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The influence of the shape parameter (oblateness) of a uniaxial ellipsoidal nanoparticle on the dynamics of its

magnetic moment upon magnetization along the symmetry axis and excitation by a weak transverse high-frequency

field in the region of parameters where the equilibrium magnetic moment of the nanoparticle and the external static

field is noncollinear has been studied. It is shown that as the oblateness increases, the irregularity of the oscillations

increases, which at first affects only their amplitude, but then also the time dependence. The intervals of the

shape parameter (or frequency), where various nonlinear modes of precession are realized — dynamic bistability,

complex spatial attractors and chaos, were revealed using bifurcation diagrams.
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1. Introduction

Detection and analysis of magnetic nanoparticle (NP) and
regular lattice response to persistent, high frequency and

pulsed external fields have been of great interest among

researchers over the last years. Applicability of digital data

storage media is based on the modification of equilibrium

magnetic moment configuration of an individual NP or

group of NP exposed to a magnetic field pulse. For

this, information can be read by exciting the resulting

configuration by a weak radio pulse at the ferromagnetic

resonance (FMR) frequency [1–6].

Magnetic NP assemblies are also increasingly coming into

use in various biomedicine areas. In particular, they are used

to manufacture contrasting agents for magnetic resonance

imaging, biomolecule and microbiological object sensors,

and targetable drug carriers [7]. One of such important

areas includes control of tumors in a living body using

magnetic hyperthermia methods [8–10]. NP exited by a

low-frequency magnetic field and injected into a tumor

area warm up this area locally in a controlled manner

resulting in disruption of tumor cells. For effective warm-up

process, NP shall respond to the external magnetic field

with the appropriate frequency and amplitude absorbing

and transferring the magnetic field energy in the form of

heat to the surrounding tissues. Ferrite — Fe3O4 — is

the best-investigated material for hyperthermia due to high

biological compatibility and satisfactory magnetic properties.

High Curie temperature (550◦C) is a disadvantage of this

material due to which NP may be heated up to 100◦C and

higher depending on the frequency, applied magnetic field

amplitude and exposure time. Such high temperatures are

harmful for normal tissues. Therefore, the research efforts

are focused on achievement of magnetic materials whose

Curie temperature is within 45◦C. When such temperatures

are reached, NP go into their paramagnetic state and the

heating process is terminated automatically [11].
Dynamic behavior of an individual single-domain NP

depends significantly on its size and symmetry, equilib-

rium magnetization state, type and magnitude of magnetic

anisotropy. Many studies in this field are focused on

investigations of FMR in elliptical NP or in nanometer-

thick rectangular microstrips with uniaxial or cubic magnetic

anisotropy, which are regarded as one of the main geometric

elements for data recording and processing. For this,

behavior may be controlled by an external alternating field

of various polarization and time dependence [6,12–16].
At this point, dynamic bistability states and various

nonlinear conditions (quasiregular behavior, stochastic vi-

brations, random response) have been detected in above

systems, with each condition having its specific features

manifesting themselves in high-frequency precession mag-

netic moment dynamics of an individual NP [17–24].
In [25], equilibrium states were obtained for a mag-

netically uniaxial NP with the
”
easy“ axis and bias field

orientation along the axis of symmetry and with various

values of the particle
”
flatness“. Numerical solution of

the Landau–Lifshitz–Helmholtz (LLH) equation is used to

examine the aspects of resonance behavior when a high-

frequency low-amplitude field is activated for a region with
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collinear magnetic moment and static field. For a weakly

flattened NP, a frequency range has been detected where

FMR deviation for linear resonance and a nutation type of

resonance precession are observed and dynamic bistability

is implemented.

This study investigates the aspects of precession behavior

associated with NP shape modification for a parameter

region where the equilibrium magnetic moment state of

NP does not coincide any longer with the external static

field direction. Magnetic moment precession in this range

is usually nonlinear, dynamic bistability, complex spatial

attractors and chaos take place.

2. Equilibrium states

Consider a single-domain NP with a spheroid shape.

