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1. Introduction

Power-law frequency dependence of conductivity

σ (ω) ∝ ωs (s is a constant; usually, 0.5 < s < 1) is known

to match well with σ (ω) of disordered semiconductors in a

wide frequency range (see, for example, [1,2]). At the same

time, an example of deviation from the universal power-

law frequency dependence of conductivity is a transition

(crossover) from almost linear to a quadratic frequency

dependence of the real part of conductivity observed in

Si : P, Si : B at low temperatures (T ≈ 1K) in the terahertz

frequency region [3–5]. The investigation of the deviation of

the frequency dependence of conductivity on universality

(s ≈ 1) provides the information on features of charge

carrier transfer mechanism in disordered semiconductors.

The power-law frequency dependence of conductivity

σ (ω) ∝ ωs in case of disordered semiconductors is asso-

ciated with the hopping transport of electrons over the

localized states of the impurity band. According to [6],
the expression for the real part of the low-temperature

high-frequency relaxation conductivity (conductivity with

the involvement of phonons) is written as

σ rel
1 (ω) =

π2e4g2
Fa

6κ
r̄3ωω, (1)

here e2/(κ r̄ω) > kBT , r̄ω = (a/2) ln(ωph/ω) is the typical

hopping distance in relaxation conductivity at the fre-

quency ω, a is the state localization radius, κ is the

permittivity of medium, gF is the density of localized states

at the Fermi level, ωph is the typical phonon frequency (for
Si : P, for example, ωph/(2π) ≈ 1013 Hz).
For the real part of the low-temperature phononless

(resonance) conductivity in the frequency region where the

energy of Coulomb interaction between electrons inside

the active pairs of centers U(rω) = e2/(κrω) exceeds the

energy ~ω, theory [7,8] gives a sublinear (s < 1) frequency

dependence written in (1):

σ res
1 (ω) =

π2e4ag2
F

3κ
r3ωω, (2)

where e2/(κrω) > ~ω > kBT , rω = a ln(ωc/ω) is the typ-

ical hopping distance in phononless conductivity at the

frequency ω, ωc = 2I0/~ is the critical frequency at

which the typical hopping distance becomes approximately

equal to the state localization radius a , I0 ≈ e2/(κa) is

the pre-exponential factor in the resonance integral

Iλλ′ = I0 exp(−rλλ′/a), ~ω = 2Iλλ′(rω), rλλ′ is the center-

to-center distance in the pair. With increasing frequency,

the phononless contribution to conductivity prevails over

the relaxation contribution. The theory of phononless con-

ductivity [7,8] predicts crossover with increasing frequency

from almost linear frequency dependence of the real part

of conductivity (2) (s ≈ 1 [7,8]) to the dependence close to

the quadratic dependence (s ≈ 2 [9]),

σ res
1 (ω) =

π2e2ag2
F~

3
r4ωω

2, (3)

in the frequency region near some ωcr at which the energy

~ω becomes comparable with the Coulomb interaction

energy between the electrons inside the resonance pairs

U(rω) = e2/(κrω) [7,8],

σ res
1 (ω) =

π2e2ag2
F

3
r4ωω(~ω + U(rω)). (4)

The applicability region of the expressions (2)−(4) is

limited from above by the critical frequency ωc (for Si : P

ωc/(2π) ≈ 1013 Hz).
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Expressions for contributions to conductivity (1)−(3)
with accuracy up to logarithmic corrections meet the

linear and quadratic frequency dependences. With fre-

quency increasing the typical hopping distance r̄ω , rω de-

creases; while functions rn
ωω

m and r̄n
ωω

m ∝ ωm lnn(ωc,ph/ω)
involved in expressions for conductivity are non-

monotonic frequency functions reaching their maximum at

ωmax = ωc,ph exp(−n/m). They may be approximated at

ω ≪ ωc,ph by the power law Aωs with the power exponent

decreasing with the increasing frequency [10]:

s(ω) =
d ln σ (ω)

d lnω
= m − n

ln(ωc,ph/ω)
. (5)

However, according to [11], within the representation of

the frequency-dependent variable hopping distance rω , the
resonance conductivity theory does not describe the low-

temperature conductivity behavior of disordered semicon-

ductors in the region of transition from almost linear to

quadratic frequency dependence. The calculation in [11]
shows that, due to the frequency dependence of the typical

hopping distance rω , the frequency dependence σ res
1 (ω) is

non-monotonic at the values typical to shallow impurities,

and up to the frequency corresponding to the maximum

σ res
1 (ω), the Coulomb interaction between the electrons

of active pairs plays the main role, ~ω < e2/(κrω), and

the frequency dependence σ res
1 (ω) remains close to linear.

