06,11

Исследование магнитоэлектрического эффекта и термоэдс в композитном железозамещенном пиростаннате висмута Bi₂(Sn_{0.7}Fe_{0.3})₂O₇/Bi₂Fe₄O₉

© Л.В. Удод^{1,2}, С.С. Аплеснин^{1,2}, М.Н. Ситников², О.Б. Романова¹

Красноярск, Россия

² Сибирский государственный университет науки и технологий им. М.Ф. Решетнева,

Красноярск, Россия

E-mail: luba@iph.krasn.ru

Поступила в Редакцию 15 мая 2023 г. В окончательной редакции 15 мая 2023 г. Принята к публикации 3 июня 2023 г.

Методом твердофазной реакции синтезировано композитное соединение $Bi_2(Sn_{0.7}Fe_{0.3})_2O_7/Bi_2Fe_4O_9$ в соотношении 91/9%. Проведены исследования вольт-амперных характеристик (BAX) в интервале температур $800-400\,\mathrm{K}$. Обнаружен гистерезис BAX. Исследовано магнитоэлектрическое взаимодействие и термоэдс. Установлены температуры преобладания четного и нечетного магнитоэлектрического эффекта. Обнаружена смена знака термоэдс.

Ключевые слова: композит, магнитоэлектрический эффект, ВАХ, гистерезис, термоэдс.

DOI: 10.21883/FTT.2023.08.56154.83

1. Введение

Новое поколение материалов, востребованное в современных устройствах, явилось причиной интенсивного изучения мультиферроиков и сегнетоэлектриков. Взаимное влияние магнитной и электрической подсистем приводит к проявлению магнитоэлектрического эффекта. В мультиферроиках возникает индуцированная намагниченность в приложенных электрических полях и электрическая поляризация во внешнем магнитном поле. Магнитоэлектрическое взаимодействие было установлено в керамических материалах на основе феррита висмута ($BiFeO_3$)_{1-x}-($BaTiO_3$)_x, $Bi_{1-x}Nd_xFeO_3$ и Ві₅Ті₃FeO₁₅. Наибольшее значение коэффициента магнитоэлектрической связи ($\alpha_{\rm M3}$) получено для соединения ${\rm Bi_5Ti_3FeO_{15}}~(\alpha_{\rm M\Theta}\sim 10~{\rm mV~cm^{-1}Oe^{-1}}).~{\rm B}~{\rm c}$ лучае твердых растворов (BiFeO₃) $_{1-x}$ –(BaTiO₃) $_x$ и Bi $_{1-x}$ Nd $_x$ FeO₃ максимальный $\alpha_{\rm M3}$ имеет порядок 1 и 2.7 mV cm $^{-1}{
m Oe}^{-1}$ соответственно. Величина магнитоэлектрической связи зависит от структуры твердых растворов. Магнитоэлектрический эффект (МЭ-эффект) найден в соединении Bi₅Ti₃FeO₁₅ без дальнего магнитного порядка. В случае твердых растворов $(BiFeO_3)_{1-x}-(BaTiO_3)_x$ и $Bi_{1-x}Nd_xFeO_3$ МЭ-эффект появляется после подавления циклоидальной спиновой структуры BiFeO₃. Величина магнитоэлектрической связи зависит от концентрации титаната бария и неодима в структуре феррита висмута. Максимальные значения коэффициента магнитоэлектрической связи получены для составов в области структурных превращений [1].

Магнитоэлектрический эффект используется в датчиках магнитного поля [2–4], устройствах сбора энергии [5–7], памяти нового поколения [8–10], устройствах спинтроники (например, спиновые клапаны, магнитные туннельные переходы) [11–13], микроволновых устройствах, устройствах миллиметрового диапазона и миниатюрных антеннах [7], а также в беспроводных медицинских инструментах (например, для эндоскопии и визуализации мозга) [7]. Реализация таких инновационных устройств требует разработки материалов с возможно высоким коэффициентом магнитоэлектрической связи.

Синтез новых однофазных мультиферроиков с высоким значением коэффициента магнитоэлектрической связи является сложной задачей. До сих пор наиболее признанным однофазным мультиферроическим соединением является феррит висмута BiFeO₃, в котором сегнетоэлектрическое и антиферромагнитное упорядочение сосуществуют при температуре окружающей среды (антиферромагнитная температура Нееля $T_N = 643 \, \mathrm{K}$, сегнетоэлектрическая температура Кюри $T_C = 1100 \,\mathrm{K}$) [14]. Однако из-за циклоидальной модуляции расположения спинов линейный магнитоэлектрический эффект в объемном поликристаллическом феррите висмута не наблюдается. В тонких пленках BiFeO₃ с исчезновением спиновой циклоиды, наблюдалась гигантская магнитоэлектрическая связь, $\alpha_{\rm ME} \sim 3 \, {\rm Vcm^{-1}Oe^{-1}}$ [15].

