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1. Introduction

A spin-transfer oscillator — is a nanoscale device that

consists of three layers: two ferromagnetic layers separated

by an insulating layer of non-magnetic material, see Figure 1.

The lower layer, called the pinned layer, is quite thick and

therefore its magnetization p remains constant. The top

layer is thin. It is called free because its magnetization m

can vary. A current flows through these layers, the direction

of which is shown in the figure by the current density

vector j. In addition, an external magnetic field hext can

be applied. The electrons first pass through a pinned layer

of constant magnetization, causing the current to become

spin polarized. When current enters the top free layer, its

polarization is destroyed, but the layer magnetization vector

m is processed due to the effect of spin moment transfer.

This results in the generation of low-power microwave
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Figure 1. Design of a spin-transfer oscillator. The numbers

indicate: 1 — pinned layer; 2 — insulating layer; 3 — free layer.

radiation. A more detailed description of the physics of

this phenomenon can be found, for example, in [1,2].

The first experimental observations of oscillations in

spin-transfer oscillators were presented in papers [3,4].
The theoretical model of this oscillator is described by

the Landau–Lifshitz–Gilbert–Slonczewski equation, which

was first derived independently by Slonczewski [5] and

Berger [6]. In dimensionless form, this equation is [1]:

ṁ− αm× ṁ = −m× heff +
β

1 + c p(m · p) m× (m× p).

(1)
Here

”
·“ and

”
×“ denote the scalar and vector products

respectively; m — magnetization vector of the free layer

normalized to one, ‖m‖ = 1; p — also normalized to one

constant layer magnetization, ‖p‖ = 1; α — the Hilbert

parameter responsible for precession attenuation; the β

parameter is proportional to the current density value j.

The effective magnetic field heff is equal to the sum of the

external field, demagnetization and anisotropy fields (a more

detailed description of this can be found in [1,7]).
We can assume that the free layer is a flat ellipsoid, the

crystalline anisotropy is uniaxial, and the axis coincides

with one of the axes of the ellipsoid. Note, that this

simplification is physically relevant and quite often used, see

for example the already mentioned work [1], and a number

of others: [8–12]. In this case, the effective field can be

written as follows:

heff = hext −Dm, (2)

where D — the diagonal tensor responsible for anisotropy

and demagnetization and hext — the external field. The
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coefficient c p in equation (1) depends on the material

properties of the oscillator and also on the degree of

polarization acquired by the current in the pinned layer. It

can take values in the range −1 < c p < 1 [8]. In theoretical

studies, it is often assumed to be zero, see e.g. [8–12]. We

will also assume that c p = 0. It is easy enough to check

that for equation (1), the identity ṁ ·m = 0 holds, i. e. the

norm of the vector m holds. We will always set the initial

conditions as a unit vector, so ‖m(t)‖ = 1 for any t .
In the general case, the system described by equation (1)

has several selected directions: the current axis j, the

magnetization axis of the pinned layer p, the external

field axis hext, the anisotropy and demagnetization related

axes considered through the tensor D. An interesting

and physically feasible special case occurs when all these

selected directions are oriented so that the system is

symmetric about the axis z [1]. Then, the diagonal elements

of the tensor D become (0, 0, 1), the effective field takes

the form heff = hz ez − mz ez , where hz — the only nonzero

component of the external field along z , and equation (1)
reduces to a much simpler form:

ṁx = mz Amx + Bmy ,

ṁy = −Bmx + mz Amy ,

ṁz = A(m2
z − 1),

A = α
mz − hz + β/α

1 + α2
,

B =
mz − hz − βα

1 + α2
. (3)

Here mx , my , mz — components of vector m.

This system of equations is explored in detail in the

book [1]. It can be seen that it breaks down into two

subsystems: the equation for mz is independent of mx and

my . The equations for mx and my are linear with respect to

these variables. The non-trivial behavior arises because mz

is described by a cubic equation and enters the equations

for mx and my as a parameter.

