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Introduction

Over the last 60 years, rapid developments in laser physics

have enabled a range of innovations in non-linear optics,

including frequency conversion, ultrafast optics and fully

optical modulation. Record intensities at the laser beam

focus were achieved — 1023 W/cm2 [1,2]. The attainment

of such powerful electric fields has been made possible,

in part, by improvements in laser focusing technique [3,4],
the advent and development of laser installations that allow

optical pulses of a few femtosecond duration (10−15 s) [5],
and the use of chirped pulse amplification (CPA) [6–8]. The
technology is one of the most modern and advanced, and

is planned for use in medicine, namely in the diagnosis

and treatment of cancer and the manufacture of radioactive

isotopes. However, there are still some problems that

need to be solved before this technology can be applied

to real cancer therapy, but thanks to advances in this

and related fields, laser therapy can be expected in the

future [9].

The theory of laser-assisted plasma acceleration of

charged particles was put forward as early as 1979 [10]
and is still being improved upon. The development of CPA-

based lasers has been of great benefit in improving charged-

particle acceleration circuits [11].

The essence of the chirped pulse amplification method

is that the laser pulse is stretched in time and spectrum,

amplified and then compressed again. In this way, the laser

pulse is initially subjected to frequency modulation. The

question of particle acceleration in the field of a frequency-

modulated (FM) electromagnetic wave has been studied

in [12,13].

In the present paper an investigation was undertaken

on the spectral-angular characteristics of charged particle

radiation in the field of FM electromagnetic wave based

on results obtained in [12], in which energy characteristics

of a charged particle without taking into account radiation

friction were calculated based on classical equation of mo-

tion of a charge in electromagnetic field. It is known from

paper [14] that electron energy loss due to hard radiation

is reached at energy 1GeV which corresponds to laser

field intensity 1022 W/cm2. In the present paper, all char-

acteristics have been calculated at intensities 1019 W/cm2.

However, during the long interaction of the wave with

the particle even a small radiation friction parameter can

give a significant contribution to the particle dynamics,

so it is assumed that the PM electromagnetic wave in

this paper is represented as a chirped ultrashort laser

pulse.

Of interest are intensity and power of charge radiation and

their angular and phase-angle distributions, as well as the

Fourier transform of the electric field strength of radiation

and spectral density of particle radiation. These results can

be useful in controlling the operation of laser accelerators

in which the radiation is subject to frequency modulation.

The authors have undertaken a similar study in [15]

in the case of a superposition of a plane monochromatic

electromagnetic wave field with a co-directed external

constant magnetic field (Redmond field).

23∗ 355



356 G.F. Kopytov, D.I. Kudryavtsev

1. Problem formulation

The high-frequency Lorentz force acts on a particle with

charge q and mass m, then the equation of motion for the

charge is

dp
dt

= qE +
q
c
[v×H], (1)

where p — particle momentum; E, H — the electric and

magnetic field strength vectors of the electromagnetic wave.

Equation (1) is supplemented by initial conditions for the

velocity and coordinates of the charged particle:

v(0) = v0, r(0) = r0.

The relativistic factor γ is related to the electromagnetic

field strength by the following relation:

γ =
√

1 + I/I rel,

and is also γ = mc(1− νz0)/
√

1− ν2
0/c2, where the rela-

tivistic intensity I rel (W/cm2) is:

I rel =
m2c3ω2

8πq2
=

1.37 · 1018
λ2

.

It is assumed that the modulated pulse propagates along

axis z with duration τ , and if t < τ , the components of

the wave magnetic and electric field strengths will have the

form (2), otherwise (t > τ ) the components of the strengths

will be zero. The constant phase plane is perpendicular to

one axis:



















Ex = Hy = bx
∑N

n=0 Jn(δFM) cos8n,

Ey = −Hx = f by
∑N

n=0 Jn(δFM) sin8n,

Ez = Hz = 0,

(2)

where the axes x and y coincide with the direction

of the half-axes of the polarization ellipse bx and by ,

with bx ≥ by ≥ 0; 8n = 8 + 8′

n = (ω + nω′)ξ + ϕ0 + nα0;

ξ = t − z/c ; ω — carrier frequency; ω′ — modulation

frequency, Jn(δFM) — Bessel function n-order, δFM — fre-

quency modulation factor, f = ±1 — polarization parame-

ter, with upper sign corresponding to right polarization Ey ,

and lower sign corresponding to left polarization.