Магнитоэлектрический эффект особенно велик в композиционных материалах. В дисперсных композитах, таких как $BaTiO_3/CoFe_2O_4$, $PbZr_{1-x}Ti_xO_3$ (PZT)/ $Tb_{1-x}Dy_xFe_2$ (терфенол-D) и $Ba_{0.8}Pb_{0.2}TiO_3$ /

7 1361

 $^{^{1}}$ Институт физики им. Л.В. Киренского ФИЦ КНЦ СО РАН,

CuFe_{1.8}Cr_{0.2}O₄ значение α_{ME} порядка $100-130\,\mathrm{mV\,cm^{-1}Oe^{-1}}$ [16]. Многослойные композиты демонстрируют большее значение например, в ламинатах PZT/Terfenol-D $\alpha_{\rm ME}$ достигает $\sim 4.7\, mV\, cm^{-1} Oe^{-1}$ [17] и $90\, mV\, cm^{-1} Oe^{-1}$ в ламинированных композитах PZT/Permendur [18]. Магнитоэлектрическая связь наблюдается и в наноструктурированных мультиферроидных керамических материалах (например, YMnO₃ [19]), полупроводниковых мембранах, гальванически заполненных магнитострикционным материалом (например, мембрана InP, заполненная Ni [20]), а также в тонких нанокомпозитных пленках (например, $CoFe_2O_4$ [21]).

Особый интерес представляют композиционные материалы, включающие в себя различные фазы, свойства которых изменяются при деформации. Например, композиты, содержащие магнитную (ферро- или ферримагнитный материал) и сегнетоэлектрическую. В магнитных материалах имеет место магнитострикционная деформация под действием внешнего магнитного поля, а сегнетоэлектрические материалы обладают пьезоэффектом. Взаимодействие компонентов композита через деформацию на границах их раздела приводит к возникновению магнитоэлектрического эффекта [22].

 ${
m Bi}_2{
m Fe}_4{
m O}_9$ относится к классу муллитоподобных соединений и проявляет свойства мультиферроиков, при комнатной температуре парамагнетик. Кристаллическая структура является орторомбической Pbam [23]. Интенсивное изучение муллита в последние годы обусловлено его широким применением, таким как полупроводниковые газовые сенсоры и как катализатор в окислении аммония [24,25]. Физические свойства ${
m Bi}_2{
m Fe}_4{
m O}_9$ зависят от способа получения и размера зерна [26]. Объемный ${
m Bi}_2{
m Fe}_4{
m O}_9$, полученный твердофазным синтезом, обнаруживает ферроэлектрическую петлю гистерезиса при 250 K и антиферромагнитное упорядочение при 260 K [27], что свидетельствует о мультиферроидных свойствах.

Электрическая поляризация при комнатной температуре обнаруживает петли гистерезиса с закругленными концами. Закругленные концы возникают из-за больших токов утечки [26]. Образцы с размером зерна больше 200 nm при комнатной температуре имеют не насыщенные петли гистерезиса [28]. Так, образец с размером зерна 900 nm имеет остаточную поляризацию $P_r = 0.21 \, \text{C/cm}^2$ и коэрцитивную силу $E_c = 19.5 \, \text{kV/cm}$ в поле $60 \, \text{kV/cm}$. Эти данные свидетельствуют о ферроэлектрических свойствах. Кроме того, этот образец имеет наименьшую плотность токов утечки $10^{-6} \, \text{A/cm}^2$ и наибольшую остаточную поляризацию $0.21 \, \text{C/cm}^2$ [26].

Для образцов с размером зерна больше $200\,\mathrm{nm}$ токи утечки сильно уменьшаются и также характеризуются ферроэлектрической петлей гистерезиса при комнатной температуре. Керамические и нано кристаллические образцы $\mathrm{Bi}_2\mathrm{Fe}_4\mathrm{O}_9$ обнаруживают магнитодиэлектрический эффект [29].

Пиростаннат висмута Bi₂Sn₂O₇ диэлектрик и при комнатной температуре принадлежит к моноклинной структуре (α -фазе) с пространственной группой P1c1 [30]. Замещение олова железом в Bi₂Sn₂O₇ не меняет пространственную группу, а приводит к магнитному упорядочению. В результате взаимодействия между магнитной и ферроэлектрической подсистемами возникает магнитоэлектрический эффект [31]. Для $Bi_2(Sn_{0.9}Fe_{0.1})_2O_7$, электрическая поляризация является линейной функцией электрического поля. С увеличением концентрации ионов железа для x = 0.2 в пиростаннате висмута обнаружен гистерезис электрической поляризации миграционного типа и магнитоэлектрический эффект. Нелинейное поведение намагниченности в магнитных полях до 50 кОе в парамагнитном состоянии при температурах до 200 К связывается с магнитоэлектрическим взаимодействием. Индуцируемая магнитным полем электрическая поляризация является четной функцией магнитного поля, за исключением области структурного фазового перехода, где преобладает линейный магнитоэлектрический эффект [31].