Note that the superposition of the relaxation contribution

to conductivity (1) and of the phononless contribution (3),
σ1(ω) = σ res

1 (ω) + σ rel
1 (ω) also does not describe the tran-

sition from the linear frequency dependence of conductivity

to the quadratic one with the increasing frequency.

The pair approximation of the real part of the low-

temperature conductivity in [12] has shown that the ob-

served transition from almost linear to quadratic frequency

dependence in the terahertz frequency range may be

associated with the transition from the conductivity with

a variable hopping distance rω to the conductivity with a

constant optimum hopping distance ropt with the increasing

frequency. According to [12], at high frequencies when the

hybridization effects are insignificant, electron transitions

inside the pairs with center-to-center distances about ropt
make the main contribution to the conductivity. The

optimum hopping distance ropt that does not depend on

frequency and is defined by the system variables causes

the monotonic frequency dependence of the real part of

conductivity in the crossover region,

σ res
1 (ω) =

π2

3
C1e2ρ20a5ω

(

~ω + U(ropt)
)

, (6)

where U(ropt) = e2/(κropt), ropt ≈ 3.5a is the optimum

hopping distance, ρ0 is the density of states assumed

as constant, C1 is the numerical coefficient. According

to [12], transition to the conductivity regime with a constant

hopping distance ropt occurs at rω ≈ ropt (ωopt ≈ 0.05ωc);
and the frequency ωopt is close to the crossover frequency

ωcr ≈ 0.1ωc, ~ωcr ≈ e2/(κropt). In the frequency region

ω > ωopt (rω < ropt), the electron transitions inside the

pairs with center-to-center distances rλλ′ ≈ ropt make the

main contribution to conductivity; in this case the frequency

dependence of conductivity is written as

σ res
1 (ω) =

π2

3
C1e2ρ20a5

~ω2. (7)

The calculations results of the frequency dependence of

the low-temperature phononless conductivity in the high fre-

quency region (7), when the optimum hopping distance ropt
does not depend on frequency, agree with the calculation

results of the low-temperature phononless conductivity

obtained using the self-consistent energy representations

(~ω > e2/(κropt)) [13]. The optimum hopping distance ropt
meets the transitions outside the Coulomb gap in the single-

particle density of states; and in the frequency transition

region, the Coulomb gap does not affect significantly the

frequency dependence of conductivity.

Features of the behavior of the frequency dependence of

the real part of conductivity of disordered semiconductors

in the transition region from almost linear dependence

to quadratic one at temperatures close to absolute zero

~ω > kBT ) were discussed above.

According to [14], with temperature increasing,

kBT > e2/(κ r̄ω), the frequency dependence of the real part

of relaxation conductivity varies insignificantly compared

with (1):

σ rel
1 (ω) =

π4e2ρ20a
24

kBT r̄4ωω; (8)

and the expression for the phononless conductivity in

conditions kBT > ~ω, e2/(κrω) is written as (3) [10].
Therefore, solution of the phononless conductivity problem

at temperatures kBT > ~ω, e2/(κrω) gives the same ex-

pression as in case of low temperatures in a high frequency

region, ~ω > U(rω) > kBT , when the Coulomb interaction

between the electrons in the resonance pairs may be

neglected.

Note that the transition from the relaxation conductiv-

ity (8) to phononless conductivity provided by expres-

sion (3) does not result in crossover from a sublinear to

quadratic frequency dependence of the real part of con-

ductivity, σ1(ω) = σ res
1 (ω) + σ rel

1 (ω), with the increasing

frequency; this is associated with the frequency dependence

of the typical hopping distance rω leading to the decreasing

power exponent s(ω) (5) meeting expression (3), with

the increasing frequency. Numerical calculation of the

phononless conductivity performed by the pair approxima-

tion method in [11] shows that the frequency dependence

of the low-temperature zero-phonon conductivity σ res
1 (ω)

without considering the Coulomb interaction of electrons

falling on the isolated pairs of centers is non-monotonic.