The equation for mz has three fixed points: mz = ±1 and

mz = hz − β/α. One of them is always stable, and the other

two unstable. For the condition m2
x + m2

y + m2
z = 1 at the

stationary points mz = ±1, the components mx and my are

zero, i.e. there is no oscillation. The conditions for their

sustainability are as follows:

mz = −1 stable at hz − β/α < −1,

mz = 1 stable at hz − β/α > 1. (4)

Fluctuations occur when the third fixed point is stable

mz =hz − β/α stable at − 1 < hz − β/α < 1. (5)

At this point, the solution to the system (3) is

mx =
√

1− a2 cos(ωt + f ),

my =
√

1− a2 sin(ωt + f ), mz = a . (6)

Here, f — an arbitrary initial phase, which depends on the

choice of initial conditions and, due to axial symmetry, can

be eliminated by rotating the oscillator about the axis z .
The natural frequency ω and the stationary amplitude a are

given by the formulas

ω = β/α, (7)

a = hz − β/α. (8)

Note, that (6) — is an exact solution to the system of

equations (3). It is purely sinusoidal, without harmonics,

due to the fact that the subsystem for the vibrational

variables mx and my is linear.

When considering the interaction of spin-transfer oscilla-

tors, communication between them is usually introduced in

two ways: either through a common current or through

magnetic fields. In the first case, the oscillators are

connected in series or parallel and their interaction is due to

the fact that the resistance of each oscillator depends on the

cosine of the angle between the magnetizations of the upper

and lower layers cos θ = (m · p) (giant magnetic resistance

effect) [8,9,11,12].
In the present paper, we consider the second case, when

the coupling between the oscillators is carried out via

magnetic fields. If we consider the magnetic field in dipole

approximation, the coupling term is added as a correction

to the effective field heff proportional to the magnetization.

In the case of two oscillators, the effective field (2) of the

first oscillator takes the form

heff,1 = hext −Dm1 + εm2. (9)

The effective field of the second oscillator is written in

the same way. As the field of a single oscillator is quite

small, it is natural to assume that the coupling between the

oscillators ε is also small.

This type of coupling has been studied in [13] experimen-

tally and in [14,15] theoretically. The article [16] derives the
amplitude equation for coupled spin-transfer oscillators and

considers, among other things, field coupling.

The main interest in the study of coupled spin-transfer

oscillators is the question of their synchronization con-

ditions. This phenomenon is known to be typical of

coupled oscillatory systems [17]. In the case of spin-

transfer oscillators, apart from the fundamental interest in

this phenomenon, there is an important application aspect:

a single oscillator generates low-power radiation [18] and

the obvious way to obtain higher power is to form an

array of oscillators oscillating synchronously with minimal

difference phase dispersion.

In papers [8,9], the synchronization effects of an array

of oscillators coupled by a common current are analyzed.

A multistability effect is described, where fully synchronous

oscillations coexist with nonsynchronous modes: quasi-

periodic or chaotic. Clustering and chimeric states in
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an array of common-current oscillators are considered

in [11,12].

In paper [19], a system of two field-coupled uniaxial spin-

transfer oscillators has been considered in a situation where

a direct current flows through each of them, assuming that

the currents are independent of each other and constant. It

has been shown that there is a range of coupling magnitudes

between the oscillators, in which two modes of oscillation

coexist: phase synchronization and non-synchronous oscil-

lation. Analytical evaluations for the boundaries of the area

of existence of these modes in the parameter space have

been obtained, and the bistable parameter area has been

numerically analyzed. A formula for the phase difference

constant of the oscillators, set in their phase synchronization

mode, is also derived. According to this formula, at the

threshold of synchronous operation, the phase difference is

π/2 and decreases with the coupling value increase. Note,

that similar patterns of retardance behavior are observed

in [20], which studies the synchronization of magnetic

vortices in exchange-coupled ferromagnetic disks.

In this paper, we consider two uniaxial spin-transfer

oscillators with field interaction when an RLC-chain is

connected in parallel to each of them. Since the electrical

resistance of the spin-transfer oscillator depends on the

direction of the magnetization vector m, together with the

RLC-chain, the oscillator forms an oscillating circuit with an

active element. It will be shown that in such a system, as

well as in the absence of RLC chains, bistability is possible.

A way of controlling it will be proposed — by selecting

the parameters of the RLC-chains and the initial capacitor

voltages, it can be achieved that the oscillators always

choose one of two coexisting solutions, either synchronous

or non-synchronous.

2. Equations of spin-transfer oscillators
with RLC-chains and field coupling

The spin-transfer oscillator has an electrical resistance r ,
which depends on the cosine of the angle between its

magnetization vector m and the magnetization of the pinned

layer [21].

r =
rp + rap

2

(

1− (m · p)
(

rap − rp
rap + rp

))

. (10)

Here, rp — the minimum resistance that the oscillator has

when the vectors m and p are parallel, and rap — the

maximum possible resistance that is achieved when these

vectors are antiparallel.

Consider two spin-transfer oscillators, each with an RLC

chain connected in parallel and the oscillators themselves

placed next to each other and interacting by means of

magnetic fields, Figure 2.

