − mz 0

).

3. Numerical results

The results of simulation the magnetization dynamics for

positive current and field are shown in Fig. 6 and in Fig. 7 for

( j, h) < 0. A stable focus is marked T6 on Fig. 6 with coor-

dinates on the unit sphere mx = 0.24206, my = −0.96612,

mz = −8.9564 · 10−2. The second singular point is

an unstable focus T5 with coordinates mx = 0.21749,

my = 0.76427, mz = −0.60712 is not shown in Fig. 6. A

single trajectory passes through any regular point on the

sphere, which begins in an unstable focus and ends in a

stable one. The trajectories which are equilibrium positions

in the case of zero fields and currents passing through the

points T1,2(±1, 0, 0) are important for switching the SOT-

MRAM element. The trajectories leaving the points T1

(Fig. 6, a) or T2 (Fig. 6, b) end in point T6 with a positive

current (blue trajectories on the unit sphere). If the current

is turned off (a current pulse of finite duration is applied

Technical Physics, 2023, Vol. 68, No. 5
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Figure 3. a — phase surface of a dynamical system (7) in the region I of the bifurcation diagram Fig. 2 (h = 0.1, j = 0.1).
Points T1, T2 — stable foci, T3, T4 — unstable foci, T5, T6 — saddles); b — projections of saddle separatrix to plane XZ.
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Figure 4. Phase portrait of the dynamical system (7) in the region II of the bifurcation diagram Fig. 2: a — the separatrices of the saddle

on the surface of the unit sphere, b — projections of the separatrices on the plane XZ.

to the element), then the equilibrium will disappear at the

point T6, but six new equilibria will appear, two of which —

T1,2 — will be stable. The point T6 will become regular and

fall into the basin of attraction of one of the new equilibrium

positions for the new dynamical system T1,2(±1, 0, 0). On

the sphere, this corresponds to a spiral trajectory that begins

at the former equilibrium point T6 and ends at the new

stable equilibrium point T1(1, 0, 0). Thus, either the cell

switches from the position
”
unit“ to the position

”
zero“

(Fig. 6, a), or returns from zero to the previous position

T1(1, 0, 0) (Fig. 6, b). In the case of negative field and

current pulses, the stable equilibrium position corresponds

to the point T5, which is located in the opposite hemisphere,

the attraction basins change places and the reverse switching

occurs from
”
zero“ to

”
unit“ (Fig. 7, a). If the initial position

was
”
unit“, then after switching off the current and the field,

the magnetization vector returns to the initial position
”
zero“

(Fig. 7, b). Switching is impossible in the region I because

singular points of the perturbed system here (7) are small

deviations of the undisturbed system (8), so that when

external impacts are turned off, the magnetization vector

will return to its original position.

4. Critical currents and switching fields

The rhombus-like form of the regions of equivalent

dynamics on the plane
”
field−current“ allows estimating the

critical currents and fields required to switch SOT-MRAM

Technical Physics, 2023, Vol. 68, No. 5
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cells from one equilibrium position to another. Let’s put the

value of the field h = 0 In this case equation (9) can be

written as follows

m2
x (B4m

4
x + B2m

2
x + B0) = 0, (10)

where

B4 = (k + 1)2(k − b2 j2)2,

B2 = −(k + 1)(k3−2b2 j2k2 + k2−3b2 j2k−b2 j2 + b4 j4),

B0 = −b2 j2(b jk−k−b j + 2b2 j2)(b jk + k−b j−2b2 j2).

Technical Physics, 2023, Vol. 68, No. 5
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Table 1. Coordinates and types of singular points on a spherical phase surface at a positive current pulse

Control parameters
Coordinates of singular points and eigenvalues of the matrix

Point type
Dynamical system linearization (7)

Region I T1(0.997,−0.076,−0.026):
R1(h = 0.1, j = 0.1) λ1 = −0.024 + 0.897i , λ2 = −0.024− 0.897i , λ3 = −0.021 SF

T2(−0.992,−0.123, 0.003):
λ1 = 0.011 + 0.649i , λ2 = −0.011− 0.649i , λ3 = −0.013 SF

T3(−0.098, 0.040, 0.994):
λ1 = 0.026 + 1.185i , λ2 = 0.026− 1.185i , λ3 = 0.039 USF

T4(−0.042, 0.040,−0.998):
λ1 = 0.026 + 1.195i , λ2 = 0.026− 1.195i , λ3 = 0.040 USF

T5(−0.213, 0.977, 0.009):
λ1 = 0.692, λ2 = −0.624, λ3 = 0.0001 Saddle

T6(−0.258,−0.996, 0.010):
λ1 = −0.658, λ2 = 0.567, λ3 = 0.0001 Saddle

Region II T1(−0.290, 0.357, 0.888):

R2(h = 0.1, j = 0.8) λ1 = 0.134 + 0.951i , λ2 = 0.134− 0.951i , λ3 = 0.031 USF

T2(0.143, 0.337,−0.931):
λ1 = 0.129 + 1.06i , λ2 = 0.129− 1.06i , λ3 = 0.034 USF

T3(−0.165, 0.983, 0.008):
λ1 = 1.021, λ2 = −0.390, λ3 = 0.0001 Saddle

T4(0.747,−0.645,−0.159):
λ1 = −0.224 + 0.669i , λ2 = −0.224− 0.669i , λ3 = −0.011 SF

Region III T1(0.217, 0.764,−0.607):
R3(h = 0.1, j = 1.5) λ1 = 0.472 + 0.422i , λ2 = 0.472− 0.422i , λ3 = 0.013 USF

T2(0.242,−0.966,−0.009):
λ1 = −0.598 + 0.572i , λ2 = −0.598− 0.572i , λ3 = −0.002 SF

Region III T1(−4.9312 · 10−4, 0.99532,−9.9292 · 10−2):
R4(h = 0.1, j = 2.5) λ1 = 1.0979, λ2 = 0.92173, λ3 = 3.987 · 10−4 USN

T2(9.3102 · 10
−2,−0.99455,−4.6422 · 10−2):

λ1 = −1.0204 + 1.0531i , λ2 = −1.0204− 1.0531i , λ3 = −4.3593 · 10−4 SF

No t e. Designations of the types of singular points: SF — stable focus, USF — unstable focus, SN — stable node, USN — unstable node.

