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Construction of an approximate solution for an Ising magnet

in an external magnetic field
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A method of approximate calculation of the magnetization of an Ising magnet located in an external magnetic field

is proposed. This method is based on using an exact or approximate expression for the spontaneous magnetization

of an Ising magnet on the same lattice. The method uses the ratio of effective fields for clusters of one and two

lattice nodes. Using the proposed method for a magnet located in an external field, the dependence of magnetization

on temperature and the magnitude of the external field is calculated. The proposed method is applied in the work

to the solution in the mean field approximation, to the solution in the Beta approximation and to the exact solution

on a square lattice; for all these solutions, critical indices characterizing the behavior of a magnet in an external

field are calculated.
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1. Introduction

Magnetic field impact on the behavior of magnetic

materials, including those described by the Ising model, has

been studied for a long time [1,2]. This impact is of the

most interest for such magnetic models for which there is no

exact solution [3,4]. In this respect, an approach is proposed

herein for construction of an approximation method that can

be used to consider external magnetic field impact on the

systems described by the Ising model.

An
”
effective exchange interaction field relation function“

is introduced herein [5]. This function is defined as a relation

of exchange interaction field values at which the cluster

mean spin is equal to the ensemble mean. A relationship

between the relation function and spontaneous magneti-

zation as a function of temperature is established in [5].
The relationship makes it possible to calculate the relation

function if an approximate or accurate solution for the Ising

model is available. In [5], it is assumed that the relation

function as a function of spontaneous magnetization in case

of non-magnetic dilution is approximately the same as for

a pure magnet, and consequences of this approximation are

addressed. An assumption on approximate independence of

the relation function on an external magnetic field for a pure

Ising magnet is discussed in this study, which can be taken

as an extension of [5]. It should be noted that the approach

described herein may be combined with the approach

described in [5]. An assumption on independence of the

relation function on an external field for the Bethe lattice

can be shown [6,7] to be exact. Therefore, the objective

of this study is to investigate the result of this assumption

in other cases. More specifically, an expression for the

dependence of spontaneous magnetization on temperature

as a mean field approximation [8] and exact solution for a

square lattice [9] are used. For these cases, a dependence of

magnetization on external field is constructed in the given

approximation at temperatures above and below the critical

temperature and critical indices characterizing behavior in

an external field were found.

2. Magnetization and relation function
in the Ising model

The Ising model Hamiltonian on a lattice is written as

H = −J
∑

(i, j)

σiσ j − H
∑

i

σi , (1)

where σi and σ j are the Ising
”
spins

”
taking on values +1

and −1, J is the exchange interaction energy, H is the

external field; the first sum is over all pairs of adjacent

spins, the second sum is over all sites [9].
If the Ising model is set on a simple lattice with

coordination number q, then, as shown in [5], mean

magnetization per site M may be calculated as follows:

M =
sh(2w)

ch(2w) + t
, (2)

where

w = y(M, H) · arcth (M) + KH
(

1− y(M, H)
)

.

Here, K = J/(kBT ), kB is the Boltzmann constant, T is

the temperature, t = exp(−2K), and y(M, H) is a function
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of magnetization M and external filed H . This function

defined in [5] is referred to as the relation function.

This may be understood as a relation of some
”
effective

fields“ in clusters of one and two spins [5]. If an exact

or approximate value of spontaneous magnetization as a

function of temperature and external field M = M(t, H) or

inverse relationshipt = v(M, H) are known, then relation

function y(M, H) can be found from (2):

y(M, H) =

1
2
ln

(

v(M,H)M+
√

(v(M,H)M)2+1−M2

1−M

)

− KH

arcth (M) − KH
.

(3)
Conversely, if function y(M, H) is known from some

considerations, then dependence M = M(t, H) correspond-

ing to this function can be find from (2). It should be

noted that using the set relation function y(M) at H = 0

from (2), not only solution of M = M(t), but also solutions

of M = −M(t) and M = 0 are obtained with the latter being

nonstable at t < tc = exp(−2Kc).
An assumption on relation function y(M, H) will be

made now. More specically, assume that this function

does not depend on external field H . As shown in [5]
and [6,7], this assumption is exactly fulfilled for the Ising

model in an external field on the Bethe lattice. In this

case, this relation function is simply equal to constant
q−1

q . It is certainly not expected that y(M, H) does not

depend on H for other lattices and for the Bethe lattice.

