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1. Introduction

Skyrmions are topologically non-trivial field configura-

tions that are solutions to non-linear differential equations of

physics. Such solutions were obtained by Skyrme in nuclear

physics for baryon field [1,2]. Similar field distributions

m(r) were later found in magnetic systems [3–8]. Thus, for
2D magnetic skyrmions defined by a classical field m(r), a
topological charge may be introduced [9]:

Q =
1

4π

∞
∫

−∞

∞
∫

−∞

(

m ·

[

∂m

∂x
×

∂m

∂y

])

dx dy, (1)

such that structures with different Q cannot be deformed

into to each other without overcoming the energy barrier:

infinite in continuous approximation (if m(r) is a continuous
function) and finite allowing for discrete magnetic moment

distribution. Geometrical meaning of Q is in how many

”
times“ vector m sweeps under mapping S2 → S2. Ob-

viously, for a homogeneous magnetic state Q = 0, while

for the magnetic skyrmion (MS) Q = ±1 (see below).
The foregoing provides so-called topological stability of

skyrmions states and causes interest in such structures as

promising objects for creation of next generation logic and

memory devices [10–14].
Until recently, the majority of investigations of topological

magnetic structures has been devoted to 2D-MS with

|Q| = 1. However, over the last years, more exotic

magnetic excitations such as, for example, skyrmioniums,

skyrmion bags, etc., attract extensive interest [15–21]. So-

called 2D higher-order magnetic skyrmions (HOMS) with

magnetization azimuthal angle (vorticity) φ = nϕ, where

ϕ is the polar angle in he film plane, will be investigated

herein. Whereby |n| > 1 meets |Q| = |n| > 1. At this point,

HOMS have been much less studied compared with MS.

This is due to the fact that Dzyaloshinski–Moriya interaction

has no contribution to the HOMS energy. Considering this,

several models have been proposed where HOMS resulted

from frustrated exchange interaction [15–17]. However, such
mechanism requires fine selection of magnetic materials and

has no necessary flexibility to vary HOMS properties which

is suitable for practical applications.

A new formation mechanism for 2D-HOMS based on

the influence of orbital effects of nonuniform magnetic

field has been proposed by us recently [22]. From mag-

netic point of view, the orbital effects of magnetic field

result in the occurrence of a so-called scalar chiral or

three-spin interaction [23–29], which is, for homogeneous

field, proportional to the density of topological magnetic

configuration charge and may result in new structures in

inhomogeneous fields [22]. It should be also noted that the

contribution of scalar chiral interaction to energy of the MS

with n = 1 in strongly correlated electronic systems may

be comparable with the Dzyaloshinski–Moriya interaction

contribution for 2D skyrmions. For HOMS with n > 1,

the Dzyaloshinski–Moriya contribution is equal to zero and

magnetic nontrivial states are stabilized due to scalar chiral

interaction.

It is important that the study of magnetic skyrmions

in nonuniform magnetic fields has currently got addi-

tional significance in terms of investigation of magnetic

skyrmion — superconducting vortex (SV) bound states [30–
36]. Thus, it has been recently experimentally found

that such pairs, MS−SV, may form bound states in
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[Ir1Fe0.5Co0.5Pt1]
10/MgO/Nb heterostructures [33]. More-

over, it has been theoretically shown that the stray fields

of superconducting vortex may be one of the stabilization

factors of the axially symmetrical MS−SV structure [34–36].
In the latter case, the HOMS situation in the axially sym-

metrical magnetic field, studied herein, may be fulfilled. The

MS (HOMS)−SV bound states themselves may carry the

Majorana zero modes, having good prospects in quantum

computations [37–39].
Taking into account the foregoing, it seems important

to study the implementation conditions and main HOMS

properties (energy, radius, domain wall width and topolog-

ical charge) in axially symmetric inhomogeneous magnetic

fields with various radial profiles B(r). Such analysis has

been carried out in our recent work within the variational

approach for special cases of B(r) ∼ r , 1/r [22]. Herein,

we generalize the analytical theory describing HOMS in the

fields with arbitrary power-low functions of field B(r) ∼ rβ

(arbitrary β). An important aspect of constructing a theory

is the use of a hierarchy of magnetic energy parameters

corresponding to strongly correlated electronic systems. For

solution of the variational equations, mathematical tools

of the theory of functions of many complex variables

were used [40,41]. This allowed to describe analytically

nontrivial dependences of HOMS size on the strength of the

applied magnetic field and to find a nontrivial competition

between orbital and Zeeman magnetic field contributions

during stabilization of such structures. The found effects

may be useful for experimental or numerical search of

HOMS. Moreover, we believe that the proposed approach

for analytical description of HOMS may be used to study

other magnetic excitations such as skyrmioniums, bimerons,

skyrmion bags, etc.