The equation for each of the circuits is

LiC iŴ
2Üi + (Ri + r i)C iŴU̇i + Ui − I i r i = 0, (11)
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Figure 2. Schematic for incorporating two spin-transfer oscillators

with RLC chains and interactions via magnetic fields.

where Ui — the capacitor voltage and Ŵ — the multiplier

which is introduced to reconcile the circuit time and the

renormalized spin-transfer oscillator time. It is convenient

to rewrite this equation as a system of two equations for

dimensionless voltage ui and current w i as follows:

u̇i = χi w i,

ẇ i =
�2

i

χi

(

(1− κi mi,z )(1 − w i) − ui − ρiw i
)

. (12)

Here, it is taken into account that (m · p) = mi,z due to

p = (0, 0, 1). The following replacements have been made:

w i =
U̇iC iŴ

I i
, ui =

2Ui

I i(r i,ap + r i,p)
, ρi =

2Ri

r i,ap + r i,p
,

�i =
1

Ŵ
√

LiC i
, χi =

2

C iŴ(r i,ap + r i,p)
, κi =

r i,ap − r i,p

r i,ap + r i,p
.

(13)
Note, that the dimensionless equations of a circuit with spin-

transfer oscillators included in it are written in a similar way

in [12].
Since in the dimensionless spin-transfer oscillator equa-

tion the parameter β is proportional to the current, the equa-

tion including the circuit connection is obtained from (3) by
substituting β → β(1− w). The terms responsible for the

coupling between the oscillators remain the same as in the

absence of a circuit. The corresponding formulas are the

same as those derived in paper [19]. The result for the

i-th oscillator associated with the oscillator j by field is

ṁi,x = mi,z Aimi,x + B imi,y

+
ε

1 + α2
i

{

αi [m j,x −(mi ·m j)mi,x ]−mi,y m j,z +m j,y mi,z

}

,

ṁi,y = −B imi,x + mi,z Ai mi,y

+
ε

1 + α2
i

{

αi [m j,y −(mi ·m j)mi,y ]+mi,xm j,z −m j,x mi,z
}

,
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ṁi,z = Ai(m
2
i,z − 1)

+
ε

1 + α2
i

{

αi [m j,z −(mi ·m j)mi,z ]−mi,x m j,y +m j,x mi,y

}

,

Ai = αi
mi,z − hz + βi(1− w i)/αi

1 + α2
i

,

B i =
mi,z − hz − βi(1− w i)αi

1 + α2
i

. (14)

Here,mi,x , mi,y , mi,z — components of the vector mi , and

the index j implies a different oscillator, i.e. when i = 1, we

have to put j = 2 and vice versa.

3. Control of the coordinated start
of oscillations in spin-transfer
oscillators

The case of a system of two uniaxial field-coupled spin-

transfer oscillators without RLC chains has been considered

in detail in [19]. It is shown that at certain values of ε and

βi (coupling strength and natural frequencies, respectively)
a full synchronization regime is possible. The oscillations

occur in the xy plane, they are in-phase and the mz

components coincide with each other and remain constant.

There is an area in parameter space in which a non-

synchronous regime coexists with a synchronous regime.

In this regime, the oscillator frequencies in the xy plane are

close to the natural frequencies, and the mz components

oscillate with frequencies close to the difference of the

natural frequencies.

To assess how the dynamics are affected by the connec-

tion of RLC chains, consider first one of the circuits (12),
considering mz as a constant parameter. This consideration

makes sense because mz always changes quite slowly.

The fixed point of this equation is

w = 0, u = 1− κmz , (15)

and the eigenvalues can be found using the formula

λ± = − �

2χ

(

�(ρ−κmz +1) ±
√

�2(ρ − κmz +1)2−4χ2
)

.

(16)
Since mz ≤ 1, κ < 1, ρ > 0, χ > 0, � > 0, the expression

(ρ − κmz + 1) is always positive and there is always

attenuation in the circuit. When the condition is met

�(ρ − κmz + 1) < 2χ (17)

eigenvalues (16) form a complex conjugate pair with the

negative real part Re λ = − �
2χ

(

�(ρ − κmz + 1)
)

. When

�(ρ − κmz + 1) > 2χ, (18)

both eigenvalues are real and negative.

Consider first the case where inequality (17) holds. Set

the parameters of the oscillators by equations (19),

α = 0.001, β1 = 0.0055,

β2 = 0.005, ε = 0.0005, hz = 0, (19)

and the parameters of the circuits — by formulas (20a).
For ease of comparison, here are the other circuit parameter

values, formulae (20b) and (20c), discussed below.