Maximum σ res
1 (ω) is in the range of applicability of the

theory [7], rω > a ; and the conductivity attains saturation

with the increasing frequency.

At the same time, according to [12], in low temperature

conditions in the high frequency region (ω > ωopt ≈ ωcr),
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when the Coulomb interaction between electrons in the

resonance pairs may be neglected, ~ω > U(ropt), transition
to the conductivity regime with a constant hopping distance

occurs; and the conductivity has the quadratic frequency

dependence (7). Transition from the relaxation conductiv-

ity (8) to phononless conductivity given by expression (7)
with the increasing frequency may result in crossover from

the sublinear frequency dependence of the real part of

conductivity to the quadratic one. Therefore, in this case,

the crossover of the frequency dependence of the real

part of conductivity with the increasing temperature may

be preserved and caused by the transition from relaxation

conductivity with a frequency-dependent variable hopping

distance to phononless conductivity with constant hopping

distance.

The objective of this study was to find the behavior

pattern of the high-frequency conductivity of disordered

semiconductors in the frequency transition region with the

increasing temperature, which included the direct calcula-

tion in pair approximation of the frequency dependence of

the real part of phononless conductivity in the frequency

transition region at kBT > ~ω, e2/(κropt). The restriction

put on the temperatures of interest from above is associated

with the transition to the charge carrier band transport.

2. Phononless conductivity calculation
in the frequency transition region
in conditions kBT > ~ω, e2/(κropt)

According to [12], the matrix elements involved in

the expression for the pair approximation of phononless

conductivity [15]:

σ res
1 (ω) =

πe2ω
V0

∑

{λ,λ′},λ 6=λ′

|〈9−
λλ′ |(n, r)|ψ+

λλ′〉|2

×
(

nF(ε
−
λλ′) − nF(ε

+
λλ′)

)

δ(ε−λλ′ − ε+
λλ′ + ~ω), (9)

in case of hydrogen-like impurity centers, are equal to

〈9−
λλ′ |(n, r)|9+

λλ′〉 = (n, rλλ′)
Iλλ′

Ŵλλ′

+
(ε0λ − ε0λ′)〈9λ |(n, r)|9λ′〉

Ŵλλ′
, (10)

here 9±
λλ′ = C±

λ 9λ + C±
λ′9λ′ are hybridized wave functions

of the ground states of electron 9λ, 9λ′ on the isolated

localization centers λ and λ′, n is the single vector

parallel to the external electrical field, 〈9λ |r|9λ〉 = rλ,

〈9λ′ |r|9λ′〉 = rλ′ = rλ + rλλ′ , rλ is the radius vector of

center λ, rλλ′ is the radius vector of center λ′ with respect

to center λ, 〈9λ(n, r)|9λ′〉 = 〈9λ′ |(n, r)|9λ〉, nF(ε) is the

mean occupation number of state with energy ε, V0 is the

system volume. Wave functions

9−
λλ′ =

1
√

1 +
4I2

λλ′

(ε0
λ
−ε0

λ′
+Ŵλλ′)

2

×
(

− 2Iλλ′

ε0λ − ε0λ′ + Ŵλλ′
9λ +9λ′

)

, (11.1)

9+
λλ′ =

1
√

1 +
4I2

λλ′

(ε0
λ
−ε0

λ′
+Ŵλλ′ )

2

×
(

9λ +
2Iλλ′

ε0λ − ε0λ′ + Ŵλλ′
9λ′

)

, (11.2)

meet the lower ε−λλ′ and upper ε+
λλ′ energy levels,

ε±λλ′ =
ε0λ + ε0λ′

2
± 1

2

√

(ε0λ − ε0λ′)
2 + 4I2λλ′ , (12)

here

Ŵλλ′ = ε+
λλ′ − ε−λλ′ =

√

(ε0λ − ε0λ′)
2 + 4I2λλ′ ,

ε0λ , ε
0
λ′ are seed energies (without considering the hy-

bridization), Iλλ′ = 〈9λ |Ûλ|9λ′〉 is the resonance integral;

Ûλ ≈ Ûλ + eφ(rλ) is the potential energy of the localized

electron in the point of the center with number λ taking

into account the Coulomb shift eφ(rλ) associated with other

charged centers in point rλ .