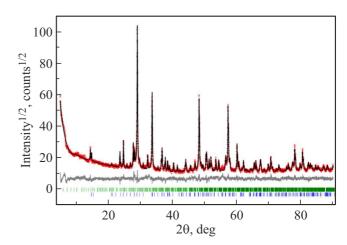
При разработке методик синтеза мультиферроиков (МФ) и возможного пути улучшения МЭ-свойств необходимо решить две задачи. Во-первых, найти способы получения МФ. Во-вторых, подобрать определенные структурные и магнитные параметры кристаллической решетки, приводящие к появлению МЭ-эффекта в объёмных образцах. Улучшение МЭ-свойств объемных образцов может происходить путем приложения сильных магнитных полей или очень больших механических напряжений [32]. Однако аналогичный результат можно получить путем частичного замещения катионов или создания композитного соединения, что является аналогом механического давления на кристаллическую решетку, которое определенным образом изменяет структуру соединения и позволяет получить величины МЭ-эффекта на порядок выше [33].

В этом отношении большой интерес представляет композитное соединение $Bi_2(Sn_{0.7}Fe_{0.3})_2O_7/Bi_2Fe_4O_9$, в котором предполагается обнаружить MЭ-эффект.

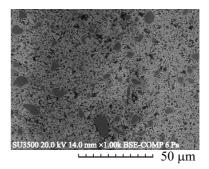
Целью настоящей работы является изучение взаимного влияния различных кристаллографических и магнитных структур $\mathrm{Bi_2}(\mathrm{Sn_{0.7}Fe_{0.3}})_2\mathrm{O_7}$ и $\mathrm{Bi_2Fe_4O_9}$ на магнитоэлектрический эффект и термоэдс.

2. Образцы и методика эксперимента

Композитное соединение $Bi_2(Sn_{0.7}Fe_{0.3})_2O_7/Bi_2Fe_4O_9$ (BSFO/BFO) синтезировано методом твердофазной реакции. Данный метод является широко используемым для получения поликристаллических объемных материалов, а также обеспечивает широкий выбор исходных материалов, таких как оксиды. Преимуществом твердофазного синтеза является то, что твердые реагенты вступают в химическую реакцию при высокой температуре в отсутствие какого-либо растворителя, в результате чего


Параметры	кристаллической	структуры	композитного	соеди-
нения Bi ₂ (Sn _{0.7} Fe _{0.3}) ₂ O ₇ /Bi ₂ Fe ₄ O ₉				

Пространственная	Bi ₂ Fe ₄ O ₉	$Bi_{2}(Sn_{0.7}Fe_{0.3})_{2}O_{7}$		
группа	Pbam	Pc		
a, Å	7.96795 (2)	15.0927 (5)		
b, Å	8.45160 (3)	15.0830 (5)		
c, Å	6.01100 (2)	21.3150 (8)		
eta , $^{\circ}$	90 (2)	89.931 (2)		
V , $Å^3$	404.792661 (3)	4852.2 (3)		
2θ range, °	5-90			
Rwp, %	9.06			
Rp, %	7.01			
RB, %	3.01			
χ^2	1.61			

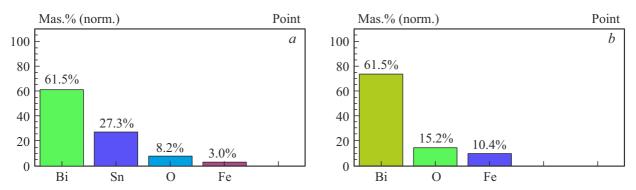

образуется стабильный продукт. В качестве исходных реагентов были использованы мелкодисперсные порошки оксидов Bi₂O₃, SnO₂, Fe₂O₃. Стехиометрическая смесь исходных компонентов тщательно перетиралась в агатовой ступке с этиловым спиртом до достижения гомогенного состояния. Шихта прессовалась при комнатной температуре и подвергалась отжигу при температурах 800-950°C в несколько этапов. Отжиг является средством управления структурными изменениями, свойствами и фазовым составом. Согласно рентгеноструктурным данным синтезированный композит содержит $Bi_2(Sn_{0.7}Fe_{0.3})_2O_7$ — 91% и $Bi_2Fe_4O_9$ — 9%. Порошковая рентгенограмма снята на дифрактометре D8 ADVANCE фирмы Bruker при комнатной температуре. В эксперименте использовался линейный детектор VANTEC и CuK_{α} -излучение. Пиростаннат висмута $Bi_2(Sn_0 \, _7Fe_0 \, _3)_2O_7$ соответствует моноклинной ячейке Pcв α -фазе $Bi_2Sn_2O_7$ [31], $Bi_2Fe_4O_9$ — орторомбической структуре *Рbam* [34]. Для уточнения структуры методом Ритвельда использовались начальные структуры этих фаз. Уточнение реализовано при помощи программы TOPAS 4.2 [35] и дало низкие R-факторы недостоверности (таблица, рис. 1).