For an example, take the parameters of a terawatt

femtosecond titanium-sapphire laser system (λ = 800 nm;

40 fs), then 8 ∈ [0; 94.2].

At a peak intensity of 1019 W/cm 2, the pulses of this laser

system are generated in mode synchronization mode. The

frequency spectrum of the emitted radiation is represented

by
”
ridges“, consisting of a number of discrete, evenly

spaced frequency lines. Such radiation is described by the

task at hand [16].

2. Intensity of radiation of a charged
particle in the field of an FM
electromagnetic wave

Applying vector product to equation (1) by vector H, we

obtain the Umov−Poynting vector in the following form:

S =
c
4π

[E×H] =
c

4πq
[F×H] − 1

4π

[

[v×H] ×H
]

, (3)

The vector components (3) take the form

Sx(t) =
1

4π
Hy

[

(νx Hy − νy Hx) −
c
q

Fz

]

,

Sy(t) =
1

4π
Hx

[

(νx Hy − νy Hx) −
c
q

Fz

]

,

Sz (t) =
1

4π

[

(νz
(

H2
x + H2

y

)

+
c
q
(Ex Fx + Ey Fy)

]

. (4)

Substituting the system (2) into the vector compo-

nents S (4), we get the following form:

Sx (t) = 0, Sy (t) = 0,

Sz (t) =
c
4π

N
∑

n=0

J2
n(δFM)(b2

x cos
2 8n + b2

y sin
2
8n).

Circular polarization

In the case of circular polarization, the polarization semi-

axis of the polarization ellipse bx = by = b/
√
2;

|S(t)| =
√

S2
x (t) + S2

y(t) + S2
z (t) = Icir

N
∑

n=0

J2
n(δFM), (5)

where Icir = cb2/8π.

Now let us estimate the intensity of radiation of a particle

averaged over the period of its oscillation in the field of an

FM wave:

I rad =
ω

2π(1 + h)

8(t)+2π
∫

8(t)

|S(t)|1 + g
ω

d8′ = Icir

N
∑

n=0

J2
n(δFM).

(6)
Let us use the formula for the longitudinal component

of the particle’s momentum, corrected for the relativistic

multiplier of [10]:

g = h −
q2(b2

x − b2
y )

4γ2ω2

N
∑

n=−N

J2
n(δFM)

(1 + nη)2
cos 28n

+
q

γ2ω

N
∑

n=−N

Jn(δFM)

1 + nη
(χx bx sin8n ∓ χy by cos8n),

where h = 1
2

[

m2c2

γ2
− 1 +

χ2x +χ2y
γ2

+
q2(b2

x +b2
y )

2γ2ω2

∑N
n=−N

J2
n(δFM)

(1+nη)2

]

;

η = ω′/ω.
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Linear polarization

For the case of linearly polarized electromagnetic waves,

one of the semi-axes of the polarization ellipse is zero and

the other is equal to b (bx = b; by = 0)

|S(t)| =
√

S2
x (t) + S2

y (t) + S2
z (t) = I lin

N
∑

n=0

J2
n(δFM) cos2 8n,

(7)
where I lin = cb2/4π.

Now let us estimate the intensity of radiation of a particle

averaged over the period of its oscillation in the field of an

FM wave:

I rad =
ω

2π(1 + h)

8(t)+2π
∫

8(t)

|S(t)|1 + g
ω

d8′

=
I lin
2

N
∑

n=0

J2
n(δFM)

(

1− µ

8(1 + h)

N
∑

n=0

J2
n(δFM)

(1 + nη)2

)

,

(8)
where µ = q2b2/γ2ω2.

The minimum will correspond to the phase 80 = 0, π,

and is defined by the formula:

Imin = I lin

N
∑

n=0

J2
n(δFM)











1−
µ

N
∑

n=0

J2
n(δFM)

(1+nη)2

8 + 2µ
∑N

n=0
H2

n(δFM)
(1+nη)2











.

The maximum will correspond to phase 80 = π/2, 3π/2

and is defined by the formula:

Imax = I lin

N
∑

n=0

J2
n(δFM)











1−
µ

N
∑

n=0

J2
n(δFM)

(1+nη)2

8 + 6µ
∑N

n=0

H2
n(δFM)

(1+nη)2











.