2. Energy functional and HOMS
implementation conditions
in inhomogeneous fields

We will study the conditions for the HOMS realization

within the framework of the following energy functional

describing the energy of the magnetic system

H = −
∑

〈 f ,g〉

J · S f · Sg +
∑

〈 f ,g,l〉∈1

K · S f · [Sg × Sl]

−B
∑

f

Sz
f −A

∑

f

(

Sz
f

)2

. (2)

The first term in the right-hand part describes the ex-

change interaction between sites f and g being the nearest

neighbors (symbol 〈 f , g〉) with amplitude I > 0. The

second term describes the three-spin interaction between

three nearest neighbors f , g and h with amplitude K.

A > 0 describes the
”
easy axis“ single-ion anisotropy,

B is the external magnetic field strength along the z axis

expressed in energy units. The z axis is assumed to be

orthogonal to the 2D plane of the system, in which the

moments Sf, which are considered to be classical three-

component vectors, are localized. The described interactions

are competing: exchange (J), anisotropic (A), and Zeeman

(B) interactions form the tendency of magnetic moments

to align collinearly with respect to each other and the

z axis, while the scalar chiral interaction tends to form

non-collinear magnetic configurations. Type of magnetic

structures and excitations is determined by the ratio of the

amplitudes of these parameters. In this work, we will use

the following parameter hierarchy

J ≫ K ≫ A, B, (3)

which takes place when considering layered strongly cor-

related systems [22–28]. It is important that microscopic

origin of scalar chiral interaction is related to orbital

magnetic field effects. In continuous approximation, such

interaction amplitude K may be assumed to follow the

external magnetic field profile: K(r) ∼ B(r). In case of

a homogeneous field, B(r) = const, the scalar chiral inter-

action contribution is proportional to topological charge Q
and cannot induce new magnetic configurations. It will be

shown below that consideration of the external magnetic

field inhomogenuity results in the situation when scalar

chiral interaction can stabilize both 2D MS with n = 1 as

well as the HOMS with n > 1. It should be also noted that

functional (2) does not include the vector chiral interaction

or Dzyaloshinski–Moriya one which is typically used to

describe the MS. However, it can be easily shown that

consideration of the Dzyaloshinski–Moriya interaction will

change the results of the predicted theory only for MS with

n = 1 and will not affect the results for HOMS with n > 1

in any way [22]. Thus, the orbital effects of inhomogeneous

magnetic field will serve below as a single MS and HOMS

formation mechanism.

HOMS stabilization in the inhomogeneous filed will be

addressed using a variational approach for a continuous

version of the classical functional (2). A two-parameter

ansatz will be used as a function describing HOMS

formation [42]:

mx = sin2 cos nϕ; my = sin2 sin nϕ; mz = cos2;

2(r, R, w) = 2 arctan

(

cosh (R/w)

sinh (r/w)

)

∼ 2 arctan
(

e(R−r)/w
)

+ 2 arctan
(

e(−R−r)/w
)

.

Such parametrization has a meaning of axially symmetri-

cal 1D domain wall, where w is the width, R is the distance

from the skyrmion center to the domain wall middle. All

distances will be defined in terms interatomic spacing —
a . Vorticity n for skyrmions is assumed larger than zero in

modulus, while |n| = |Q|. The spatial profile visualization

of MS with n = 1 and HOMS with n = 2 built using (4)
is shown in Figure 1. The axis of rotation of the axially

symmetrical magnetic field profile is assumed hereinafter to
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Figure 1. Spatial profiles: a) MS with n = 1, b) HOMS

with n = 2. The right-hand inserts show profile visualization

through a color scheme used below. Black and white color

correspond to directions with mz = ±1, respectively. In case of

mz 6= 1, the color corresponds to the direction of magnetization

field projection m(r) on the XoY plane. If: {mx , my} = {1, 0},
then color is red; {mx , my} = {cos 2π/3, sin 2π/3} is green;