In case of uniform magnetization, demagnetization field

energy density may be written as Fr = 0.5(MN̂M), where

M is the NP magnetization, and N̂ is a diagonal tensor of

demagnetization coefficients [26,27]. Components of this

tensor are associated with Nx + Ny + Nz = 4π and depend

on a shape parameter longitudinal and transverse spheroid

semiaxes ratio n = l‖/l⊥. For the spheroid, it is convenient

to introduce N⊥ = Nx = Ny , N‖ = Nz and 1N = N⊥ − N‖,

where 1N for elongated and flattened spheroids is defined

by the following expressions

1N
2π

= 1− 3

n2 − 1

×
[

n√
n2 − 1

ln
(

n +
√

n2 − 1
)

− 1

]

> 0, n > 1,

1N
2π

= 1− 3

n2 − 1

×
[

n√
n2 − 1

arcsin
√

n2 − 1− 1

]

< 0, n < 1, (1)

NP will be assumed to have uniaxial anisotropy whose

”
easy“ axis coincides with the symmetry axis of the

sample. In this case, magnetic anisotropy energy density

Fu = −(Ku/M2)(Mn)2, where Ku is the uniaxial anisotropy

constant, n is the unit vector of the
”
easy“ axis. In the

presence of external static field H oriented along the

symmetry axis of NP, dependence of the magnetic NP

energy on angle θ is written as

F(θ) = − MH cos θ −
(

Ku −
1

2
N‖M2

)

cos2 θ

+
1

2
N⊥M2 sin2 θ, (2)

where N‖ = (4π − 21N)/3, N⊥ = (4π + 1N)/3.

Equilibrium values of polar angle θ0 defining the direc-

tions of vector M0 with respect to the symmetry axis of the

spheroid (axis OZ) are found from ∂F/∂θ = 0. Taking into
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Figure 1. Dependences of the equilibrium polar angle

of vector M0 on shape parameter n at H = (0, 50, 100,
150, 200)Oe (curves 1−5).

account (2), the equilibrium condition is written as

sin θ0
[

H + (Hu + M01N) cos θ0
]

= 0, (3)

where Hu = 2Ku/M0 is the uniaxial anisotropy field Taking

into account the
”
easy“ axis orientation along the symmetry

axis of the sample, it is convenient to inject effective

anisotropy field HKN = Hu + M01N, which defines to a

great extent NP magnetization behavior. It follows from (3)
that for elongated and spherical NP (i. e. n ≥ 1), equilibrium
polar angle θ0 = 0 at any field value H . zero value

of θ0 is maintained also for a flattened NP n < 1) until

1N = −(H + Hu)/M0 is reached. With further decrease

in the shape parameter, θ0 varies in accordance with the

expression

cos θ0 = −H(Hu + 1NM0)
−1. (4)

Figure 1 shows the dependence of equilibrium polar angle

θ0 on shape parameter n obtained for constitutive parame-

ters Ku = 105 erg/cm4 and 4πM0 = 104 Gs (NP parameters

close to 80Ni20Fe permalloy characteristics) and external

static field H = (0, 50, 100, 150, 200)Oe (curves 1−5).
It can be seen that vector M0 in the equilibrium state at

the given values of the external field remains parallel to

the external field and NP symmetry axis θ0 = 0 only at

n ≥ 0.94, 0.928, 0.917, 0.906, 0.895 (curves 1−5). At

lower values of the shape parameter, θ0 starts growing

dramatically tending to a value near π/2.

Variation of NP shape parameter n results in considerable

modification of HKN and 1N (Figure 2). It can be seen that

the effective anisotropy field and 1N depending on n have

both negative and positive value regions. In this case, field
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HKN ≃ 0 with n ≃ 0.94, and 1N = 0 with n = 1. Variation

of n near the given values results in sign change of HKN

and 1N.

3. Main precession behavior equations

Dependence of M orientation on time and, therefore, its

precession behavior for various cases of biasing with static

field H with high-frequency pumping by alternating field h

are described by the LLH equation [26,27]:

∂M

∂t
= −γM×He f +

α

M
M× ∂M

∂t
, (5)

where γ = 1.76 · 107 (Oe · s)−1, α is a dimensionless atten-

uation constant, effective magnetic field.