Морфологические исследования, качественный и полуколичественный элементарный состав были выполнены на Scanning electron microscope (SEM) Hitachi S5500 на полированной аргоном поверхности образца. Сканирование проводилось в различных микрообластях образца и дает идентичность результатов. Анализ микрофотографии композита BSFO/BFO (рис. 2) показал плотное, неравномерное распределение зерен $Bi_2Fe_4O_9$, окруженных матрицей $Bi_2(Sn_{0.7}Fe_{0.3})_2O_7$ и наличие пор. Форма зерен $Bi_2Fe_4O_9$ в виде пластинок темного цвета с усеченными углами и неровными краями. Подобная форма пластин наблюдалась при синтезе $Bi_2Fe_4O_9$ гидротермальным методом со средним размером зерна $450\,\mu\mathrm{m}$ [36].

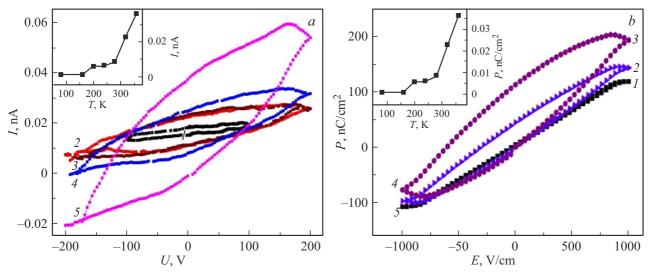
Наблюдаемый элементный состав фаз: Bi, Sn, Fe, O для $Bi_2(Sn_{0.7}Fe_{0.3})_2O_7$ (рис. 3, a) и Bi, Fe, O для $Bi_2Fe_4O_9$

Рис. 1. Разностная рентгенограмма $Bi_2(Sn_{0.7}Fe_{0.3})_2O_7/Bi_2Fe_4O_9.$

Рис. 2. Микрофотография Bi₂(Sn_{0.7}Fe_{0.3})₂O₇/Bi₂Fe₄O₉.


(рис. 3, b) указывают на хорошее качество композитного образца. Средний размер зерна составляет 1μ [37].

Магнитоэлектрическое взаимодействие установлено из измерений индуцированной электрической поляризации в магнитных полях до 13 kOe. Термоэлектрическое напряжение на противоположных гранях образца регистрировалось мультиметром 34410A Agllent Technologies в температурном интервале 80—500 К. Исследования электрических свойств на постоянном токе выполнены двухзондовым методом на установке 34410A Agllent Technologies в температурной области 80—400 К.


3. Результаты и обсуждение

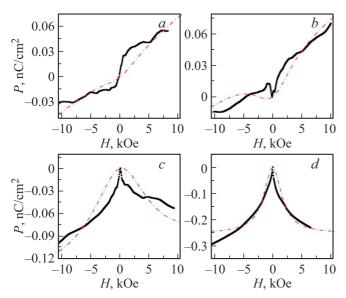
3.1. Вольт-амперная характеристика (ВАХ)

Вольт-амперные характеристики BSFO/BFO обнаруживают гистерезис (рис. 4), который смещен по оси силы тока в результате наличия не скомпенсированного заряда, создаваемого дефектами в катионной и анионной подсистемах. Ширина петли гистерезиса BAX композитного соединения практически не меняется до $160 \, \mathrm{K}$ (вставка рис. 4, a), от $200 \, \mathrm{K}$ наблюдается рост, при $T = 360 \, \mathrm{K}$ имеет максимальное значение. С повышением температуры, после $360 \, \mathrm{K}$, гистерезис приобретает не

Рис. 3. Элементный состав фаз композита $Bi_2(Sn_{0.7}Fe_{0.3})_2O_7/Bi_2Fe_4O_9$: $a — Bi_2(Sn_{0.7}Fe_{0.3})_2O_7$, $b — Bi_2Fe_4O$.

Рис. 4. a — вольт-амперная характеристика $\mathrm{Bi_2(Sn_{0.7}Fe_{0.3})_2O_7/Bi_2Fe_4O_9}$ при различных температурах. Кривая I соответствует $T=80,\ 2-200,\ 3-240,\ 4-280,\ 5-320\,\mathrm{K}$. На вставке представлена температурная зависимость ширины гистерезиса ВАХ $\mathrm{Bi_2(Sn_{0.7}Fe_{0.3})_2O_7/Bi_2Fe_4O_9}$. b — полевая зависимость поляризации $\mathrm{Bi_2(Sn_{0.7}Fe_{0.3})_2O_7/Bi_2Fe_4O_9}$ при различных температурах. Кривая I соответствует $T=80,\ 2-300,\ 3-360\,\mathrm{K}$. На вставке представлена температурная зависимость остаточной поляризации $\mathrm{Bi_2(Sn_{0.7}Fe_{0.3})_2O_7/Bi_2Fe_4O_9}$.

