09,08

Orthoborate LiSrY₂(BO₃)₃ Host with Low Concentration Quenching

© P.K. Tawalare¹, B.Y. Fugare¹, R.A. Nafdey², K. Sharma³, S.V. Moharil⁴

 ¹ Department of Physics, Jagadamba Mahavidyalaya, Achalpur City, 444806, India
² Shri Ramdeobaba College of Engineering and Management, Nagpur, 440013, India
³ Physics Department, Jhulelal Institute of Technology, Nagpur, 441111, India
⁴ RashtrasantTukadoji Maharaj Nagpur University, Nagpur 440010, India
E-mail: aounyacine07@gmail.com

Received 29 May, 2023 Revised 29 May, 2023 Accepted 6 June, 2023

> $LiSrY_2(BO_3)_3$ is a recently explored host for observing lanthanide luminescence. This compound synthesized and activated with Tb^{3+}/Gd^{3+} is described. Trivalent activators Tb^{3+} and Gd^{3+} occupy yttrium sites. Intense characteristic emission is observed for both these activators. In case of Gd^{3+} , both excitation and emission lines arise in f-f transitions. Photo luminescence emission is obtained in UV region. In case of Tb^{3+} , mild concentration quenching was observed above 10%. Prominent excitation of Tb^{3+} is in form of a band arising in f-d type transition while emission comes from f-f transitions. Emission lifetimes are of the order of milliseconds, typical of forbidden f-f transitions.

Keywords: photoluminescence; borate; Gd³⁺; Tb³⁺.