He f f = H + h(t) +
2Ku

M0

n + N̂M. (6)

The frequency of resonance magnetization precession

(with h ≪ H) is generally determined by expression

ωres =
γ

M0 sin θ0

[(

∂2F
∂ϕ2

)

0

(

∂2F
∂θ2

)

0

−
(

∂2F
∂ϕ∂θ

)2

0

]1/2

,

(7)
where the second derivatives of free energy are calculated

for the equilibrium values of ϕ0 and θ0 . For magnetic

biasing of NP along the symmetry axis (H ‖ n ‖ OZ) in

the basal plane, there is no dependence on azimuthal angle

ϕ, and equilibrium angle ϕ0 (counted, for example, from

axis OX) can be taken equal to zero. In this case, in the

region of values of n where the equilibrium angle θ0 is equal

to zero, dependence of the resonance frequency on the

external field taking into account (2) and (7) is determined

by the following expression

ωres = γ

(

H +
2Ku

M0

+ M01N

)

= γ(H + HKN). (8)

Figure 2 shows that even rather small deviation of

NP shape from nonsphericity significantly affects KKN and

resonance dependences in general. It will be shown below

that shape parameter n also affects the precession magnetic

moment behavior of an ellipsoidal NP.

Consider the NP magnetization behavior under the

impact to transverse magnetic field h(t) = h0 sinωtwith low

amplitude (h0 ≪ H) and transverse orientation (h0 ⊥ H),
hereinafter field h(t) will be assumed as polarized along

axis OY ). Numerical solution of the LLH equations was car-

ried out by the Runge–Kutta method. Statistic field was cho-

sen close to the resonance value for NP with the constitutive

parameters listed above at the specified biasing conditions.

Figure 2 shows that there are two parameter regions,

in one of which vectors M0 and H are noncollinear, and

collinear in the other region. Precession behavior in the

collinearity region was reviewed in detail in [25]. The

main aspects of the NP magnetic moment behavior during

n
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Figure 2. Dependence of effective anisotropy field HKN and 1N
on the ellipsoidal NP semiaxes ratio.

transverse pumping with a weak high-frequency field are

summarized below. With n, for which effective anisotropy

field HKN > 0, relatively low amplitudes of the steady-

state circular precession paths (Mx , My ≪ M0) occur in

plane (Mx , My ). For n, when HKN < 0, precession paths

incur more apparent elliptical distortions with decreasing

n. In these conditions, a nonlinear effect starts manifesting

itself and involves imposition of double frequency nutation

motion on the circular precession with microwave field

frequency, as a result the path becomes elliptical. Attention

is also paid to the fact that, with decreasing n, the

precession amplitude increases and at n, to which HKN ≃ 0

corresponds, the amplitude reaches Mx ≃ M0/2.

4. Dynamics with noncollinearity
of vectors M0 and H

Let us now consider the magnetization behavior of an

NP whose equilibrium magnetic moment orientation does

not coincide with the symmetry axis OZ, i. e. polar angle

θ 6= 0 is equilibrium. This region in Figure 1 corresponds to

a non-linear dependence of θ0(n). During precession motion

under the impact of the alternating field linearly polarized

along the axis Y , the path of vector M(t) differ considerably
from closed circular or weakly elliptical paths appearing

in case of M0 ‖ H. Figure 3 shows projections of spatial

paths of vector M(t) on plane XY during precession motion

under the impact of an alternation field linearly polarized

along the axis Y at H = 150Oe, n = 0.9, 0.89, 0.88, 0.87,

0.85 (curves 1−5), microwave field amplitude h0 = 0.1Oe

and frequency ω = (1, 1.05) · 108 s−1 (curves 1−3, 5; 4). It
can be seen that with increasing flatness of NP (i. e. decreas-
ing n), the arc covered by the precession behavior increases

and develops into a circle at n = 0.85. Precession amplitude

considerably depends on the alternating field parameters.
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Figure 4 shows the dependence of z -component of

magnetization on time for the cases satisfying those shown

in Figure 3. It can be seen that vibrations with a small
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Figure 3. NP magnetization projection on plane XY
with n = 0.9, 0.89, 0.88, 0.87, 0.85 (curves 1−5)
and ω = (1, 1.05) · 108 s−1 (curves 1−3, 5; 4), H = 150Oe,

h0 = 0.1Oe.
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Figure 4. Dependence of My component on time at H = 150Oe,

h0 = 0.1Oe, n = 0.9, 0.89, 0.88, 0.87, 0.85 (curves 1−5),
(curves 1−3, 5; 4).
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Figure 5. Dependences of extreme component Mxm on

n at ω = 1 · 108 s−1 (a) and on frequency at n = 0.87 (b),
h0 = 0.1Oe, H = 100Oe.

precession arc are close to harmonic vibrations. Irregularity

of vibrations increases with decreasing n and increasing

precession arc and at first affects their amplitude only,

but then also affects the time dependence. Precession

irregularity becomes more pronounced for a circular path

projection (curve 5 in Figure 3 and 4).