симметричную форму. При 390 K появляется перетяжка гистерезиса, максимум ширины гистерезиса смещается к 100 V и при дальнейшем нагревании практически исчезает.


Гистерезис ВАХ обусловлен ферроэлектрической поляризацией рис. 4, b, создаваемой полярной связью Ві-О с неподеленной электронной парой на ионе висмута. Поляризация в муллите ниже температуры Нееля, обусловлена формированием неоднородного магнитного состояния и неподеленной электронной парой на ионе висмута. Гистерезис в области температур $80-160\,\mathrm{K}$ практически отсутствует, при $240-450\,\mathrm{K}$ остаточная поляризация растет по экспоненциальному закону (вставка рис. 4,b). Остаточная поляризация в нулевом поле обусловлена как станнатом, так и муллитом.

Согласно литературным данным [26], керамический $Bi_2Fe_4O_9$ проявляет сегнетоэлектрические свойства, при комнатной температуре на частоте 10 Hz наблюдается

петля гистерезиса электрической поляризации. Форма петли зависит от размера зерна. Образцы с размером зерна 60 nm имеют закругленные концы петли, что объясняется большими токами утечки. Когда размер зерна более 200 nm, P-E петля при комнатной температуре не насыщена. Муллит с размером зерна 900 nm характеризуется остаточной поляризацией $P_r = \mu \text{C/cm}^2$ и коэрцитивным полем $E_c = 19.5\,\text{kV/cm}$ в электрическом поле $60\,\text{kV/cm}$ [26]. В других источниках [27] сообщается, что при комнатной температуре из-за токов утечки ферроэлектрический гистерезис не обнаруживается. P-E петля наблюдается при низких температурах $T = 250\,\text{K}$, на частоте $1\,\text{Hz}$, в области магнитного упорядочения муллита.

3.2. Магнитоэлектрический эффект

Магнитоэлектрическое взаимодействие BSFO/BFO установим из индуцированной электрической поляризации в магнитном поле. На рис. 5 представлена полевая

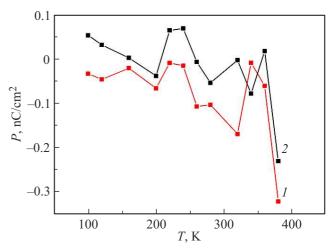
Рис. 5. Полевая зависимость поляризации $\mathrm{Bi}_2(\mathrm{Sn}_{0.7}\mathrm{Fe}_{0.3})_2\mathrm{O}_7/\mathrm{Bi}_2\mathrm{Fe}_4\mathrm{O}_9$ при различных температурах. Штрих-пунктирные линии соответствуют теоретическим расчетам по формуле (1). $a-T=100,\ b-240,\ c-280,\ d-380\ \mathrm{K}.$

зависимость поляризации при температурах 100, 240, 280 и 380 К. Параметр магнитоэлектрического взаимодействия меняет знак в области температуры магнитного перехода в муллите.

Поляризация, индуцированная магнитным полем, описывается как

$$P = aH + b \, \frac{H^2}{1 + dH^2},\tag{1}$$

где a, b, d — подгоночные параметры. Магнитоэлектрическое взаимодействие обусловлено спин-орбитальным взаимодействием с линейной зависимостью от поля и с квадратичной зависимостью от поля.


В интервале температур $100-240\,\mathrm{K}$ поляризация является нечетной функцией магнитного поля, связанная с неоднородным магнитным состоянием муллита. В работе [38] обнаружено, что для $\mathrm{Bi}_2\mathrm{Fe}_4\mathrm{O}_9$ характерно неколлинеарное антиферромагнитное упорядочение спинов с ферромагнитным порядком по одной из компонент спина.

В области температур $225-235\,\mathrm{K}$ наблюдается аномалия $\chi(T)$ в композитном соединении BSFO/BFO, которая вызвана магнитным фазовым переходом в $\mathrm{Bi}_2\mathrm{Fe}_4\mathrm{O}_9$ из антиферромагнитного в парамагнитное состояние. Величина остаточной намагниченности при нагревании уменьшается в четыре раза до $T=100\,\mathrm{K}$ с дальнейшим увеличением в 6 раз [37]. Полевая зависимость намагниченности BSFO/BFO в интервале температур $4-300\,\mathrm{K}$ обнаруживает гистерезис. Такое магнитное поведение композита объясняется в модели магнитных поляронов в антиферромагнитной матрице с учетом орбитальных угловых магнитных моментов. Отдельный электрон может создавать ферромагнитную микрообласть и ло-