For the resonance pairs of levels with seed energies

ε0λ ≈ ε0λ′ and optimum center-to-center distances rω making

the major contribution to the phononless conductivity at

frequencies ω < ωopt (rω > ropt), the matrix elements (10)
are written as

〈9−
λλ′ |(n, r)|9+

λλ′〉 ≈ (n, rλλ′)
Iλλ′

Ŵλλ′
. (13.1)

The matrix elements written as (13.1) were used in [7,9]
to calculate the frequency dependence of low-temperature

phononless conductivity (2)−(4).

At high frequencies, ω > ωopt (rω < ropt) the main

contribution to the real part of phononless conductivity

is made by the center pairs with wide energy spread

of levels, |ε0λ − ε0λ′ | > 2Iλλ′ , and optimum frequency-

independent center-to-center distance, rλλ′ ≈ ropt; for such

center pairs, matrix elements (10) are equal to

〈9−
λλ′ |(n, r)|9+

λλ′〉 ≈ 〈9λ |(n, r)|9λ′〉. (13.2)

Expressions (13.2) were used in [16] to calculate the low-

temperature phononless conductivity σ res
1 (ω) in the high fre-

quency region (6), (7). Since the major contribution to the

phononless conductivity is made by the pairs whose center-

to-center distance is larger than the localization radius,

rλλ′ > a , then for hydrogen-like impurities in the isotropic
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dispersion law approximation, the matrix element (13.2) is

written as

〈9λ|(n, r)|9λ′〉 ≈
r3λλ′
a2

exp(−rλλ′/a) cos θ, (14)

where θ is the angle between vectors n and rλλ′ ,

9λ(r) = (1/
√
π · a3) exp(−|r− rλ|/a).

To calculate the frequency dependence of conductivity

σ res
1 (ω) in the frequency transition region, ω ≈ ωopt, the

general form of matrix elements (10) shall be used.

Proceeding in (9) from summation to integration, we

obtain [12]:

σ res
1 (ω) = σ res

1a (ω) + σ res
1b (ω) + σ res

1c (ω), (15)

σ res
1a (ω) =

4π2e2ρ20ω
3

×
∞
∫

rω

drλλ′r
4
λλ′

∞
∫

−∞

dε−λλ′

∫

dε+
λλ′8(ε−λλ′ , ε

+
λλ′ , rλλ′)

× I2(rλλ′ )

(ε+
λλ′ − ε−λλ′)

2

(

nF(ε
−
λλ′) − nF(ε

+
λλ′)

)

δ(ε−λλ′ − ε+
λλ′ + ~ω),

(16.1)

σ res
1b (ω) =

4π2e2ρ20ω
3

∞
∫

rω

drλλ′
r6λλ′
a2

exp(−rλλ′/a)

×
∞
∫

−∞

dε−λλ′

∫

dε+
λλ′8(ε−λλ′, ε

+
λλ′ , rλλ′)

× 2Iλλ′
(ε+
λλ′ − ε−λλ′)

2

√

(ε+
λλ′ − ε−λλ′)

2 − 4I2λλ′

× (nF(ε
−
λλ′) − nF(ε

+
λλ′))δ(ε

−
λλ′ − ε+

λλ′ + ~ω), (16.2)

σ res
1c (ω) =

4π2e2ρ20ω
3

∞
∫

rω

drλλ′
r8λλ′
a4

exp(−2rλλ′/a)

×
∞
∫

−∞

dε−λλ′

∫

dε+
λλ′8(ε−λλ′ , ε

+
λλ′, rλλ′)

× ((ε+
λλ′ − ε−λλ′)

2 − 4I2λλ′)

(ε+
λλ′ − ε−λλ′)

2
(nF(ε

−
λλ′) − nF(ε

+
λλ′))

× δ(ε−λλ′ − ε+
λλ′ + ~ω),

(16.3)
here

8(ε−λλ′, ε
+
λλ′rλλ′ ) =

ε+
λλ′ − ε−λλ′

√

(ε+
λλ′ − ε−λλ′)

2 − 4I2λλ′

is the transition Jacobian from seed energies ε0λ , ε
0
λ′ (without

hybridization) to energies ε−λλ′ , ε
+
λλ′ .