The average radiation intensity of a particle can be

obtained using the following formula [15]:

〈 f 〉 = sup lim
80n→∞

1

80n

80n
∫

0

f (80n)dt,

where f (8)0n shall be replaced with I rad.
Thus, the radiation intensity of a particle, the field of a

plane PM wave, averaged over the initial phase 80n, is:

〈I rad〉 =
I lin
2

N
∑

n=0

J2
n(δFM)

×













2−
µ

N
∑

n=0

J2
n(δFM)

(1+nη)2

√

N
∑

n=0

J2
n(δFM)

(1+nη)2µ + 4

√

3
N
∑

n=0

J2
n(δFM)

(1+nη)2µ + 4













. (9)
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Figure 1. Dependence of average particle radiation intensity in

the field of FM wave intensity I lin = 107 TW/cm 2 on frequency

modulation coefficient.

Let us plot the average particle emission intensity as a

function of the modulation factor δFM (Fig. 1) at wave

intensity 107 TW/cm2.

Maximum particle emission intensity

I rad = 4.611 · 106 TW/cm 2 is reached at δFM = 1.6−2.8.

After the δFM = 2.8 value, the radiation intensity begins to

decrease, followed by periodic fluctuations. It follows that

a wave with a coefficient of δFM ∈ [1.6, 2.8] will be most

effective for particle acceleration.

Differentiating expression (8) with respect to the initial

phase, we obtain the phase distribution of the particle

radiation intensity in the field of the FM wave:

dI rad
d80n

= I lin
µ2

8

N
∑

n=0

J6
n(δFM)

(1+nη)4 sin80n cos80n

[

1 + µ

4

N
∑

n=0

J2
n(δFM)

(1+nη)2 (2 sin
2
80n + 1)

]2
. (10)

Let us depict the phase distribution of the radiation inten-

sity (dI rad/d80n along the ordinate axis and sin80n along

the x axis) at various frequency modulation coefficients for

the intensity 107 TW/cm 2 of the electromagnetic wave on

the phase plane.

Fig. 2 clearly shows that as the frequency modulation co-

efficient increases, the area of the phase intensity distribution

decreases.

The instantaneous angular distribution of the radiation

intensity has the form:

dI rad
d�

=
I lin
2π

µ2

8

N
∑

n=0

J6
n(δFM)

(1+nη)4 sin80n

[

1 + µ

4

N
∑

n=0

J2
n(δFM)

(1+nη)2 (2 sin
2 80n + 1)

]2
(11)

Differentiating the distribution (11) with respect to 80n,

we obtain the phase-angle distribution of the particle’s
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Figure 2. Phase distribution of the particle radiation intensity in

the FM wave field at its intensity I lin = 107 TW/cm 2 at different

frequency modulation ratios (1 — δFM = 0, 2 — δFM = 0.5, 3 —
δFM = 1).

radiation intensity in the field of the FM wave:

d2I rad
d80nd�

=
I lin
2π

×











µ2

8

N
∑

n=0

J6
n(δFM)

(1+nη)4 cos80n

[

1 + µ

4

N
∑

n=0

J2
n(δFM)

(1+nη)2 (2 sin
2 80n + 1)

]2

− µ3

4

N
∑

n=0

J8
n(δFM)

(1+nη)6 sin
2 80n cos80n

[

1 + µ

4

N
∑

n=0

J2
n(δFM)

(1+nη)2 (2 sin
280n + 1)

]3











. (12)

Let us depict the phase-angle distribution of the radiation

intensity (d2I rad/d�d80nalong the ordinate axis and sin80n

along the x axis) with different frequency modulation

coefficients at the wave intensity 107 TW/cm2 on the phase

plane.

Fig. 3 shows that the area of the phase-angle distribution

decreases as the frequency modulation coefficient increases.

3. Particle emission power in the field of
an FM electromagnetic wave

The power dP transmitted through a surface element dl
is equal to the modulus of the energy flux density vector

and is defined by the formula:

dP
dl

= |S(t)|. (13)

Entering the solid angle � into formula (13), we get the

formula:
dP
d�

= r2|S(t)|, (14)

where r =
√

(x − x0)2 + (y − y0)2 + (z − z 0)2 — the dis-

tance from the particle in space to its original position.