ρ = 1, � = 1.5, χ1,2 = 1, κ = 0.3, (20a)

ρ = 10, � = 0.1, χ1 = 0.02, χ2 = 0.01, κ = 0.3, (20b)

ρ = 10, � = 0.1, χ1 = 0.01, χ2 = 0.02, κ = 0.3. (20c)

It can be verified that with the chosen numerical values,

condition (17) is fulfilled regardless of the value of mz . The

behavior of the system (12), (14) in this case is qualitatively

similar to the case of no RLC-chains considered in [19].
In particularly, the system may exhibit bistability, where the

type of solution depends on the choice of initial conditions.

The illustration is shown in Figure 3. Here in

Figs. 3, a, b, c and d (panels on the left), the initial conditions
for the oscillators are given by (21a), and in Figs. 3, e, f, g

and it h (panels on the right) — by (21b),

v1 = (0.1,−0.1, 0.7), v2 = (−0.2, 0.2,−0.7), (21a)

v1 = (0.1,−0.1,−0.7), v2 = (−0.2, 0.2, 0.7). (21b)

It can be seen that in the first case, the components of

the x oscillators synchronously oscillate with almost zero

retardance, see Figure 3, a. Components y perform the same

oscillations and are therefore not shown. The components z
of the oscillators and the voltages and currents in the RLC

circuits remain constant, see Figure 3, b, c and d. In the

second case, the oscillators are out of sync, see Figure 3, e.

In this case, the components z of the oscillators and the

currents and voltages perform slow oscillations with small

amplitude, Figure 3, f, g and h.

Consider now the case of real eigenvalues λ±, i.e. when

inequality (18) holds. The circuits parameters can be

chosen such that λ− has a large negative value. However,

λ+ can be a very small modulo negative value. This

will cause the current through the RLC-chain to decay

very slowly. In particularly, parameters (20b) and (20c)
meet this condition regardless of mz . The circuit currents

appear in equations (14) as corrections to the parameters

β1 and β2, on whose values the stability of the fixed points

of the oscillators depends, see (4) and (5). This can be

used to control the triggering of oscillations in spin-transfer

oscillators.

The idea is to set the initial conditions for the RLC chains

so that at the start w has a large negative value. This can

be achieved by pre-charging the C1 and C2 capacitors to

sufficiently high values. Then by discharging, they will give

a high negative current in the circuit in the initial stages.

As a consequence, the effective value of β(1− w) will be

shifted, and the fixed points of the m1,2,z = −1 oscillators

will become stable, see (4). Consequently, the oscillators

will
”
forget“ their initial conditions, which may be arbitrary,

and reach solutions m1,2,x = m1,2,y = 0, m1,2,z = −1. The

oscillators will manage to get sufficiently close to these
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Figure 3. System bistability (12), (13): panels (a) − (d) — synchronous, panels (e) − (h) — non-synchronous. Solutions are obtained

with the same parameters (19), (20a), but with different initial conditions. The initial conditions are taken as m1,2 = v1,2/‖v1,2‖, where v1
and v2 for panels (a) − (d) are given by equations (21a) and for (e) −(h), — by equations (21b). The initial circuit currents and voltages

are given as w1 = w2 = 0, u1 = 1.1, u2 = 1.2 in both cases, respectively.

solutions, provided that the attenuation in the RLC-chains

is sufficiently small, which is what we are trying to achieve

by selecting their parameters. When the current w becomes

low enough, the fixed points on the poles become unstable

again and the oscillators start to oscillate. It is essential,

that it will always start with the same initial conditions.

However, there is a subtle point. As has been shown

in [19], the system’s choice of one of the two solutions in

the bistability regime depends on which of the initial values

is greater, m1,z or m2,z . Therefore, if the RLC circuits are

identical, the oscillators will start to exit the fixed point

almost simultaneously. This will again lead to bistability:

the choice of solution will now depend on which of the

two oscillators, due to random factors, started fluctuating

slightly earlier than the other. To eliminate this, you need

to make the RLC circuits slightly different. Then, one of

the oscillators will always be slightly ahead of the other,

eliminating uncertainty. This will lead to the absence of

bistability.