{mx , my} = {cos 4π/3, sin 4π/3} is blue. For clarity, profiles m(r)
are represented using the same color code.

go through the skyrmion center (point r = 0) perpendicular
to the film plane. It will be also assumed that, among the

(meta) stable configurations of functional (2), skyrmions

with narrow domain wall, R ≫ w, are implemented. This

assumption is justified by the following calculations. Under

this assumption, we write approximately

2(r, R, w) ∼= 2 arctan
(

e(R−r)/w
)

. (4)

Note that for profile (4), the following relations are met

d2
dr

= −2 f (r − R); sin2 = 2w f (r − R);

1− cos2 = 2nF

(

r − R
w

)

, (5)

where nF

(

r−R
w

)

is the Fermi–Dirac function, and function

f (r − R) is written as

f (r − R) =
1

R
R
w

e(r−R)/w

1 + e2(r−R)/w
.

With R/w ≫ 1, function f (r − R) is localized in the

vicinity of point r = R, is symmetrical and has a constant

area. The same is true of f 2(r − R). Therefore, within

R/w → ∞, they may be approximated by delta functions

lim
R/w→∞

f (r − R) →
π

2
δ(r − R),

lim
R/w→∞

f 2(r − R) →
1

2w
δ(r − R). (6)

Finally, we will make an assumption about the functional

dependence of the axially symmetric profile of the external

magnetic field: we will assume that it is described by a

piecewise function of the following form:

B(r) =

{

0, r < δr ≪ 1

rβ , r ≥ δr, β ∈ R
, (7)

whereby the equal-zero condition of the magnetic field

strength at r < δr allows to address profiles with β < 0.

Then, proceeding to the continuous description in a standard

way, we find the approximate dependences of the partial

contributions to the energy functional of the HOMS on its

parameters

EJ =
J
2

∞
∫

0

[

(

d2
dr

)2

+
sin2 2

r2

]

r dr ∼= J
(

ρ + n2ρ−1
)

,

(8)

EA =
A
2

∞
∫

0

sin2 2r dr ∼= Aρ w2 (9)

EK =
Kn
2

∞
∫

0

rβ sin2
d2
dr

dr ∼= −Knρβwβ, (10)

EZ =
H
2

∞
∫

0

rβ(1− cos2)r dr

∼= −H
(w

2

)β+2

Ŵβ+2Liβ+2

(

δr,−e2ρ
)

. (11)

Here, variable ρ = R/w was introduced in the right-

hand part, and ρ, w ≫ 1 is assumed below. The right-

hand parts of expressions (8)−(11) were calculated using

relations (4)−(6). For this, integral connection between

Fermi function nF(r/w − ρ) ∼ 1− cos2 and incomplete

polylogarithm Liβ+2(δr,−e2ρ) was used:

Liβ
(

δr,−e2ρ
)

=

∞
∑

k=1

(−1)
k e2kρ

kβ

Ŵ(β, kδr)

Ŵ(β)

=
−1

Ŵβ

∞
∫

δr

tβ−1dt
et−2ρ + 1

, (12)
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where definition of an incomplete gamma-function with

variable lower limit was used

Ŵ(β, kδr) =

∞
∫

kδr

tβ−1e−t dt. (13)

It is obvious that at δr = 0 the incomplete polylog-

arithm is reduced to a standard polylogarithm, Liβ+2

(δr = 0,−e2ρ) = Liβ+2(−e2ρ). Energy parameters J, A, K
and H in (8)−(11) are proportional to I, A, K and B
in (2), respectively. The coefficients of proportionality

depend on the geometry and lattice constants as well

as on the magnetoactive ion spins. Herein, parameters

in (8)−(11) will be assumed as independent, but hierarchy

J ≫ K ≫ A, H, (14)

derived from that described above (3) will be used.

