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Magnetic field inside and in the proximity of the toroidal plasma current

filament strapped in the equilibrium by an external axial field
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We provide a description of magnetic field inside and outside of a circular plasma ring carrying an electric

current. The equilibrium is maintained by an external axial magnetic field. The provided solution is close to that by

Titov and Demoilin (1999), but our solution is more general and accurate.
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Here we propose a description of an equilibrium plasma

current filament applicable in simulating the coronal mass

ejection (CME) on the Sun. It is believed that the source

of CME in the solar corona may be a segment of a

dense toroidal plasma current filament kept in equilibrium

by the magnetic field of the Sun’s active region (AR).
Superimposing such a configuration [1] onto the AR model

enables numerical simulation of the initial equilibrium, loss

of equilibrium due to instability, and conversion of the

filament current energy to the CME kinetic energy [2].
Contrary to the case of applications to the magnetic confine-

ment of plasma, for which complicated analytical solutions

in external specially created fields are of interest [3], the

proposed simple solution is used as an initial condition for

equations of relaxation magnetohydrodynamics (RMHD)
whose solution drives the equilibrium to real external fields

of AR.

Let us describe axisymmetric magnetic field

B(R) = rot(Aϕeϕ) (A = Aϕeϕ is the vector potential,

eϕ is the coordinate ϕ unit vector) created by toroidal

current j = jϕeϕ in toroidal coordinates (u, v, ϕ) that may

be expressed in cylindrical coordinates (z , r, ϕ) in the

following way:

sin v =
2R∞z
R+R−

, cos v =
R2 − R2

∞

R−R+
, κ′(u) =

R−

R+
,

Hu = Hv =
R∞

cosh u − cos v
,

where R∞ is the magnetic axis radius in the z = 0

plane where u → ∞; Hu,v are the Lamet coeffi-

cients; R =
√
R2 =

√
r2 + z 2, R is the radius-vector from

the configuration center to the specified point, and

R± =
√

R2 + R2
∞ ± 2R∞r is the maximal (+) and minimal

(−) distance from the point to the magnetic axis. Unit

vectors of the toroidal coordinates are defined as follows:

ev =
(R2 − R2

∞)ez − 2R(R · ez )

κ′R2
+

, eu =
[

ev × eϕ
]

. (1)

After the ψ = (R∞r)1/2Aϕ substitution, the Ampere equa-

tion rot rotA = µ0J takes the following form:

µ0
{

HuHvJϕ
}

=
1√

R∞r

(

−d2ψ

∂u2
− ∂2ψ

∂v2
+

3ψ

4sinh2u

)

, (2)

{HuHvJϕ} is the current density normalized to dudv .
Fourier decomposition (i is the imaginary unit)

ψ=

∞
∑

n=−∞

exp(inv)ψn(u), Jϕ=

√

R∞

r5

∞
∑

n=−∞

exp(inv) jn(u)

separates the variables in (2): each field harmonic ψn is

determined by current harmonic jn,

d2ψn(u)

du2
−

(

n2 +
3

4(sinh u)2

)

ψn(u) = −µ0R∞

jn(u)

(sinh u)2
.

(3)
The major and minor radii R0, a on the plasma filament

boundary are related with R∞ =
√

R2
0 − a2, while coor-

dinate u = u0 has a constant value, κ′(u0) = a/(R0 + R∞).
Outside the filament, where κ′(u) > κ′(u0), the equation (3)
right-hand part becomes zero and has a solution in the form

of toroidal function P̃−1
n−1/2(u) =

√
2sinh uP−1

n−1/2(cosh u),

where P−1
n−1/2(coshu) is the associated Legendre function.

Inside the filament, the equation (3) solution gets expressed

via functions Q̃−1
n−1/2(u) =

√
2sinh uQ−1

n−1/2(cosh u). The

toroidal functions are to be calculated via hypergeometric

series in terms of powers of κ′. The current integral

I =

∫ ∞

u0

∫ 2π

0

{

HuHvJϕ
}

dvdu

=

∞
∑

n=−∞

∫ ∞

u0

jn(u)Q̃−1
n−1/2(u)

(sinh u)2
du (4)

follows from decomposition [5] of function

[2(cosh u − cos v)]−1/2 and equation (8.734) given in [6].
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Figure 1. Dimensionless amplitudes of axial field B (z)(u)
(solid line), poloidal field B (p)(u) (dashed line) and toroidal

field
b(u)
Bc

(dash-and-dot line) for the toroidal filament with

ratio
a

R0
= 0.2. The function argument κ′(u) = R−/R+ varies

inside the filament from zero on the toroidal magnetic axis

to κ′(u) = κ′(u0) ≈
a

2R0
= 0.1 on the filament surface; values

κ′ > 0.1 correspond to the space outside the filament. The dashed

lines represent the option curves for the current distribution which

decreases to zero on the boundary in a narrow region near the

filament boundary, in distinct with the uniform current distribution

(all the other curves) which changes stepwise from a finite value

inside the filament to zero outside it.