Thus, the polynomial (10) always has at least two real

multiples of the root for h = 0. There are also two or four

real roots that nullify a fourth-degree trinomial in (10). For
this, the following two conditions should be met:

1. D = B2
2 − 4B0B4 ≥ 0,

2. 0 ≤ −B2 ±
√

D
2B0

≤ 1.

The first condition is met in the interval

| j| ≤ (k + 1)/(2b). The left part of the second inequality is

valid in the range of positive currents

(

k − 1 +
√

k2 + 6k + 1
)/

(4b) ≤ j ≤
(

−k + 1

+
√

k2 + 6k + 1
)/

(4b)

and in a symmetrical range of negative currents

(

k − 1−
√

k2 + 6k + 1
)/

(4b) ≤ j ≤
(

−k + 1

−
√

k2 + 6k + 1
)/

(4b).

The right part is always fulfilled when the previous condi-

tions are met (if a solution (10) exists, then it is modulo

less than one).
For j = 0 the equation (9) is reduced to the equation

(1− m2
x )(kmx + h)2[(k + 1)mx + h]2 = 0. (11)

There is also always a pair of roots mx = ±1 and two

pairs of multiple roots at intervals |h| ≤ k and |h| ≤ k + 1.

Thus, in the first quarter of the plane of the control

parameters
”
the field−current“ can be constructed two

straight lines approximating the critical lines L1 and L2

separating the regions of existence of the system (7): six,

four and two special points

L′

1 :
4b j

k − 1 +
√

k2 + 6k + 1
+

h
k

= 1,

L′

2 :
4b j

−k + 1 +
√

k2 + 6k + 1
+

h
k + 1

= 1. (12)

The symmetry property of the problem can be used in

the remaining quarters. Formulas (12) allow estimating the
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Figure 7. Trajectories of the end of the magnetization vector originating from the points T1(1, 0, 0) (a) and T2(−1, 0, 0) (b) under the

action of pulses of a negative magnetic field and current (blue lines (in online version)) and trajectories of the end of the magnetization

vector at zero currents and fields (red lines (in online version)).

Table 2. Values of maximum switching currents of three-layer SOT-MRAM structures through a square cross section

S = 10× 10 nm ([19-21])

Structure k = 2K
µ0M2

s
j1 j2 I1 (A) I2 (A)

Pt/Co/MgO 0.43 0.856 1.569 1.388 · 10−3 2.542 · 10−3

Pt/Fe/MgO 2.61 · 10−2 6.36 · 10−2 1.281 1.539 · 10−4 3.098 · 10−3

Pt/Fe70Co30/MgO 1.53 · 10−2 3.76 · 10−2 1.268 1.134 · 10−4 3.822 · 10−3

Pt/Fe60Co20B20/MgO 0.137 0.309 1.388 6.218 · 10−4 2.789 · 10−3

Pt/Fe40Co40B20/MgO 5.056 · 10−8 1.264 · 10−7 1.250 1.118 · 10−10 1.105 · 10−3

switching current densities depending on the magnitude of

the applied magnetic field.

Note: transition from dimensionless to dimensional

quantities:

k =
2K

µ0M2
s
, j1 =

k − 1 +
√

k2 + 6k + 1

4b
,

j2 =
−k + 1 +

√
k2 + 6k + 1

4b
,

J1 = j1
dg|e|µ0M2

s

g~
(A/m2), J2 = j2

dg|e|µ0M2
s

~
(A/m2),

I1 = J1S (A), I2 = J2S (A).

Conclusion

A model of a SOT-MRAM magnetic memory element

with a longitudinal anisotropy of the free layer and with an

external field parallel to the anisotropy field was constructed

and studied in this paper. Stoner−Wohlfarth approximation

made it possible to reduce the problem of describing the

dynamics of magnetization to the analysis of a dynamical

system with two degrees of freedom. Such a system can

be analyzed by the methods of the qualitative theory of

dynamical systems. The number and type of its singular

points is an important characteristic of the system in this

context [16–18]. The direct application of known methods of

numerical solution of algebraic nonlinear systems for finding

them numerically often leads to unsatisfactory results [15].
A more effective approach is to reduce the system of

equations to a single polynomial type equation, for which

numerical methods provide a proven and reliable solution

path. Finding singular points of the system (equilibrium
states) made it possible to classify the dynamic modes in

the MRAM cell and the types of phase trajectories of

the end of the magnetization vector on a spherical phase

Technical Physics, 2023, Vol. 68, No. 5
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surface. Previously, we used such an analysis to describe

the dynamics of magnetization in STT-MRAM [12–14]
elements. In our calculations, we used numerical values

of the physical quantities from papers [19–21] (Table 2).
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