Considering the foregoing, the dependence of the excitation

energy on the size of the HOMS can be written in the form

E = EJ + EK + EA + EZ = J
(

ρ + n2ρ−1
)

− Knρβwβ

+ Aρ w2 − H
(w

2

)β+2

Ŵβ+2Liβ+2

(

δr,−e2ρ
)

.

(15)
Minimization of functional (15) requires solving a system of

nonlinear equations for ρ and w . The analytical search for

such a solution in general terms is a complex mathematical

problem. However, taking into account the hierarchy of

energy parameters (14) makes it possible to carry out a

qualitative, but simplified, description of the system, which

makes it possible to develop the analytical theory of HOMS.

Thus, taking into account only the term with the parameter J
in (15) leads to the appearance of a line, ]rho = n, of

degenerate local minima in the (ρ, w) plane. Since J is

the largest energy parameter, let us consider the behavior of

functional (15) along the given line

E → Ẽ(w) = E(w, ρ = n). (16)

In such approximation, the search for a local minimum

meeting HOMS is limited to the search for a minimum for

one-variable function Ẽ(w). Possibility of such description

is shown in Figure 2. Then to assess the typical HOMS

dimensions, the following equation (provided that w ≫ 1

and d2Ẽ/dw2 > 0) shall be solved:

1

w

dẼ
dw

=2An − Kβnβ+1wβ−2

− H
β + 2

2β+1
Ŵβ+2Liβ+2

(

δr,−e2n
)

wβ = 0. (17)

Solution of equation (17) with H 6= 0 will be described

in the next paragraph. Here, HOMS properties with only

orbital field effects present will be discussed briefly. Such

situation may take place in case of zero values of g-factors

20

62

60

61

59

E
/|
K
|

10

0 0
20

40
60

/a R/a

Figure 2. Energy surface section of E(R, w) (16) with n = 3 in

variables R = ρw and w . Thick line — behavior of Ẽ(w) (18)
along line R = nw . It can be seen that minimum points

E(R, w) and Ẽ(w) coincide and, therefore, a simplified description

using one-variable function Ẽ(w) may be used to find them.

The following energy parameters are chosen: J = 10, K = −1,

H = −0.006, A = 0.001.

of magnetoactive ions. Then, it is easy to show that higher-

order skyrmion dimensions are defined by expressions

w∗ =

(

Knβ

2A

)

1
2−β

, R∗ = nw∗,

β < 2; sign (Knβ) = sign (βA); sign (An) > 0. (18)

In particular, in the physically interesting case when

the skyrmion is in the superconducting Pearl vortex field,

B(r) = 1/r (β = −1) may be approximated [30–32], the

given relations are written as

w∗ =
3

√

|K|

2An
; R∗ = nw∗; K < 0.

Since the sign of constant K is defined by the magnetic

flux sign, HOMS formation due to the orbital effects of an

inhomogeneous field may be possible only with a certain

direction of the latter. Thus,it can be seen from (18) that

for
”
ascending“ fields (β > 0), the external field shall be

co-directional to the magnetic moment of the ferromagnetic

film. While for
”
decreased“ fields (β < 0), the situation

is inversed and an external field shall be applied opposite

to the initial film magnetization direction in order to form

HOMS. As will be shown below, these features are also

maintained in a qualitative sense when the Zeeman effects

of magnetic field are considered.

3. Analytical description of HOMS
in the case of H 6= 0

HOMS stabilization conditions considering both Zeeman

and orbital magnetic field contributions to the energy of

2D magnetic system will be described below. First,

qualitative aspects of the competition of terms in (17) with

Physics of the Solid State, 2023, Vol. 65, No. 6
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a b

Figure 3. Visualization of HOMS spatial profiles in an inhomogeneous
”
linearly descending“ field B(R) = 1/r (β = −1). Cases a)

and b) correspond to the situations when the filed is applied along the film saturation magnetization and in opposite direction: such

configurations are stable and nonstable, respectively.

H 6= 0 will be discussed. For this, it is convenient to discuss

behavior of equation (17) separately for positive, β > 0,

and negative, β = −α < 0, degrees of field profile B(r).
For the latter, a new variable m = 1/w will be introduced.