We take the coordinate values from [12] and write them

in the following form:

x =x0 +
N
∑

n=−N

χx

γk
8n

1 + nη

− qbx

γωk

N
∑

n=−N

Jn(δFM)

(1 + nη)2
cos8n + Cx ,

y =y0 +

N
∑

n=−N

χy

γk
8n

1 + nη

− qby

γωk

N
∑

n=−N

jn(δFM)

(1 + nη)2
cos8n + Cy ,

z =z 0 +

N
∑

n=−N

8n

1 + nη
−

q2(b2
x − b2

y )

8γ2ω2k

×
N
∑

n=−N

J2
n(δFM)

(1 + nη)3
sin 28n −

q
γ2ωk

N
∑

n=−N

Jn(δFM)

(1 + nη)2

× [χx bx cos8n + f χy by sin8n] + Cz ,

where

Cx = −
N
∑

n=−N

χx

γk
80n

1 + nη
+

qbx

γωk

N
∑

n=−N

Jn(δFM)

(1 + nη)2
cos80n,

Cy = −
N
∑

n=−N

χy

γk
80n

1 + nη
+

qby

γωk

N
∑

n=−N

Jn(δFM)

(1 + nη)2
sin80n,

–1.0 1.00.50
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–2 ·1018

2 ·1018

–1 ·1018

–0.5

1 ·1018

Figure 3. Phase-angle distribution of particle radiation intensity

at wave intensity I lin = 107 TW/cm2 at different frequency modu-

lation ratios (1 — δFM = 0, 2 — δFM = 0.5, 3 — δFM = 1).
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Cz = −
N
∑

n=−N

80n

1 + nη
+

q2(b2
x − b2

y )

8γ2ω2k

×
N
∑

n=−N

J2
n(δFM)

(1 + nη)3
sin 280n

+
q

γ2ωk

N
∑

n=−N

Jn(δFM)

(1 + nη)2
[χx bx cos80n + f χy by sin80n],

Circular polarization

By substituting the coordinates of the particle and

the modulus of the Umov−Poynting vector (5) into for-

mula (14), we obtain the following expression:

dP
d�

= Icir

N
∑

n=0

J2
n(δFM)

{(

χ2x + χ2y

γ2
+ h2

)

N
∑

n=0

82
n

(1 + nη)2k2

− 2
qb(1 + h)√
2γ2ωk2

N
∑

n=0

Jn(δFM)

(1 + nη)3
(χx cos8n + f χy sin8n)

+ 2

(

Cxχx + Cyχy

γ
+ hCz

) N
∑

n=0

8n

(1 + nη)k

+
q2b2

2γ2ω2k2

N
∑

n=0

J2
n(δFM)

(1 + nη)4

[

1− (χx cos8n+ f χy sin8n

γ2

]

+ C2
x + C2

y + C2
z − 2

qb√
2γωk

N
∑

n=0

Jn(δFM)

(1 + nη)2

×
[

(Cx cos8n + f Cy sin8n)

+
Cz

γ
(χx cos8n) + f χy sin8n)

]}

.

(15)
Integrating expression (15) over the solid angle

d� = cos8nd8ndθ, we obtain the total radiation power of

the charge:

P =
4µπ2

k2
Icir

N
∑

n=0

J4
n(δFM)

(1 + nη)4

(

1+
µ

2

N
∑

n=0

J2
n(δFM)

(1 + nη)2

)

×
[

1 +
(

cos80n +
π

2
sin80n

)]

.

The phase portrait of the total charge radiation power in

the field of the FM wave will look like shown in Fig. 4.

From the figure you can see a tendency to a sharp

decrease in the area of phase distribution with increasing

modulation coefficient δFM.

Linear polarization

Substituting the coordinates of the particle and the

modulus of the Umov−Poynting vector (7) into formula

–1.0 1.00.50

1

2

3

18
4 ·10

18
–4 ·10

–0.5

18
2 ·10

4

18
–2 ·10

Figure 4. Phase distribution of particle radiation power in the

field of FM wave intensity Icir = 107 TW/cm2 at different frequency

modulation coefficients (1 — δFM = 0, 2 — δFM = 0.5, 3 —
δFM = 1, 4 — δFM = 1.5).