Let us consider the case when the field has only one

harmonic n = 0. Hereinafter, index 0 is missed. Poloidal

magnetic field outside the filament

B =
4R∞

κ3R3
+

(

ψez −
κ2

κ′
dψ
du

ev

)

,

ψ(u < u0)

µ0R∞I
=

P̃−1
−1/2(u)

8
, κ =

√

1− κ′2 (5)

coincides with the known field of the infinitely thin circular

current (see task 2 to ch. 30 in [7]). For the finite-thickness

filament, this conventional solution gets realized if j ≡ j0(u)

(so that Jϕ ∝ j0(u)
r5/2 ). According to (5) and (6), the

field in the center (R = 0) where κ → 0, P̃−1
−1/2(u) → κ3

4
,

dP̃−1
−1/2

(u)

du → 3κ
4
, κ′ → 1, equals Bc = µ0Iez /(2R∞). In the

proximity of the filament and inside it we have

B=
R3/2
∞

r3/2

[

2R(Bc ·R)+Bc(R2
∞ − R2)

R2
+κ

′
B (p)(u)+BcB (z )(u)

]

,

(6)
where amplitudes of axial field B (z )(u) and poloidal field

B (p)(u) normalized to Bc are in essence

B (z ) ≡ ψ

µ0R∞I
, B (p) =

κ2

κ′
dB (z )

du
. (7)

If the current density inside the filament is uniform,

j(u > u0) = −3I/[4dQ̃−1
−1/2(u0)/du0], the equation (3)

solution is represented by a sum of the partial (constant)
and general solutions of the homogeneous equation

∝ Q−1
−1/2(u) which ensures the field continuity at u = u0:

B (z )(u < u0) ≡
ψ

µ0R∞I
,

B (p)(u > u0) =
κ2

8κ′

dP̃−1
−1/2(u0)/du0

dQ̃−1
−1/2(u0)/du0

dQ̃−1
−1/2(u)

du
,

ψ(u > u0)

µ0R∞I
=

dP̃−1
−1/2(u0)/du0

8dQ̃−1
−1/2(u0)/du0

Q̃−1
−1/2(u)

− 1

dQ̃−1
−1/2(u0)/du0

. (8)

Fig. 1 presents amplitudes (8) for a filament with

a/R0 ≈ 0.2. Other partial solutions of equation (3) for the

zero harmonic (n = 0) of the field ψ0 ∼ Pm(coth u)
arise if the current distribution may be fitted by

Legendre polynomial j0(u) ∼ Pm(coth u) with argument

coth u =
R2

++R2
−

R2
+−R2

−

; the solution for the current representable

as a linear combination of Legendre polynomials is

more cumbersome. Remember that the uniform current

distribution giving rise to equation (8) matches the

zero-order Legendre polynomial: P0(coth u) = 1.

The equilibrium is controlled by toroidal field

±Bϕeϕ and plasma pressure, which we assume to be

B2
ϕ = b2(u)R3

∞/r3, P = p(u)R3/r3. The force normalized

to unit volume implies the poloidal field effect on toroidal

current

Jϕeϕ × B =
j(u)sinh u

r4
dψ
du

eu +
JϕAϕ
2r

er , (9)

as well as the toroidal field impact on poloidal current and

pressure gradient is

rot(Bϕeϕ)

µ0
× Bϕeϕ −∇P = −R3

∞sinhu
r4

d ptot(u)

du
eu

+
3P + B2

ϕ/(2µ0)

r
er , (10)

where ptot(u) = p(u) +
b2(u)
2µ0

= (1 + β) b2

2µ0
is the the total

pressure. The total force directed along eu disappears

when R3
∞d ptot/dψ = j(u). For the uniform current j(u),

integration provides

ptot(u) =
3B2

c

8µ0

dP̃−1
−1/2(u0)/du0

[dQ̃−1
−1/2(u0)/du0]2

[

Q̃−1
−1/2(u0) − Q̃−1

−1/2(u)
]

.

(11)
The pressure difference between the filament depth and

surface is counterbalanced by the toroidal current pinch-

effect. If β = 2µ0p(u)/b2(u), equilibrium (11) is completely

governed by distribution of the toroidal field whose ampli-

tude b(u)/Bc is shown in Fig. 1. Peculiarities of amplitudes
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Figure 2. The result of applying the obtained solution to describing CME 2013-04-11. The plasma filament major and minor radii

R0 = 0.2, a = 0.04 are normalized to the solar radius, Karrington longitude and latitude of the configuration center are 2135 : 79.8◦ and