The equations for the functional minimum will be written

as

1

w

dẼ
dw

= − Kβnβ+1wβ−2 + H(2 + β)νβw
β

+ 2An = 0; β > 0 (19)

m3 dẼ
dm

= − Kαn1−αmα+2 − H(2− α)ναmα

− 2An = 0; α > 0. (20)

The following parameters are introduced here

νβ = −
Ŵ2+β

21+β
Li2+β

(

δr,−e2n
)

> 0,

να = −
Ŵ2−α

21−α
Li2−α

(

δr,−e2n
)

> 0. (21)

To the solutions w∗ and m∗ of Eqs. (19) and (20) should

be subjected to the conditions for minimizing the functional,

as well as limiting the range of their values based on the

previously used assumptions about the narrowness of the

domain wall of the HOMS

d2Ẽ
dw2

∣

∣

∣

∣

w=w∗

> 0; w∗ ≫ 1;
d2Ẽ
dm2

∣

∣

∣

∣

m=m∗

> 0; 0 < m∗ ≪ 1.

This means that the right-hand parts of equations (19)
and (20) shall go through zero with the sign changed

from negative to positive like functions w and m, re-

spectively. For equation (19), such solution is achieved,

if sign (K) = sign (H) = 1. In this case, with sufficiently

low w, the second term in the right-hand part (17)
dominates, because Kwβ−2 ≫ Hwβ . With sufficiently high

w, the inequality is inversed and function dẼ/dw changes

sign in point w∗ ≫ 1. High values w∗ are related to

condition K ≫ H . Thus, as a result of consideration of the

Zeeman effects of skyrmion interaction with the
”
increased“

magnetic field (β > 0), HOMS formation conditions are

not restricted by conditions β < 2 any longer, as was

the case with only orbital effects of magnetic field (see
equation (18)).
In case of

”
decreased“ magnetic fields, α > 0, competi-

tion of orbital (K) and Zeeman (H) magnetic field effects

in expression (20) differs for α < 2 and α ≥ 2. For α < 2,

να ∼ n2−α, and therefore, in the actual searching range, we

have

|Kαn1−αmα+2| ∼ |H(2− α)ναmα|;

0 < m ≪ 1; 0 < α < 2.

The latter means that search for physical solutions of

m∗ ≪ 1 is more preferable, if constants K and H are of

the same sign. Moreover, since at m = 0, the right-hand

part of equation (20) is −2An, then the optimal way of

finding of physical solution corresponding to the HOMS is

to fulfil relations

sign (An) = 1, sign (K) = sign (H) = −1.

Thus, in case of
”
moderately decreasing“ fields (7) with

−2 < β < 0, HOMS can be also implemented essentially.

However, unlike β > 0, the external magnetic field shall be

applied in the direction opposite to ferromagnetic ordering

of the initially magnetized film.

Examples of stable and nonstable HOMS configurations

with n = 2 and field profile B(r) = 1/r (α = 1) are shown

in Figure 3. Thus, Figure 3, a shows stable configuration

when magnetic field is directed opposite to the film

Physics of the Solid State, 2023, Vol. 65, No. 6
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magnetization vector beyond the HOMS localization region

meeting relations (27). Figure 3, b shows a similar, but

nonstable configuration when the filed is directed along the

film saturation magnetization. This difference is caused

by the fact that for the case a the Zeeman contribution

to the HOMS excitation energy EZ < 0 and stabilizes the

nontrivial configuration, because the field strength near the

skyrmion core is maximum and the moments are oriented

along the field. For the case b, the Zeeman contribution

results in HOMS destabilization due to positive EZ .

In case of rather fast decreasing fields, α > 2, partial

contribution to the Zeeman term in equation (20) increases

faster compared with orbital contribution: function να
increases with α. Moreover, the Zeeman sign changes

compared with α < 2.

This leads to the fact that, in the case of α ≫ 1, the

stabilization of the HOMS is also possible, and this is

mainly due to the Zeeman effects of the magnetic field, the

direction of which can be codirectional with the direction of

the film magnetization.

Considering the foregoing, qualitative aspects of com-

petition between different energy contributions during for-

mation of stable HOMS with sharp domain wall may be

summarised using the stability diagram shown in Figure 4.