Moreover, for a square lattice, as will be shown below, this

assumption cannot be fulfilled exactly. However, assuming

that y(M, H) is independent on H , an approximate solution

for magnetization in external field H may be obtained using

the solution for spontaneous magnetization at H = 0 for

the same lattice. For this, proceed as follows. Assume a

solution of M = M(t) at H = 0 is available (e.g. the Onsager
solution for a flat square lattice [9]). Express this solution

as t = v(M) and using (3) at H = 0, find y(M):

y(M) =
ln(ϕ(v(M), M)) − ln(1− M)

2arcth (M)
, (4)

where

ϕ(x , M) = xM +
√

(xM)2 + 1− M2.

Now, substitute y(M) found using (4) for y(M, H) in (2).
The obtained expression will be used to find an approximate

dependence of magnetization on temperature and external

field M = M(t, H). This expression may be analytically

represented as inverse relation H = H(t, M):

H =
1

K

ln
(

ϕ(v,M)
ϕ(t,M)

)

ln
(

ϕ(v,M)
1+M

) arcth (M). (5)

Now find magnetic susceptibility at H = 0. Differentia-

ting (2) with respect to H at H = 0 and assuming that y is

independent on H , we obtain

χ(H, T ) =
2AK(1− y)

1− 2A
( ∂y
∂M arcthM +

y
1−M2

)

. (6)

where

A =
ch(2w)

ch(2w) + t
− M2.

At a temperature higher than the Curie temperature

from (6), it follows that

χ =
K(1− t)

t − tc
, (7)

where tc = exp(−2Kc), Kc = J
kB TC

, TC is the Curie tem-

perature. Critical index γ is defined from asymptomatic

expression χ(0, T ) ∝ (T − TC)−γ , T > TC [9]. It can be

seen from (7) that γ = 1, i. e. the Curie–Weiss law is

fulfilled [8].
Thus, the proposed procedure allows to construct an

approximate solution for the Ising model in an external field

using a solution for the same lattice without an external

field. The same technique was used in [5] to obtain an

approximate solution for the Ising magnet with non-magnet

dilution, but without an external field. This means that

both situations may be combined, i.e. the method shown

herein can be used to construct an approximate solution of

a problem of a diluted magnet in an external field.

3. Applying relation
function to mean-field theory, Bethe
approximation and Onsager solution

Consider the use of the above solution construction

method for the Ising model in an external field on some

examples. As the first step, apply the method to the mean-

field model [9]. External field impact on magnetization

can be obviously considered directly in the mean-field

method [8]. However, we use the relation function method

in the mean-field model to show that the relation function

used even in such simplified model given a sufficiently

reasonable result, which is not much different from direct

consideration of an external field.

As the mean-field approximation [9], spontaneous mag-

netization for this lattice with q = 4 is determined by

expression M = th, (4KM), whence

v(M) =

(

1− M
1 + M

)1/4M

. (8)

Critical value t = tc = exp(−1/2) ≈ 0.6065. Substitu-

ting (8) in (5), find the correlation between magnetization

M and external field H (in terms of J). dependences

M(H) thus calculated are shown in Figure 1 (curves 1

and 3). Curve 1 is plotted with t = 0.5 < tc , and curve 3 is

plotted with t = 0.7 < tc . For comparison, Figure 1 shows
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Figure 1. The Ising magnet magnetization as a function of

an external field (in terms of |J|) to mean field approximation.

Curves 1 and 3 are plotted by the relation function calculated for

the zero external field, curves 2 and 4 are plotted directly by the

mean-field method.

dependences M(H) found as the mean-field approximation

by
”
direct consideration“ of the external field, i.e. from

M = th, (4KM + KH) with the same t (curves 2 and 4,

respectively). It can be seen that the behavior of curves 1

and 2 (as well as 3 and 4) is qualitatively the same, while

quantitative difference between them is low. It should

be noted that there are ambiguity sections at H < 0 on

curves 1 and 2. Presence of these sections is associated with

the fact that the mean-field method [5] and derivation of

magnetization through the relation function (Equation (2))
always have solution M = 0 which is unstable at t < tc . This

means that in the ambiguity region on curves 1 and 2 in

Figure 1, lower branches (sections of curves 1 and 2 shown

with dashed lines) shall be discarded.