(14), we obtain the following expression:

dP
d�

= I lin

N
∑

n=0

J2
n(δFM) cos2 8n

{(

χ2x
γ2

+ h2

)

×
N
∑

n=0

82
n

(1 + nη)2k2
− 2

qbχx (1 + h)

γ2ωK2

N
∑

n=0

Jn(δFM)

(1 + nη)3

8n cos8n + 2

(

Cxχx

γ
+ hCz

) N
∑

n=0

8n

(1 + nη)k

− q2b2

4γ2ωk2

h
k

N
∑

n=0

Jn(δFM)

(1 + nη)4
8n sin 28n

+
q3b3χx

4γ4ω3k3

N
∑

n=0

J3
n(δFM)

(1 + nη)5
cos8n sin 28n

+
q2b2

γ2ω2k2

(

1 +
χ2x
γ2

) N
∑

n=0

J2
n(δFM)

(1 + nη)4
cos2 8n

+
q4b4

64γ4ω4k4

N
∑

n=0

J4
n(δFM)

(1 + nη)6
sin2 28n

+ C2
x + C2

z − 2
qb
γωk

(

Cx +
Cz χx

γ

) N
∑

n=0

Jn(δFM)

(1 + nη)2
cos8n

− Cz
q2b2

4γ2ω2k2

N
∑

n=0

J2
n(δFM)

(1 + nη)3
sin 38n

}

(16)

Integrating expression (15) over the solid angle

d� = cos8nd8ndθ, we obtain the total radiation power of
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Figure 5. Phase distribution of particle radiation power in the field of FM wave intensity I lin = 107 TW/cm 2 at different frequency

modulation ratios (1 — δFM = 0, 2 — δFM = 1, 3 — δFM = 3).

the charge:

P =
q2

πm2c5
I2lin

N
∑

n=0

J2
n(δFM)

{

14

9

N
∑

n=0

J2
n(δFM)

(1 + nη)2

×
(

µ

16

N
∑

n=−N

J2
n(δVM)

(1 + nη)2
(2 sin2 80n + 1)2 + sin80n

)

+
π3

4

N
∑

n=0

J2
n(δFM)

(1 + nη)4

×
(

µ

4

N
∑

n=−N

J2
n(δFM)

(1 + nη)2
(2 sin280n + 1) + 1

)

sin80n

− 3

4

N
∑

n=0

J2
n(δFM)

(1 + nη)4
(80n sinφ0n + cos80n)

+
µ

40

N
∑

n=−N

J2
n(δFM)

(1 + nη)2
(2 sin2 80n + 1)

}

,

The phase portrait of the total charge radiation power in

the field of the FM wave will look like shown in Fig. 5.

In Fig. 5, just as in the previous one, we can trace the

tendency of the phase distribution area to decrease with

increasing modulation coefficient δFM, and the right part of

the function decreases more rapidly.

4. Fourier transform of the electric field
strength of a particle in the field of an
FM wave

The radiation spectrum of a charged particle in the field

of a plane FM electromagnetic wave can be represented as

a sum of an infinite number of waves:

E(r, t) =

∞
∑

ω=−∞

Eω(r)

× exp
{

− i[ωξ + δFM sin(ω′ξ + α0) + ϕ0]
}

.

The Fourier component can be represented as a periodic

function with period T̃ = (1 + h)2π/ω:

Eω(r) =
1

T̃

t̄
∫

t

E(r, t)

× exp
{

− i[ωξ + δFM sin(ω′ξ + α0) + ϕ0]
}

dt. (17)

From equation (1) we express E(r, t), substitute it

into function (17) and go from integrating over time to

integrating over the space-time component ξ :

Eω(r) =
1

T̃

ξ(t̄)
∫

ξ(t)

(

1

q
dp
dt

− 1

c
[v] ×H

)

×
N
∑

n=0

Jn(δFM) cos8n(1 + g)dξ.

Then for the real part of Eω(r) we obtain the following

components:

Re(Eω,x ) =
bx

2(1 + h)

N
∑

n=0

J2
n(δFM)

×
[

(1 + h) −
q2(b2

x − b2
y )

8γ2ω2

N
∑

n=0

J2
n(δFM)

(1 + nη)2

]

, (18)

Re(Eω,y ) = Re(Eω,z ) = 0.
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Linear polarization

In this case, from (18) for the Fourier transform, we get

Re(Eω) = b
N
∑

n=0

J2
n(δFM)

×



















8 + µ
N
∑

n=−N

J2
n(δFM)

(1+nη)2 [4(2 sin
2
8n + 1) − 1]

16 + 8µ
N
∑

n=−N

J2
n(δFM)

(1+nη)2 (2 sin
2 8n + 1)



















. (19)

By substituting (19) into formula (17), we get the

radiation spectrum of the particle at the initial moment of

time:

Re(E(r, t0)) = b
ω=∞
∑

ω=−∞

N
∑

n=0

J2
n(δFM)

A
B
. (20)

where

A = 8 + µ

N
∑

n=−N

J2
n(δFM)

(1 + nη)2

[

4(2 sin2 8n + 1) − 1
]

,

B = 16 + 8µ

N
∑

n=−N

J2
n(δFM)

(1 + nη)2
(2 sin2 8n + 1).