The diagram was plotted taking into account that energy

parameter hierarchy (15) meeting the strongly correlated

electronic systems is implemented. In addition, since K
and H describe the orbital and Zeeman contributions

into the energy of excitation/magnetic field interaction,

respectively, sign (K) = sign (H) was assumed. Region
”
1“

in Figure 4 meets the condition when only orbital effects

of the magnetic field contribute to the HOMS energy:

H = 0. In this case, as mentioned in the end of Section 2,

HOMS are formed with β < 2 and other relations of

constitutive parameters as given in (20). Region
”
2“

meets the ascending magnetic fields taking into account

the Zeeman effects of magnetic field. As mentioned above

(see the discussion under equation (25)), competition

between orbital and Zeeman magnetic field effects is such

that HOMS with sharp domain wall may occur almost

with any field degrees and strengths H . The latter is

represented by the fact that region
”
2“ occupies almost

the whole quadrant of the coordinate axes as shown in

Figure 4. Regions
”
3“ in Figure 4 corresponds to the

situation of descending magnetic fields (β < 0) having their

maximum near the HOMS center. In this case, for HOMS

stabilization, the applied external magnetic field shall be

negative, i. e. directed opposite to the film saturation

magnetization. Moreover, if sign (K) = sign(H) is assumed,

then the foregoing means that HOMS in the descending

fields will certainly stabilize, if −2 < β < 0. But if β < −2,

then from equation (23), it follows that the Zeeman and

orbital contributions will become competitive and HOMS

stabilization will become more problematic and, in case of

−2β ≫ 2, impossible. Such feature is qualitatively shown

in Figure 4 in the form of filled region
”
3“ that occupies a

part o the third quadrant of variables β, H .

"1"

"3"

"2"

"1"

H

β–2 2

Figure 4. Quantitative diagram of HOMS stability in variables:

magnetic field profile exponent β (see equation (6)), amplitude

H of applied external magnetic field at distance r = a from

the skyrmion center. Energy parameter hierarchy (15) and

sign (H) = sign (K) are assumed to be implemented. Regions
”
1“,

”
2“ and

”
3“ correspond to the HOMS stability regions and are

described by relations: (20); H > 0, β > 0; (27), respectively. In

the latter case, β is assumed to be not much lower than −2.

Having discussed the qualitative effects of competition

of various energy contributions to equations (19) and (20),
solution of these equations will be provided.

”
Decreased“

fields will be investigated i. e. equation (20) will be solved.

Equation for
”
increased“ fields (19) can be solved in the

similar way. The simplest case α = 1 will be discussed

first. This corresponds to radial decreased magnetic

field according to B(r) = 1/r , that is implemented, for

example, in the superconducting vortex field. In this case,

equation (20) for stabilzation of higher-order skyrmion size

is reduced to

Km3 + 2Hnm + 2An = 0. (22)

Analytical expression for the HOMS domain wall width

is easily derived from this equation:

w∗ =
u1/3

u2/3 − Hn/3K
;

u =

∣

∣

∣

∣

An
K

∣

∣

∣

∣





√

1 +

(

H
3

)3 An
K

− sign

(

An
K

)



 .

Behavior of w∗ (23) and R∗ = w∗n is illustrated in

Figure 2 as functions of applied external magnetic field |H|
for HOMS with various topological charges n. It can be seen

that the domain wall width increases with increasing |H| and
decreases with increasing n. The optimum HOMS radius

increases as function of |H|, and n.
It may be useful in practice to represent solution of

equation (22) as a series in a small parameter. For

hierarchy (14) discussed herein, such expansion may be

written as [43]:

m∗ =
1

w∗
=

1

3

∞
∑

j=0

(−1) j

j !

Ŵ
(

j + 1
3

)

Ŵ
(

4− 2 j
3

)

(

H
3
√

KA2/2n

) j

.

(24)
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Figure 5. Dependences of the optimum domain wall width w∗ (left) and radius R∗ (right) on the external magnetic field strength

at β = −α = −1. System parameters are the same as shown in Figure 1. Solid, dashed and dotted curves correspond to HOMS with

n = 2, 3, 4, respectively.