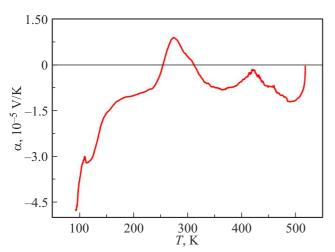
кализоваться в ней, образуя феррон. Ферромагнитная микрообласть (радиус феррона) определяется конкуренцией между кинетической энергией носителей заряда и обменной энергией локализованных спинов. Примесные электроны в результате s-d взаимодействия индуцируют неколлинеарную конфигурацию спинов в микрообласти. Обменная энергия уменьшается при нагреве в результате уменьшения корреляции между направлениями соседних спинов. При нагревании радиус ферронов увеличивается и в результате взаимодействия между электронами, захваченными кислородными вакансиями, возможно образование слабой намагниченности [39].

Поляризация в композите BSFO/BFO является нечетной функцией магнитного поля в окрестности $\alpha \to \beta$ структурного перехода при 360 K и обусловлена скоплением заряженных дефектов на кристаллографических границах. В пиростаннате висмута $\mathrm{Bi}_2\mathrm{Sn}_2\mathrm{O}_7$ $\alpha \to \beta$ переход реализуется при $T=400\,\mathrm{K}$ [30]. С увеличением концентрации ионов железа температура перехода сдвигается в сторону низких температура. В $\mathrm{Bi}_2(\mathrm{Sn}_{0.8}\mathrm{Fe}_{0.2})_2\mathrm{O}_7$ $\alpha \to \beta''$ переход наблюдается при 350 K [40]. Пиростаннат висмута $\mathrm{Bi}_2(\mathrm{Sn}_{0.8}\mathrm{Fe}_{0.2})_2\mathrm{O}_7$ имеет нецентросимметричную искаженную структуру [40], что создает предпосылки к возникновению электрической поляризации и, как следствие, магнитоэлектрического эффекта [41].

Линейный магнитоэлектрический эффект убывает с повышением температуры, так при температуре $100\,\mathrm{K}$ величина линейной компоненты составляет $5.6\cdot 10^{-12}$, $4\cdot 10^{-12}$ при $T=240\,\mathrm{K}$, $1.8\cdot 10^{-12}$ при $T=280\,\mathrm{K}$ и исчезает при $T=380\,\mathrm{K}$. Линейный магнитоэлектрический эффект возможен в кристаллах без центра симметрии в парамагнитной фазе. Например, в молекулярных комплексах иттербия ионы иттербия во внешнем магнитном поле индуцируют электрическую поляризацию [42]. Линейный продольный магнитоэлектрический эффект, обнаруженный в монокристалле α — $\mathrm{Bi}_2\mathrm{O}_3$,

Рис. 6. Температурная зависимость поляризации ${\rm Bi_2(Sn_{0.7}Fe_{0.3})_2O_7/Bi_2Fe_4O_9}.$ Кривая $\it I$ соответствует поляризации, измеренной в положительном магнитном поле, $\it 2$ — отрицательное магнитное поле.

отнесли к парамагнитным центрам [43]. Этот эффект вызван образованием квазищели в электронном спектре возбуждения оксидов висмута. В двумерных материалах (2D Dirac), например MoS₂, линейный магнитоэлектрический эффект связывается с наличием "долин" в спектре электронных возбуждений [44]. Эти результаты хорошо согласуются с теоретической моделью "долин", описываемых топологическим инвариантом кривизны Берри [44].


На рис. 6 приведена температурная зависимость магнитоэлектрического эффекта в магнитном поле $+10\,\mathrm{kOe}$ (кривая I) и $-10\,\mathrm{kOe}$. Кривые имеют нелинейный вид, в области магнитного перехода в муллите $\mathrm{Bi}_2\mathrm{Fe}_4\mathrm{O}_9$ проявляется широкий максимум.

3.3. Термоэдс

На рис. 7 представлена температурная зависимость коэффициента термоэдс BSFO/BFO в температурном диапазоне $80-520\,\mathrm{K}$ при нагревании. Величина $\alpha(T)$ при температурах 253 и 310 K меняет знак, что говорит о смене типа носителей тока.

Максимум по абсолютной величине на температурной зависимости коэффициента термоэдс в области $115\,\mathrm{K}$ объясняется структурным фазовым переходом в пиростаннате висмута $\mathrm{Bi_2}(\mathrm{Sn_{0.7}Fe_{0.3}})_2\mathrm{O_7}$. Замещение ионов $\mathrm{Sn^{4+}}$ ионами $\mathrm{Fe^{3+}}$ индуцирует искажения кристаллической структуры, и рост концентрации ионов $\mathrm{Fe^{3+}}$ приводит к фазовым переходам типа смещения. Так в $\mathrm{Bi_2}(\mathrm{Sn_{1-x}Fe_x})_2\mathrm{O_7}$ с концентраций x=0.2 при $T=140\,\mathrm{K}$ обнаружен переход из моноклинной в триклинную симметрию [40]. Сдвиг температуры фазового перехода в композите BSFO/BFO в сторону меньших температур зависит от двух факторов. Это увеличение концентрации $\mathrm{Fe^{3+}}$ и сосуществование двух кристаллических структур с разными пространственными группами.