The illustration is shown in Figure 4. The parameters in

this figure are such that the solution does not depend on

the choice of initial conditions. But for comparison, this

figure is constructed with the same initial conditions for

m1,2 as Figure 3. The starting currents are zero, w1,2 = 0,

and the starting voltages are given as u1,2 = 20± 2ξ , where

ξ ∈ (0, 1) —a random number, as in Figure 3. From

Figure 4, d and h, it can be seen that this gives a sufficiently

large negative initial current to force the oscillators to

approach the fixed points m1,2,z = −1, see Figure 4, b and f.

Then, when the effective stability condition of these points

is broken by the loss of currents w1,2, the oscillation starts.

Regardless of the initial conditions, the first oscillator always

moves away from zero first. This ensures that the system

is in the same, being synchronous in this example, mode
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Figure 4. Bistability control in system (12), (14). The oscillator parameters are the same as in Figure 2, and for the RLC circuits, the

parameters (20b) are given. The initial values for m1,2 are the same as in Figure 2. Initial circuit current values w1,2 = 0, initial voltage

values u1,2 = 20± 2ξ , where ξ ∈ (0, 1) — a random number.

regardless of the initial conditions. In Figure 4, a and e we

see synchronization in both cases.

To get a more complete picture, we will set the initial

conditions randomly and calculate the relative frequency of

occurrence of the synchronous solution Psyn. In our case,

synchronization is conveniently identified by the spread of

the m1,2,z component — in synchronous mode, it is zero.

Figure 5 shows how Psyn depends on coupling strength

for three different sets of RLC-chain parameters. The

curve (a) corresponds to the case, where the RLC-chains

have parameters (20a), i.e. an oscillating mode with fast

damping takes place. This corresponds to Figure 3. There

is no bistability control. When ε is small, all solutions are

out of sync, but when ε is large enough, we always get

synchronous solutions. The bistable area is roughly between

ε = 0.00025 and ε = 0.001. Both types of solutions occur

here, and the frequency of occurrence of synchronous

solutions increases with increasing ε. If parameters (20b),
which satisfy inequality (18), are involved, and in addition,

one of the eigenvalues of the RLC-chain is very small and

negative, the bistability disappears. As soon as ε enters

an area where a synchronous solution exists, the system

starts to always select only it. Parameter set (20c) differs

from the previous set in that the values of χ1 and χ2 have

been exchanged. This leads to that now m2,z always leaves

the vicinity of the fixed point first. As can be seen in

Figure 5, this also blocks bistability, but now as long as

the non-synchronous solution is retained, the system always

chooses it. Only switch to synchronous mode when the

non-synchronous solution no longer exists.

Figure 6 shows the synchronous output frequency on the

parameter plane (β1, ε) using color shades. Figure 6, a is

plotted for a set of parameters (20a) at which, there is no

bistability control. We see here a dark blue language, within

which the oscillators are synchronized. It is surrounded by

lighter bistable — color saturation encodes the likelihood of

synchronous mode Psyn. The white area below represents

the unsynchronized oscillation mode. In Figure 6, b, the

parameters (20b) are chosen to ensure that bistability is

blocked. Recall that at these parameters, m1,z is the first
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three cases are given by formulae (19) (with the obvious exception
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Figure 6. Relative frequency to obtain a synchronous solution with randomly chosen initial conditions on the parameter plane (β1, ε).
Panels (a), (b) and (c) are plotted for parameters (20a), (20b) and (20c), respectively. White represents a non-synchronous solution, dark

blue — synchronization. Intermediate shades show bistability. The oscillator parameters, with the exception of the changing axes β1 and

ε, for all three cases are given by formulae (19), in particular β2/α = 0.5.

to emerge from the fixed point. As can be seen from the

figure, when β1 > β2, the bistability area is replaced by a

synchronization area. If the opposite is true β1 < β2, an area

of non-synchronous oscillation appears instead of bistability

area. For parameters (20c), at which already m2,z exits the

fixed point first, the situation is mirror-symmetric: to the

left of β1, the bistability area becomes the synchronization

area and to the right — the unsynchronized oscillation area,

Figure 6, c.

4. Conclusion

We have considered a system of two field-coupled spin-

transfer oscillators, each with an RLC chain connected in

parallel. Such a system can exhibit both fully synchronous

and asynchronous oscillations. There is an are of parameters,

in which there is bistability, when the two solutions
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coexist. It is shown, that if one chooses the parameters

of RLC-chains so that the current in them monotonically

and slowly decreases from large negative values to zero,

one can achieve
”
forgetting“ by spin-transfer oscillators of

their arbitrary initial conditions. Controlled oscillation are

triggered, allowing bistability to be suppressed in favor of

both synchronous and non-synchronous modes.
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