The difference of mean occupation numbers

nF(ε
−
λλ′) − nF(ε

+
λλ′) involved in (9) is equal to

nF(ε
−
λλ′) − nF(ε

+
λλ′) =

(

1− exp

(

− ~ω

kBT

))

× exp

(

�− (ε−λλ′ − µ)

kBT

)

, (17)

where exp
(

�−(ε−
λλ′

−µ)

kBT

)

is the equilibrium probability of

single occupation of a pair of centers with the occupied

state energy ε−λλ′, µ is the Fermi level;

exp

(

− �

kBT

)

= 1 + exp

(

− (ε−λλ′ − µ)

kBT

)

+ exp

(

− (ε+
λλ′ − µ)

kBT

)

+ exp

(

−
(

ε−λλ′ + ε+
λλ′ − 2µ

)

kBT

)

.

(18)

According to [7], the Coulomb interaction between

electrons localized simultaneously on the pair of centers of

interest can be considered assuming the energy equal to

ε0λ + ε0λ′ + e2/κrλλ′ . Then the expression for the partition

function (18) is written as

exp

(

− �

kBT

)

= 1 + exp

(

− (ε−λλ′ − µ)

kBT

)

+ exp

(

− (ε+
λλ′−µ)

kBT

)

+exp

(

− (ε0λ + ε0λ′ +e2/κrλλ′−2µ)

kBT

)

,

(19)
where ε−λλ′ + ε+

λλ′ = ε0λ + ε0λ′ . The difference of mean

occupation numbers taking into account the law of conserva-

tion of energy, ε+
λλ′ = ε−λλ′ + ~ω, and equality ε−λλ′ + ε+

λλ′ =
= ε0λ + ε0λ′ may be written as

nF(ε
−
λλ′) − nF(ε

+
λλ′)

=

(

1− exp
(

− ~ω
kBT

)

)

exp
(

− (ε+

λλ′
+e2/κr λλ′−µ)

kBT

)

+exp
(

− ~ω
kBT

)

+1+exp
(

(ε−
λλ′

−µ)

kBT

)

.

(20)

Having integrated (16.1), (16.2), (16.3) with respect of

energies ε−λλ′ , ε
+
λλ′ taking into account (20) provided that

kBT > ~ω, e2/(κropt), we obtain

σ res
1a (ω) =

4π2e2ρ20
3~

∞
∫

rω

r4λλ′~ω
I2λλ′

√

(~ω)2 − 4I2λλ′
drλλ′,

(21.1)

σ res
1b (ω) =

4π2e2ρ20ωC

3

∞
∫

rω

r6λλ′
a2

~ω exp(−2rλλ′/a)drλλ′,

(21.2)

Physics of the Solid State, 2023, Vol. 65, No. 7



1196 M.A. Ormont, N.V. Valenko

σ res
1c (ω) =

4π2e2ρ20
3~

×
∞
∫

rω

r8λλ′
a4

~ω exp(−2rλλ′/a)
√

(~ω)2 − 4I2λλ′drλλ′ ;

(21.3)
(21.1), (21.2), (21.3) consider that

exp

(

�− (ε−λλ′ − µ)

kBT

)

≈
(

exp

(

(ε−λλ′ − µ)

kBT

)

+ 2 + exp

(

− (ε−λλ′ − µ)

kBT

))−1

,

(22)
∞
∫

−∞

(

nF(ε
−
λλ′) − nF(ε

−
λλ′ + ~ω)

)

dε−λλ′ =

(

1− exp

(

− ~ω

kBT

))

×
∞
∫

−∞

exp

(

�− (ε−λλ′ − µ)

kBT

)

dε−λλ′ ≈ ~ω,

(23)
where

exp

(

�− (ε−λλ′ − µ)

kBT

)

≈ 1

4
ch−2

(

ε−λλ′ − µ

2kBT

)

,

∞
∫

−∞

exp

(

�− (ε−λλ′ − µ)

kBT

)

dε−λλ′ ≈ kBT.