При температуре $T=366\,\mathrm{K}$ на кривой $\alpha(T)$ наблюдается широкая аномалия. Эта температура коррели-

Рис. 7. Температурная зависимость термоэдс $Bi_2(Sn_{0.7}Fe_{0.3})_2O_7/Bi_2Fe_4O_9.$

рует с данными МЭ-эффекта и согласуется с началом $\alpha \to \beta$ перехода в пиростаннате висмута. Максимум по абсолютной величине на кривой $\alpha(T)$ в интервале $480-515\,\mathrm{K}$ вызван структурным переходом связанным с исчезновением центра инверсии в пиростаннате висмута.

Величина термоэдс преимущественно имеет отрицательное значение. Железо-замещенный пиростаннат висмута ${\rm Bi_2(Sn_{0.8}Fe_{0.2})_2O_7}$ не меняет тип проводимости на всем интервале температур и имеет положительное значение термоэдс [45]. Смена знака коэффициента термоэдс по концентрации железа, возможно, обусловлена ростом кислородных вакансий в композите, что подтверждается увеличением остаточной намагниченности муллита в матрице пиростанната висмута по сравнению с поликристаллическим муллитом [37].

4. Заключение

Найден гистерезис BAX и максимальное значение ширины гистерезиса в области α - β перехода в пиростаннате висмута и дальнейшее его исчезновение. Определена взаимосвязь гистерезиса BAX композита BSFO/BFO с ферроэлектрической поляризацией муллита.

Обнаружен магнитоэлектрический эффект и найдены температурные области преобладания нечетной функции магнитного поля. Определена температура исчезновения линейного магнитоэлектрического эффекта в β -фазе $\mathrm{Bi}_2(\mathrm{Sn}_{0.7}\mathrm{Fe}_{0.3})_2\mathrm{O}_7$.

Установлена смена знака термоэдс, связанная со структурными переходами.

Финансирование работы

Работа выполнена в рамках научной тематики Госзадания И Φ СО РАН.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] E. Jartych, T. Pikula, K. Kowal, J. Dzik, P. Guzdek, D. Czekaj. Nanoscale Res. Lett. 11, 234 (2016).
- [2] M.I. Bichurin, V.M. Petrov, R.V. Petrov, Y.V. Kiliba, F.I. Bukashev, A.Y. Smirnov, D.N. Eliseev. Ferroelectr. 280, 199 (2002).
- [3] N.H. Duc, D.T. Huong Giang. J. Alloy Compd. **449**, 214 (2008).
- [4] D.T. Huong Giang, N.H. Duc. Sensor Actuat. A-Phys. 149, 229 (2009).
- [5] S. Dong, J. Zhai, J.F. Li, D. Viehland, S. Priya. Appl. Phys. Lett. 93, 103511 (2008).
- [6] X. Bai, Y. Wen, J. Yang, P. Li, J. Qiu, Y. Zhu. J. Appl. Phys. 111, 07A938 (2012).
- [7] G. Srinivasan, S. Priya, N. Sun. Composite magnetoelectrics: materials, structures, and applications. Woodhead Publishing, Cambridge. (2015). 380 p.