The radiation spectrum has the following phase distribu-

tion:

Re

(∣

∣

∣

∣

dE(r, t0)
d80

∣

∣

∣

∣

)

= b
ω=∞
∑

ω=−∞

N
∑

n=0

J2
n(δFM)

×
∣

∣

∣

∣

∣

(

1− 2
A
B

)

8µ

B

N
∑

n=−N

J2
n(δFM)

(1nη)2
sin 28n

∣

∣

∣

∣

∣

. (21)

The radiation spectrum of a particle at a unit solid angle

is defined by the formula

Re

(∣

∣

∣

∣

dE(r, t0)
d�

∣

∣

∣

∣

)

=
b
2π

ω=∞
∑

ω=−∞

N
∑

n=0

J2
n(δFM)

×
∣

∣

∣

∣

∣

(

1− 2
A
B

)

16µ

B

N
∑

n=−N

J2
n(δFM)

(1 + nη)2
sin2 8n

∣

∣

∣

∣

∣

. (22)

The phase-angular distribution of this radiation spectrum

is as follows

Re

(∣

∣

∣

∣

dE(r, t0)
d80d�

∣

∣

∣

∣

)

=
b
2π

ω=∞
∑

ω=−∞

N
∑

n=−N

J2
n(δFM)

(1 + nη)2

×
∣

∣

∣

∣

16µ

B

(

1− 2
A
B

)

×
(

1− 16µ

B

N
∑

n=−N

J2
n(δFM)

(1 + nη)2
sin28n

)

cos8n

∣

∣

∣

∣

∣

. (23)

Let us represent the function that characterize spectral

density of the radiation:

Re(S(ω)) = Re
(

|E(r, t0)|2
)

= b2

∣

∣

∣

∣

∣

ω=∞
∑

ω=−∞

N
∑

n=0

J4
n(δFM)

A2

B2

∣

∣

∣

∣

∣

.

(24)
The phase distribution of the spectral density of radiation

is expressed by the formula

dS(ω)

d80

= 32µ2b2

∣

∣

∣

∣

∣

ω=∞
∑

ω=−∞

N
∑

n=−N

J8
n(δFM)

(1 + nη)4
A
B3

sin 28n

∣

∣

∣

∣

∣

.

(25)
The spectral density of radiation per unit solid angle is

determined by the expression

dS(ω)

d�
=

32µ2b2

π

∣

∣

∣

∣

∣

ω=∞
∑

ω=−∞

N
∑

n=−N

J8
n(δFM)

(1 + nη)4
A
B3

sin8n

∣

∣

∣

∣

∣

. (26)

By differentiating relationship (26) with respect to 80, we

get the phase-angular distribution:

d2S(ω)

d80d�
=

32µ2b2

π

∣

∣

∣

∣

∣

ω=∞
∑

ω−ω

N
∑

n=−N

J8
n(δFM)

(1 + nη)4

×
[

A
B3

cos8n −
16µ

B4

(

B − 3µ

N
∑

n=−N

J2
n(δFM)

(1 + nη)2

)

×
N
∑

n=−N

J2
n(δFM)

(1 + nη)2
sin2 8n sin8n

]∣

∣

∣

∣

∣

. (27)

Conclusion

The issue of spectral-angular radiation characteristics of

a charged particle in the field of a frequency-modulated

electromagnetic wave is investigated. Expressions for

intensity and power of relativistic charge radiation in the

case of circularly and linearly polarized electromagnetic

wave are obtained. The phase distributions of intensity

and power of radiation of a particle moving in the FM

electromagnetic wave with intensity 1019 W/cm 2 were

obtained. Fourier transform of the electric field strength

of particle radiation in the field of FM electromagnetic

wave of linear polarization is calculated. Results of this

study can be used for the mathematical interpretation of

experiments on the interaction of modulated laser radiation

with magnetoplasma.
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