12.8◦, respectively. a — force lines of the total AR magnetic field and superimposed current-carrying plasma configuration. The green

bundle of twisted magnetic lines illustrates the plasma filament internal field. Lines of other colors represent force lines of external fields

of different topologies. The red and blue colors on the (horizontal) solar surface represent AR-forming sunspots of positive and negative

polarity. b — magnetic fields in the current filament meridional cross-section: white curves are the lines of poloidal field (B z , B r) (the
same are cross-sections of magnetic surfaces), the color indicates the level of the rBϕ value proportional to the poloidal current. c —
the same as above but after the RMHD relaxation during 6000 s. The equi-current lines ideally coincide with the magnetic surfaces thus

demonstrating the equilibrium character of the obtained configuration. The colored figure is given in the electronic version of the paper.

on the filament boundary (vertical asymptote in the toroidal

field amplitude, a jump of derivative in the poloidal

field amplitude) disappear if in a minor neighborhood

of the boundary there is introduced current distribution

j0 ∼ [coth(u0 − ε) − coth u], u0 − ε < u < u0 + ε, ε ≪ 1

becoming zero at the filament boundary.

Resulting force fr ‖ er obtained by summing (9) and

(10) tends to extend the filament in the er direction. The

filament may be prevented against expansion by external

field B(str) = B (str)ez which can be estimated (see [3,8])
by integrating, over the filament volume, the sum of the

extending and confining forces fr + Jϕeϕ × B(str) scalarly

multiplied by R (such an integral estimation is referred to

as Shafranov’s virial theorem [9]), the volume element being

dV = rdϕdS:
∫

(fr · R + JϕrB (str))dV =

∫
(

jϕAϕ
2

+
B2
ϕ

2µ0
+ 3P

)

dV

+ 2πB (str)IR2
∞ ≈ LI2

2
+ 2πB (str)IR2

∞.

(12)
At constant β, the first integral is expressed through the

magnetic field energy, which makes it possible to define

it as
1
2
LI2 (where L is the inductance) and estimate the

confining field

B (str) ≈ − LI
4πR2

∞

,

L =
2

I2

∫
[

jϕAϕ
2

+
B2
ϕ

2µ0

(

1 +
2β

1 + β

)]

dV

≈ µ0R∞

(

π2

2

P̃−1
−1/2(u0)

Q̃−1
−1/2(u0)

+
3

4
+

β

1 + β

)

. (13)

When a/R0 ≪ 1 and β = 0, relation (13) coincides with

that used in [1,8]. In performing integral estimation (13)
for the confining field, the filament as a whole does not get

displaced along the major radius (global equilibrium), while

the local equilibrium imposes an onerous restriction upon

the local confining field (equation (3.47) from [3]).

To use the obtained solution as a CME model, in the

magnetic configuration that have given rise to its AR there

should be found a line almost semicircle in shape on

which magnetic field B (str) transverse to the circle plane

is approximately constant [10]. Equation (13) defines the

current inside the plasma filament in the obtained field,

which, in its turn, defines the filament magnetic field.

The three-dimensional configuration of the total magnetic

field of AR and plasma filament is shown in Fig. 2, a as

applied to CME 2013-04-11; the plasma filament major

and minor radii normalized to the solar radius were chosen

equal to R0 = 0.2, a = 0.04, the found confining magnetic

field was B (str) ≈ 2.7 · 10−4 T. When plasma parameter

β = 2µ0P/B2
ϕ is constant, the obtained distribution of the

toroidal magnetic field allows determining the pressure and,

at a specified temperature T , the distribution of density

ρ ∝ P/T . Fig. 2, b presents the meridional cross-section of

the plasma filament. In white, magnetic lines of the poloidal

field (B z , B r) are shown (in other words, cross-sections of

magnetic surfaces [3,7]). The color indicates the level of

the value of rBϕ, i. e. of poloidal current whose equilibrium

amplitude is to be constant over the magnetic surface [3,7].
One can see that the current isolines deviate a little from

the magnetic surfaces; thus, the equilibrium is not absolute.

To achieve the equilibrium, let us substitute distributions

of the fields and parameters of plasma as initial conditions

Technical Physics Letters, 2023, Vol. 49, No. 6
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into the RMHD equations differing from the magnetic

hydrodynamics equations (see [7]) in the presence of

an additional retarding force with density − ρ

τ
U directed

opposite to the velocity vector U and inducing relaxation of

velocity emerging in the initially-nonequilibrium distribution

during about τ ∼ 103 s. Let us consider as an example the

relaxation in a uniform external field; this allows solving

2D axisymmetric RMHD equations. The result of a 6000 s

evolution is presented in Fig. 2, c which evidently demon-

strates the alignment of the current levels on magnetic

surfaces and achieving a precise equilibrium. The video

file (see the supplementary materials) demonstrates that the

transition to equilibrium proceeds via attenuating internal

oscillations. In the 3D RMHD model, the filament may also

approach the 3D equilibrium via bending oscillations, and,

therefore, the equilibrium shape of the filament in a real

nonuniform field differs from the toroidal one.
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