Recall that in case of low temperatures, kBT < ~ω,

e2/(κrω), integration with respect to the energy of the

difference of mean occupation numbers gives

∞
∫

−∞

(nF(ε
−
λλ′) − nF(ε

−
λλ′ + ~ω))dε−λλ′ =

µ
∫

µ−~ω−e2/κr λλ′

dε−λλ′

= ~ω +
e2

κrλλ′
;

and expressions for conductivity components can be de-

rived by substitution in (21.1), (21.2), (21.3) ~ω for

~ω + e2/(κrλλ′) under the integral signs [12].
In conditions kBT > ~ω, e2/(κropt) in the frequency

region ω ≪ ωc, (21.1) makes the main contribution to the

phononless conductivity; in this case the expression for zero-

phonon conductivity is written as (3):

σ res
1a (ω) =

π2e2aρ20~
3

r4ωω
2. (24)

In the conductivity regime with a variable hopping

distance rω > ropt (ω < ωopt) the contributions from the

terms (21.2), (21.3) to the phononless conductivity (15) are

exponentially low. The frequency dependence of the real

part of phononless conductivity (24) appears to be stronger

than the frequency dependence of conductivity (2) meeting

the low temperature case.

At high frequencies ω > ωopt (rω < ropt) in the regime

with a constant hopping distance ropt, term (21.3) makes the

decisive contribution to the phononless conductivity (15).
The term under the integral sign in (21.3) has a sharp

maximum in the vicinity of ropt; in conditions rω < ropt,
the contribution (21.3) may be written as

σ res
1c (ω) ≈ 4π2e2ρ20~

3
ω2

∞
∫

0

r8λλ′
a4

exp(−2rλλ′/a)drλλ′.

(25)
(25) considers that

√

(~ω)2 − 4I2λλ′ ≈ ~ω

at rω + a < rλλ′ . Integrating in (25), we get an expression

for the phononless conductivity (7)

σ res
1c (ω) =

π2

3
C1e2ρ20a5

~ω2, (26)

where C1 ≈ 315 is the numerical coefficient. From the

integration function form in expression (25) it follows that

the major contribution to the phononless conductivity at

high frequencies is made by the pairs whose center-to-center

distances are about rλλ′ ≈ ropt; the maximum term under

the integral sign is achieved at the optimum value equal to

ropt = 4a .

3. Conclusion

Figure 1 shows the results of calculation of the frequency

dependence of phononless conductivity σ res
1 (ω/ωc) (15)

in the transition region from the variable to constant

w w/ c
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s
s

1
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3 '

Figure 1. Frequency dependences of the real part terms of

phononless conductivity σ res
1 /σ0: curve 1 — (21.1), 1′ — (24),

2 — (21.2), 3 — (21.3), 3′ — (26); 4 — frequency dependence

of phononless conductivity (15). The conductivity is normalized to

σ0 = 1
3
π2e4a4ρ2

0ωc/κ .
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Figure 2. Frequency dependences s(ω/ωc) = d ln(σ )
d ln(ω)

= ω/ωc
σ/σ0

dσ/σ0
dω/ωc

. Curve 1 corresponds to the phononless conductivity

with a variable hopping distance (21.1); curve 1′ corresponds

to the expression for phononless conductivity with a variable

hopping distance (24); curve 2 corresponds to the phononless

conductivity (15).
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Figure 3. Curve 1 — frequency dependence of relaxation

conductivity σ rel
1 /σ0 (1); 2 — frequency dependence of relaxation

conductivity (8), T = 60K, 3 — frequency dependence of the

interpolation expression for the relaxation conductivity (27); 4 —
frequency dependence of phononless conductivity σ res

1 /σ0 (15);
5 — superposition of relaxation (27) and phononless (15)
contributions to the conductivity, σ1(ω) = σ res

1 (ω) + σ rel
1 (ω).