For more complete analysis of the influence of NP

flatness on magnetization behavior, bifurcation diagrams

(Figure 5) will be plotted, i. e. dependences of the

extreme value of one of components of magnetization

M (here, components Mxm ≡ Mx max, Mx min) on n with

ω = 108 s−1 (a) and on the alternating field frequency

with n = 0.87 (b) with h0 = 0.1Oe and H = 100Oe. In

the absence of magnetization precession, the variable value

(n or ω) corresponds to only one point (Mx max = Mx min)
on the diagram; in case of regular vibrations — two or a

denumerable number of points; if the parameter value on

the diagram corresponds to a nondenumerable number of

points (which merge into dark regions when the numerical

simulation time increases), a chaotic (quasiregular in some

cases) dynamic mode occurs. Diagram (a) shows that

precession is almost absent in case of sufficiently small

flatness (0.92 < n < 1), since the effective magnetic field
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Figure 6. Dependences of component Mx on time

during NP remagnetization under the impact of alternat-

ing field hy (t) at ω = (1.24, 1.25) · 108 s−1 (curves 1−4, a)
and ω = (1.3, 2, 2.5, 3) · 108 s−1 (curves 1−4, b), n = 0.87,

h0 = 0.1Oe, H = 100Oe.

which keeps magnetization near the equilibrium position is

still strong. In case of 0.897 < n < 0.92, low-amplitude

vibrations (|Mxm| ≈ 10G) occur. Further decrease of n
results in quickly rising amplitude of the regular precession

behavior of magnetization up to |Mxm| ≈ 650G.

Then the vibration trajectory becomes more complicated,

and at n < 0.882 the behavior enters the region of chaotic

vibrations where narrow regular precession regions exist

with complex trajectories and a period being a multiple

of the alternating field period. Diagram (b) is identical:

precession is almost absent at alternating field frequency

ω ≥ 1.25 · 108 s−1 (i. e. the said parameters are rather

far from the resonance values), the amplitude of regular

vibrations increases up to |Mxm| ≈ 750G with decreasing

frequency, the magnetization behavior at ω ≤ 1.07 · 108 s−1

is in the chaos region, including narrow regions the regular

precession. The structure of the given diagrams also

shows that the random mode attractors will change with

modification of the given parameters.

Figure 6, a, b is supported by the time

dependence of component Mx for NP with

n = 0.87 in static field H = 100Oe when alternating

field hy (t) is enabled with h0 = 0.1Oe and

ω = (1.3, 2, 2.5, 3) · 108 s−1 (curves 1−4; a) and

(curves 1, 2; b). In the initial state, My (0) = 0 and the polar

angle corresponds to the equilibrium value for the givenn
and H . It can be seen that all frequencies in case (a) are

in the region which corresponds to the absence of vibration

mode (see the bifurcation diagram). Therefore, upon activa-

tion of a high-frequency field, the NP magnetic moment in

the quickly decaying vibration mode comes to rest within a

relatively short time (τ < 1µs). In case (b), the frequency

for curve 1 is already in the high-amplitude vibrations

region, therefore, magnetization under the action of an al-

ternating field goes from the initial state to a steady-state vi-

bration mode with an amplitude considerably different from

zero. For curve 2, the frequency lies almost on the interface

between the vibrations region and the region without vibra-

tions. Therefore, vibrations generated by the alternating field

are decaying vibrations with a long decay time (τ ≫ 1µs).
Now, consider the main regular and random precession

modes for NP with n = 0.87, that are established at

various alternating field frequencies with h0 = 0.1Oe and

H = 100Oe.

Figure 7 shows the projections of M paths

on the XY plane in case of regular behavior
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Figure 7. Projections of M paths in case of regular be-

havior with ω = (1.2, 1.12) · 108 s−1 (a — curves 1, 2) and

ω = (1.07, 0.98) · 108 s−1 (b, c); in case of low randomness with

ω = 0.977 · 108 s−1 (d); h0 = 0.1Oe, H = 100Oe, n = 0.87.
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Figure 8. Projections of M paths in case of random behav-

ior with ω = (1.06, 1.05, 1.04, 1) · 108 s−1 (a−d); h0 = 0.1Oe,

H = 100Oe, n = 0.87.

at ω = (1.2, 1.12) · 108 s−1 (a — curves 1, 2),
ω = (1.07, 0.98) · 108 s−1 (b, c) and in case of low

randomness at ω = 0.977 · 108 s−1 (d). It should be

noted that the attractor (d) occurs due to randomization

and expansion of the regular mode attractor (c). This

mode is included in the narrow regular behavior region

within the chaos region (see the bifurcation diagram), and
randomization of vibrations grows dramatically with further

frequency decrease. Modes (a) have the simplest attractors

and are established at relatively high frequencies, up to

frequencies at which precession stops.