As Bethe approximation [5], spontaneous magnetization

on a lattice with coordination numberq is equal to

M =
1− hpq

1 + hpq
, (9)

where p is the equation root

p =
t + hpq−1

1 + thpq−1
,

and h = exp(−2KH).
It is easy to show that at q = 4 and H = 0

v(M) =
4
√
1− M2

√
1 + M +

√
1− M

. (10)

Substituting this expression into (4), we obtain a relation

function to this approximation equal to 3/4, i. e. it does

not depend on M . Using (9) and (3), with arbitrary H ,

it can be shown that relation function (3) as the Bethe

approximation is always equal to 3/4. This means that our

main approximation of relation function independence on H
is exact in our case. This certainly means that substitution

of (10) into (5) yields the same result as direct calculation

of M(H) using (9).
Consider now the Onsager solution for the Ising model

on a square lattice without an external field [5]:

M8 = 1−
1

sh4(2K)
. (11)

Hence

v(M) =
4
√

1− M2
4
√

(1 + M2)(1 + M4)

1 +
√

1 +
√
1− M8

. (12)

From (11) or (12), critical temperature parameter

tc =
√
2− 1 ≈ 0.4142 can be easily derived. Substitu-

ting (12) into (5), find the correlation between magneti-

zation M and external field H at various values t .
Figure 2 shows graphs M(H) with t = 0.35 < tc

(curve 1) and with t = 0.45 < tc (curve 2). (As mentioned

above, the lower section of curve 1 (dashed line) at H < 0

shall be discarded.) From (5) (and (12)), dependences M(t)
with constant H may be also derived (Figure 3). All these
dependences, which gradually decrease at H → 0, approach

the Onsager solution.

At T equal to Curie temperature TC , dependence of

magnetization on external field H is characterized by critical

index δ, which is defined from asymptomatic expression

M(H, TC) ∝ H1/δ [9].
To determine δ, substitute v(M) corresponding to exact

or approximate solution in the zero field into equation (5)
and expand the obtained expression in series in terms

of powers of M with t = tc . Substitution of v(M)
corresponding to the mean-field approximation and Bethe

approximation (expressions (8) and (10), respectively)
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Figure 2. The Ising magnet magnetization as a function of an

external field (in terms of |J|) constructed by the relation function

for an exact solution on a square lattice in the zero external field.

Curves 1 and 2 ae plotted or temperatures below and above the

critical temperature, respectively.
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Figure 3. The Ising magnet magnetization as a function of

the temperature parameter constructed by the relation function

for an exact solution on a square lattice in the zero external

field. Curves 1, 2 and 3 are built for fields 0, 0.01 J and 0.05 J,

respectively.

yields a traditional value of δ equal to 3. When using

expression (12) corresponding to the exact solution for a

square lattice, we obtain δ = 9. The above paragraph shows

that the Curie–Weiss law (7) is fulfilled in our approach,

i. e. γ = 1. In the zero external field, the dependence

of spontaneous magnetization on temperature is character-

ized by critical index β defined by asymptotic expression

M(0, T ) ≈ (TC − T )β . In the mean-field approximation and

Bethe approximation β = 1/2, and in exact solution (12)
β = 1/8 [5]. It can be seen that in all described cases, β,

γ and δ are correlated by γ = β(δ − 1) which is derived

from the similarity hypothesis [9]. Other relations for

critical indices derived from the similarity hypothesis are

also fulfilled for those indices that can be calculated directly.

4. Conclusion

The study uses a universal relation function for Ising

model y(M, H, t) which correlates the effective fields of

single-atom and two-atom clusters. This function generally

depends on spontaneous magnetization M, temperature

t = exp(−2K) and external field H . In the zero external

field, correlation between M and t obtained from the exact

or approximate solution of t = v(M) defines y(M).
Assuming that for a magnet in an external field the

relation function is the same as for a magnet without an

external field, the following results are obtained.

1. The adopted assumption results in dependence of

magnetic susceptibility on temperature in the zero external

field χ = K(1−t)
t−tc

, where t = exp(−2K), Kc = J
kB TC

, TC is the

Curie temperature, i.e. the Curie–Weiss law is fulfilled.

2. For v(M) calculated by the mean-field method (8),
dependences of magnetization on the external field are

plotted (Figure 1). These dependences appear to be rather

close to the dependences plotted when the external field is

directly considered in mean-field theory (Figure 1).
3. Within the adopted assumption, critical indices γ and

δ are found. For the mean-field approximation, the indices

have traditional values γ = 1 and δ = 3, and for v(M)
corresponding to the exact solution (12), γ = 1 and δ = 9.

These results correspond to the similarity hypothesis [9],
although, our result or the square lattice does not coincide

with the known result [10].
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