hopping distance in conditions kBT > ~ω, e2/(κropt). For

typical values of a ≈ 80 Å, κ ≈ 10 in case of disordered

semiconductors, we have e2/(κropt) ≈ 4meV; in this case

a frequency about 1 THz (ω ≈ 0.1ωc) meets the equality

~ω ≈ e2/(κropt). According to the calculation, the transition

for the phononless conductivity from a variable rω to

constant hopping distance ropt ≈ 4a occurs at ropt ≈ rω
(ωopt ≈ 0.02ωc). At low frequencies ω < ωopt (rω > ropt)
in the conductivity regime with a variable hopping distance

rω , the phononless conductivity is determined by expres-

sion (24). The frequency dependence of the term (21.1) is

non-monotonic (Figures 1 and 2); this is associated with the

decrease in typical hopping distance rω with the increasing

frequency. At high frequencies ω > ωopt (rω < ropt) in the

conductivity regime with a constant hopping distance ropt,
the expression for the phononless conductivity is written

as (26); in this case the term (21.3) makes the decisive

contribution to the phononless conductivity (15). Thus,

like in the low temperature case (e2/(κrω), ~ω > kBT ),
in conditions kBT > ~ω, e2/(κropt), in the high frequency

region, a transition to the constant hopping distance occurs

for the phononless conductivity, when the major contribu-

tion to the conductivity is made by the electron transitions

inside the pairs with the optimum center-to-center distances

rλλ′ ≈ ropt.
Figure 3 shows the superposition of the relaxa-

tion and phononless contributions to the conductivity,

σ1(ω) = σ res
1 (ω) + σ rel

1 (ω). With the increasing tempera-

ture, kBT > e2/(κrω), the frequency dependence of the real

part of relaxation conductivity becomes slightly weaker [17];
in this case, the interpolation expression for the real part of

relaxation conductivity is written as [10]:

σ rel
1 (ω) =

π4e2aρ20
24

ωr̄4ω

(

kBT +
4

π2
U(r̄ω)

)

. (27)

Figure 4 shows that the transition from the relaxation

conductivity to phononless conductivity in the variable hop-

ping distance regime given by expressions (21.1) and (24)
with the increasing frequency does not result in crossover

from the sublinear frequency dependence of the real part of

conductivity to the quadratic one. At the same time, the

transition from the relaxation conductivity to phononless
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Figure 4. Frequency dependences s(ω/ωc) = d ln(σ )
d ln(ω)

= ω/ωc

σ/σ0

dσ/σ0
dω/ωc

. Curve 1 corresponds to the relaxation conductivity

σ rel
1 /σ0 (1); curve 2 corresponds to the relaxation conductivity (8);

curve 3 corresponds to the interpolation expression for the relax-

ation conductivity (27); curve 4 corresponds to the superposition

of the relaxation contribution (27) and contribution (21.1) to

the phononless conductivity (15); curve 5 corresponds to the

superposition of the relaxation contribution (27) and contribu-

tion (24) to the phononless conductivity (15); curve 6 correposnds

to the superposition of the relaxation (27) and phononless (15)
contributions to conductivity, σ1(ω) = σ res

1 (ω) + σ rel
1 (ω).
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conductivity with the constant hopping distance given by

expression (26) with the increasing frequency causes the

crossover from the sublinear frequency dependence of the

real part of conductivity to the quadratic one (Figures 3

and 4). The superlinearity (s > 1) of the real part of

disordered semiconductor conductivity in the frequency

transition region is a sign of crossover effect.

Note that the transition frequency for the phononless

conductivity from the variable to constant hopping distance,

ωopt ≈ 0.02ωc, is about the crossover frequency ωcr, in the

vicinity of which transition from the relaxation conductivity

to phononless one occurs, σ rel
1 (ωcr) = σ res

1 (ωcr). Therefore,
the transition from sublinear to quadratic frequency depen-

dence of the real part of conductivity σ1(ω) occurs in the

vicinity of frequency ωopt (rω ≈ ropt).
Thus, with the increasing temperature, the transition from

almost linear to quadratic frequency dependence of the

real part of conductivity observed at low temperatures in

disordered semiconductors may be preserved; whilst, with

the increasing temperature, the crossover of the frequency

dependence of the real part of conductivity in the terahertz

frequency range may be caused by the transition from the

relaxation conductivity with a variable frequency-dependent

hopping distance to the phononless conductivity with a

constant hopping distance.
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