Generally (arbitrary α), equation (20) is not solvable by

radicals. However, similar to (24), it may be expressed as

a series in a small parameter. For this, consider the case

when the field descending degree is represented in the form

of a rational fraction α = p/q (p, q > 0). This assumption is

rather general, because irrational α may be approximated by

rational fractions with arbitrary preassigned accuracy. Then,

equation (20) may be written as

a = l p ·
(

1 + hl2q
)

, (25)

where

l = m1/q, a =
−2An

H(2− α)να
, h =

Kαn1−α

H(2− α)να
, α = p/q.

Equation in the form (25) may be solved using the

formula [40,41]:

l = a1/p +

∞
∑

γ=2

Aγaγ/p;

Aγ =
1

γ !
Dγ

(

l

(1 + h · l2q)
(γ+1)/p

(

l
(

1 + h · l2q
)1/p

)′

l

)

∣

∣

∣

∣

l=0

,

(26)
where Dγ denotes the operator of differentiation of multi-

plicity γ with respect to the variable l . Then, taking into ac-

count that l = m1/q and raising the series in expression (26)
to power q, we obtain the expression for inverse width of

the domain wall with arbitrary rational α = p/q:

m∗ =

∞
∑

k=q

Bkak/p;

Bk =
∑

{ q=γ1+...+γk
k=1·γ1+...+(k−q+1)·γk−q+1

}

q!
γ1! . . . γk−q+1!

Aγ1
1 . . . A

γk−q+1

k−q+1.

(27)
Functions Aγ may be calculated using the binomial formula

Dγ

γ !
(F · Gγ)

∣

∣

∣

∣

l=0

=

γ
∑

k=0

1

k !(γ−k)!

[

dkF(l)
dlk

·
dγ−kGγ(l)

dlγ−k

]∣

∣

∣

∣

l=0

,

where functions

F(l) = l
(

l
(

1 + h · l2q
)1/p

)′

l
,

Gγ(l) =
(

1 + h · l2q
)−(γ+1)/p

are introduced in expression (26). n-th order derivative

of complex function Gκ = g−κ , where g = 1 + h · l2q and

κ = (γ + 1)/p, may be calculated using the Faa di Bruno

formula:

dnGκ

dln
=

n
∑

k=1

∑

{ k=α1+...+αn
n=1α1+...+nαn

}

n!
α1! . . . αn!

×

(

dkg−κ

dκk

)(

1

1!

dg
dl

)α1

. . .

(

1

n!
dng
dln

)αn

, (28)

which completes the solution of Eq. (19) for rational α.

Finally, it should be noted that the found solutions (24)
and (27) written as series by the parameters of equa-

tion (20) describe the inverse width of the HOMS domain

wall, m∗ = 1/w∗ . At the same time, presentation in the

form of similar expansions of w∗ may be useful. For this

purpose, a useful equation will be given here to derive the

coefficients of expansion into series which is multiplicative
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inverse to the initial series. Suppose the initial series is given

here

b0 + b1x + b2x
2 + b3x3 + . . .

with known coefficients b0, b1 etc. Then to find the

multiplicative inverse series,

1

b0 + b1x + b2x2 + b3x3 + . . .

= c0 + c1x + c2x2 + c3x3 + . . . ,

coefficients c0, c1, etc., shall be found. It may be shown

that the latter may be found using the following relations:

c0 =
1

b0

, ck =
(−1)k

bk+1
0

1k,

where 1k designates determinates from matrices composed

of the coefficients from the initial series written as follows:

1k =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

b1 b2 b3 . . . . . . bk−1 bk

b0 b1 b2 . . . . . . bk−2 bk−1

0 b0 b1 . . . . . . bk−3 bk−2

0 0 b0 . . . . . . bk−4 bk−3

0 0 0 . . . . . . bk−5 bk−4

...
...

... . . . . . .
...

...

0 0 0 . . . . . . b0 b1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Then, choosing the coefficients of series (24) or the ratios
of the coefficients Bq+k/Bq appearing in series (27) as

the coefficients bk , we can obtain an explicit form of the

dependences w∗ on the parameters of the right-hand sides

of equations (19) and (20).

4. Conclusion

The study investigates the conditions for formation

of higher-order magnetic skyrmions (HOMS) in two-

dimensional systems — special-form magnetic excitations

whose azimuthal magnetization angle φ = nϕ, where ϕ is

the polar coordinate angle in the film plane, and topological

charge |Q| = |n|. In this case, competition of exchange

interaction, single-ion anisotropy as well as Zeeman and

orbital effects of inhomogeneous magnetic field in the

magnetic subsystem is the key factor of HOMS stabilization.