Regular precession (b) period is a multiple of the

alternating field period T = 4 · 2π/ω. Projections of the

attractors on the XY plane is a circle in cases (c, d) and an

arc in cases (a, b). Figure 8 shows the projections of M on

the XZ plane for the above-mentioned field and NP flatness

parameters and ω = (1.06, 1.05, 1.04, 1) · 108 s−1 (a−d);
these projections show the development of randomization

with a little decrease in the alternating field frequency. The

maximum randomization takes place when circle (d) is a

projection of attractors on the XY plane, and in cases (a−c),
these projections are of an arc type.

It should be noted that such manifestations of nonlinearity

and random behavior shall be observed not only for

ellipsoidal NP, but also for cylindrical NP. Moreover, internal

field inhomogeneity in such NP shall expand (by n = l/d)
the random behavior region. Therefore, analysis of the

maximum thermal response conditions for particles having

a cylindrical disc shape taking into account the random

magnetization behavior is of interest and requires separate

study (e.g. for hyperthermia applications).

5. Conclusion

The analysis shows that a set of features associated

with NP shape (flatness) and nonlinearity manifestation

is observed in the FMR spectrum of a single-domain

spheroidal nanoparticle whose
”
easy“ axis coincides with

the symmetry axis during biasing along this axis and

traditional transverse pumping by the weak alternating field

(h ≪ H0). In the parameter region where collinearity

of the equilibrium magnetic moment of NP and exter-

nal static field is implemented, these features primarily

include large resonance precession angles, at which the

amplitude is 0.5M0; elliptical disturbances of the steady-

state precession path at a negative effective anisotropy

field; presence of the frequency range where the dynamic

bistability is implemented at n ≃ 0.93 and precession which

becomes substantially nonlinear. In the NP equilibrium

magnetic moment and external static field noncollinearity

region, it is shown that vibration irregularity grows with

increasing flatness, which initially affects only vibration

amplitude, and then affects the time dependence; using

bifurcation diagrams, shape (or frequency) ranges were

identified where various nonlinear precession modes are im-

plemented — dynamic bistability, complex spatial attractors

and chaos.

It should be noted that, with the amplitude and frequency

of the pumping field used herein, the uniform mode is

very far from the spin-wave mode in terms of frequency,

therefore, there is no energy transfer from the uniform

precession to spin waves and no development of spin-wave

instabilities [28].

Finally, restrictions imposed on the NP size due to the

magnetization uniformity should be also noted:

− in the presence of a high-frequency field, maximum

NP size d should be much smaller than spin layer thickness

δ . For permalloy NP, d ≪ δ ≈ 10−4 cm shall be met;

− thermal fluctuations may have a considerable impact

on the precession behavior of NP magnetization. Their

influence is described by multiplier exp(−1U/kBT ) [3],
where 1U is a potential barrier separating an the

”
easy“

and
”
hard“ directions. Thermal excitation does not disturb

the precession behavior, if NP size d > dmin ≈ 10 nm;

− NP single domain requirement that can be met when

NP radius is smaller than Rcr ≈ σs/M2
0, where domain

boundary surface energy (for permalloy) σs ≈ 1 erg/cm2.

Therefore, for the NP of interest, d < 2Rcr ≈ 30 nm is

required. Thus, d ∈ (10−30) nm is the best NP size for

observation of the effects described herein. However,

it should be noted that according to [29] metallic par-

ticles with d ≈ 40−50 nm shall be considered as single-

domain.
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E. Wahlström. Phys. Rev. B 92, 104406 (2015).
[6] R.B. Gorev, E.V. Skorokhodov, V.L. Mironov. FTT 58, 11,

2135 (2016). (in Russian).
[7] Yu.A. Koksharov, S.P. Gubin, I.V. Taranov, G.B. Khomutov,

Yu.V. Gulyaev. RE 67, 2, 99 (2022). (in Russian).
[8] S. Dutz, R. Hergt. Nanotechnology 25, 45, 452001 (2014).
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