- [8] M. Bibes, A. Barthelemy. Nature Mater 7, 425 (2008).
- [9] J. Hu, Z. Li, J. Wang, C.W. Nan. J. Appl. Phys. 107, 093912 (2010).
- [10] Z. Shi, C. Wang, X. Liu, C. Nan. Chinese Sci. Bull. 53, 2135 (2008).
- [11] S. Fusil, V. Garcia, A. Barthelemy, M. Bibes. Annu Rev. Mater. Res. 44, 91 (2014).
- [12] M. Gajek, M. Bibes, S. Fusil, K. Bouzehouane, J. Fontcuberta, A. Barthélémy, A. Fert. Nature Mater. 6, 296 (2007).
- [13] L.W. Martin, Y.H. Chu, Q. Zhan, R. Ramesh, S.J. Han, S.X. Wang, M. Warusawithana, D.G. Schlom. Appl. Phys. Lett. 91, 172513 (2007).
- [14] G. Catalan, J.F. Scott. Adv Mater. 21, 2463 (2009).
- [15] J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh. Science 299, 1719 (2003).
- [16] J.P. Rivera. J. Eur. Phys. B 71, 299 (2009).
- [17] J. Ryu, A.V. Carazo, K. Uchino, H.E. Kim. Jpn J. Appl. Phys. 40, 4948 (2001).
- [18] U. Laletsin, N. Padubnaya, G. Srinivasan, C.P. DeVreugd. Appl. Phys. A 78, 33 (2004).
- [19] T.C. Han, W.L. Hsu, W.D. Lee. Nanoscale Res. Lett. 6, 201 (2011).
- [20] M.D. Gerngross, J. Carstensen, H. Föll. Nanoscale Res. Lett. 7, 379 (2012).
- [21] X. Liu, S. Liu, M.G. Han, L. Zhao, H. Deng, J. Li, Y. Zhu, L. Krusin-Elbaum, S. O'Brien. Res. Lett. 8, 374 (2013).
- [22] А.А. Бухараев, А.К. Звездин, А.П. Пятаков, Ю.К. Фетисов. УФН **188**, $\it 12$, 1288 (2018).
- [23] A. Kirsch, M.M. Murshed, F.J. Litterst, T.M. Gesing. J. Phys. Chem. C **123**, *5*, 3161 (2019).
- [24] H. Koizumi, N. Niizeki, T. Ikeda. Jpn. J. Appl. Phys. 3, 495 (1964).
- [25] N.I. Zakharchenko. Russ. J. Appl. Chem. 73, 2047 (2000).
- [26] Z.M. Tian, S.L. Yuan, X.L. Wang, X.F. Zheng, S.Y. Yin, C.H. Wang, L. Liu. J. Appl. Phys. 106, 103912 (2009).
- [27] A.K. Singh, S.D. Kaushik, B. Kumar, P.K. Mishra, A. Venimadhav, V. Siruguri, S. Patnaik. Appl. Phys. Lett. 92, 132910 (2008).
- [28] M. Kumar, K.L. Yadav. J. Appl. Phys. 100, 074111 (2006).
- [29] Hui Shen, Li Shen, Zhonghai Lin, Meihua Li, Yanli Liu. J. Alloys Compd. **924**, 166535 (2022).
- [30] L.V. Udod, S.S. Aplesnin, M.N. Sitnikov, M.S. Molokeev. ΦΤΤ 56, 7, 1315 (2014).
- [31] L. Udod, S. Aplesnin, M. Sitnikov, O. Romanova, O. Bayukov, A. Vorotinov, D. Velikanov, G. Patrin. Eur. Phys. J. Plus. 135, 776 (2020).
- [32] И.А. Вербенко, Л.А. Резниченко. Инноватика и экспертиза **1**, *12*, 40 (2014).
- [33] А.П. Пятаков, А.К. Звездин. УФН **182**, 6, 593 (2012).
- [34] M.K. Verma, V. Kumar, T. Das, R.K. Sonwani, V.S. Rai, D. Prajapati, K. Sahoo, V.K. Kushwaha, A. Gupta, K. Mandal. J. Miner. Mater. Char. Eng. 9, 444 (2021).
- [35] Bruker AXS TOPAS V4: General profile and structure analysis software for powder diffraction data. User's Manual. Bruker AXS, Karlsruhe, Germany, 2008.
- [36] Jian-Tao Han, Yun-Hui Huang, Rui-Jie Jia, Guang-Cun Shan, Rui-Qian Guo, Wei Huang. J. Cryst. Growth 294, 469 (2006).
- [37] S.S. Aplesnin, L.V. Udod, M.N. Sitnikov, D.A. Velikanov, M.N. Molokeev, O.B. Romanova, A.V. Shabanov. JMMM 559, 169530 (2022).

- [38] K. Jindal, Sh. Ameer, M. Tomar, P.K. Jha, V. Gupta. Mater. Today: Proc. 47, 8, 1637 (2021).
- [39] М.Ю. Каган, К.И. Кугель. УФН 171, 577 (2001).
- [40] L.V. Udod, S.S. Aplesnin, M.N. Sitnikov, O.B. Romanova, M.N. Molokeev. J. Alloys Compd. 804, 281 (2019).
- [41] А.К. Звездин, А.П. Пятаков. УФН 179, 887 (2009).
- [42] Jérôme Long, M.S. Ivanov, V.A. Khomchenko, E. Mamontova, Jean-Marc Thibaud, Jérôme Rouquette, Mickaël Beaudhuin, Dominique Granier, Rute A.S. Ferreira, Luis D. Carlos, Bruno Donnadieu, Marta S.C. Henriques, José António Paixão, Yannick Guari, J. Larionova. Science 367, 671 (2020).
- [43] V.I. Nizhankovskii, A.I. Kharkovskii, V.G. Orlov. Ferroelectrics 279, 157 (2002).
- [44] Jieun Lee, Zefang Wang, Hongchao Xie, Kin Fai Mak, Jie Shan. Nature Mater. 16, 887 (2017).
- [45] S.S. Aplesnin, L.V. Udod, M.N. Sitnikov, O.B. Romanova. Ceram. Int. 47, 1704 (2021).

Редактор К.В. Емцев