Occurrence of orbital effects is limited to addition of

chiral terms to the magnetic subsystem Hamiltonian. Their

contribution to the magnetic configuration energy depends

on the spatial distribution of the topological charge density

as well as on the spatial distribution of the magnetic field.

For an analytical description of the effect of stabiliza-

tion of the HOMS, we studied the sizes of higher-order

skyrmions in axially symmetric inhomogeneous magnetic

fields of a power-law profile, for which the transverse

component (perpendicular to the plane of the film) of

the field B ∼ rβ , where r is the distance from the center

of the skyrmion to a point in the plane. Despite the

simple functional dependence, such profile describes a wide

class of magnetic field configurations near HOMS, if the

sizes of the latter are much smaller than the typical scales

of field strength variation. Analysis of HOMS sizes is

carried out using a variational approach with well proven

magnetic skyrmion profile and energy parameters hierarchy

(see inequalities (3) and (14)) typical for strongly correlated

electronic systems. This allows to reduce the energy func-

tional minimization problem to a variational single-variable

problem describing the HOMS domain wall width. For

solution of the variational equations, for general power-law

profiles B(r), mathematical tools of the theory of functions

of many complex variables are used. This allows to describe

analytically nontrivial dependences of HOMS sizes on the

applied magnetic field strength and to find an abundant

competition between orbital and Zeeman effects of magnetic

field for stabilization of such structures. Thus, it is shown

that for HOMS stabilization in fields β < 0, the external

field shall be directed along the film magnetization, while

for fields with β > 0 it shall be in the opposite direction.

As an important special case, HOMS formation in

B(r) ∼ 1/r type axially symmetrical
”
decreased“ magnetic

fields (case β = −1) is investigated. Investigations of

skyrmions in such types of fields have become popular

over the last years due to experimental detection of

magnetic skyrmion — superconducting vortex (SV) bound

states in [Ir1Fe0.5Co0.5Pt1]
10/MgO/Nb heterostructures and

to theoretical prediction of stabilization of such bound

states owing to interaction between the skyrmion and

inhomogeneous vortex field. It should be noted that the

Dzyaloshinski–Moriya interaction induced, in particular, as a

result of creation of the heterostructure interface is the main

stabilization mechanism of MS with n = 1. However, in

case of HOMS with n > 1, such interaction does not make

any substantial contribution to the spin structure energy

and the scalar chiral interaction may be one of the HOMS

stabilization factors. The study shows that the nonuniform

vortex field together with the scalar chiral interaction

may cause stabilization of the higher-order magnetic

skyrmions. The very existence of scalar chiral interaction

as well as the used hierarchy of material parameters (3)
impose conditions on magnetic candidate materials where

HOMS may be formed due to the orbital effects. Thus,

microscopic derivation of magnetic interactions [22] that

form functional (2) with hierarchy (3) shows that the

natural candidate materials are strongly correlated layered

compounds where magnetic interactions occur due to

indirect exchange. Such compounds may include transition

3d- and rare-earth 4 f -metals [44]. However, the question of

the possibility of forming nontrivial magnetic states in them

is the subject of the further study.
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ranlot, P. Warnicke, P. Wohlhüter, J.-M. George, M. Weigand,

J. Raabe, V. Cros, A. Fert. Nature Nanotechnology 11, 444

(2016).

[12] X. Zhang, M. Ezawa, Y. Zhou. Sci. Rep. 5, 9400 (2015).
[13] J. Zázvorka, F. Jakobs, D. Heinze. Nature Nanotechnology 14,

658 (2019).
[14] G. Yu, P. Upadhyaya, Q. Shao, H. Wu, G. Yin, X. Li, C. He,

W. Jiang, X. Han, P.K. Amiri, K. Wang. Nano Lett. 17, 261

(2017).

[15] A. Leonov, M. Mostovoy. Nature Commun. 6, 8275 (2015).
[16] R. Ozawa, S. Hayami, Y. Motome. Phys. Rev. Lett. 118,

147205 (2017).
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