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Vibrations of charged particles in compositions of three-dimensional high-frequency quadrupole and static

homogeneous electric fields in the stable region and in the vicinity of the stability boundary of the Mathieu

diagram are investigated. Using a pseudopotential model of a rapidly oscillating field, it is shown that the motion of

charged particles during linear scanning of a secular frequency is described by the Airy differential equation. Based

on the properties of solutions of the Airy equation, a method of ion mass separation with resonant excitation of

oscillations at the stability boundary of the Mathieu diagram has been developed. To implement the method, the

ion-optical system of the three-dimensional trap is supplemented with corrective electrodes. Computer modeling

has determined the optimal potentials of the correcting electrodes, at which the errors of the distributions of

quadrupole and homogeneous fields do not exceed 10−4 and 2 · 10−3. Keywords: superposition of quadrupole and

homogeneous fields, Airy differential equation, mode of resonant excitation of oscillations, three-dimensional ion

trap with correcting electrodes.
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Introduction

The selective properties of high-frequency (HF)
quadrupole electric fields are widely used in mass spec-

trometry to separate ions by specific charge [1]. But strictly
speaking, the possibilities of the rapidly oscillating fields for

increasing the resolution and sensitivity of quadrupole ion

mass analyzers are practically exhausted. To improve the

analytical parameters of mass spectrometers of this class, the

methods were developed for selecting ions in quadrupole

HF fields by superposition of excitation homogeneous

fields [2] to them. In this case, the movement of ions

is described by the inhomogeneous Mathieu differential

equation. One of the independent solutions of the equation

is the excitation function, which is not related to the initial

parameters (coordinates and velocities) of the particles. In

this case, it becomes possible to significantly improve the

analytical parameters of quadrupole mass-spectrometers by

optimizing the excitation function.

The methods considered in [2] assume excitation of ion

oscillations by a harmonic homogeneous field in the depth

of the first zone of the stability diagram. However, due

to the low rise rate and the irregularity of the excitation

function, the analytical capabilities of the method turned

out to be limited.

The method development is the excitation of ion os-

cillations at one of the stability limits of the Mathieu

diagrams, where the excitation function increases without

limit. The method is implemented in the superposition of

quadrupole and homogeneous fields with slow scanning of

the Mathieu parameter a from the depth of the stability

zone from a = 0 to the boundary value a = abound. When

crossing the stability boundaries of the Mathieu diagram,

the ion oscillations acquire a regular, rapidly growing nature,

which contributes to the achievement of high resolution of

quadrupole mass-analyzers.

The aim of the study is to analyze the motion of

charged particles in a combination of static homogeneous

and quadrupole radio-frequency fields under mass-selective

resonant excitation of ion oscillations at the boundary of the

Mathieu diagram.

1. Motion of charged particles
in quadrupole HF fields with
oscillations excitation at the stability
boundary

The mode of resonant excitation of oscillation can be

created in a three-dimensional ion trap by superposition of

uniform excitation field to a quadrupole field. For this case

the potential distribution in the working area of the analyzer

is described by the function

ϕ(r, z , t) =
[U(t) + V cosωt][z 2 − r 2

2
+

r 20
2
]

z 2
01 +

r 2
01

2

+
Uexc(t)
2z 01

Z,

(1)
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where z 01 and r01 — minimum distances from the center

of the ion-optical system (IOS) of hyperbolic end and ring

electrodes; V, ω and U(t) — amplitude, frequency and the

constant component of the supply voltages slowly changing

during the mass sweep; Uexc(t) — excitation voltage. Under

the action of voltage Uexc(t) the excitation field uniform

along the axis Z is formed between the end electrodes.

The charged particles motion in the potential field (1) is

described by differential equations [3]:

d2z
dt2

+
ω2

4
[a z (t) − 2qz cosωt]z = f exc(t), (2)

d2r
dt2

− ω2

4
[a r(t) − 2qr cosωt]r = 0, (3)

where

a z (t) = 2a r(t) = 8eU(t)/(z 2
01 + r201/2)ω

2m,

qz (t) = 2qr(t) = 4eV (t)/(z 2
01 + r201/2)ω

2m

— Mathieu parameters; e and m — charge and mass of ions;

f exc(t) = eUexc(t)/2z 01m — particles acceleration under the

action of a uniform field.

In the absence of excitation (2) and (3) are the Mathieu

equations [4]. Stable and unstable solutions z (t) and

r(t) of the equations are separated by boundariesam(qz )
and bm+1(qz ), where m = 0, 1, 2, . . . . When crossing the

boundaries from the stable region to the unstable one, the

solutions of the differential equations increase without limit.

The method of axial output of ions from a three-dimensional

trap is based on this property of solutions of the Mathieu

equations [5]. The method is implemented at a z = 0 by

scanning the parameter qz (t) through the boundary b1(qz ).
The problem of axial output is the dependence of the ion

output time from the analyzer on the initial coordinates z 0

and the particle velocities v0z . In this case, even in the

presence of a buffer gas the resolution turns out to be low.

The resolution of quadrupole analyzers with sequential

output of ions through the stability boundaries can be

increased by imposing the excitation field uniform along

the axis Z on the quadrupole field. In this case, the

general solution z (t) of the differential equation (2) is

the sum of free z 1(t) and forced z 2(t) components. A

particular solution z 2(t) of the inhomogeneous equation (2)
is determined by the action f exc(t) of the homogeneous

excitation field and can be considered as a function of

excitation. Since z 2(t) does not depend on random values

of the initial parameters of the particles z 0 and v0z ,

the method resolution will be determined by the relation

at the moment of excitation texc (ion output from the

analyzer) of values of functions z 1(texc) and z 2(texc). The

condition z 2(texc) ≫ z 1(texc) of the resolution increasing of

quadrupole mass-analyzers with resonant output of ions can

be implemented by selection of methods of mass sweep and

mode optimization.

The analysis of the oscillations of charged particles in the

superposition of rapidly oscillating quadrupole and uniform

a0z

az0

a

b0r

b1z

qz

b1r

0
qz0

Figure 1. Scheme for scanning the parameter az (t) to the stability

boundary a0z (qz ).

excitation fields showed the efficiency of the resonant

inference output method when scanning the parameters

a z (t) and qz (t) from the first stability region upto crossing

the boundary a0z (qz ) of Mathieu diagram. In this case, the

mode of monopolar oscillations z 2(t) > 0 of charged parti-

cles is realized, which improves the analytical parameters of

the method and simplifies its implementation.

During the resonant output of ions, the oscillations are

excited at secular frequency, which depends on the stability

parameter �s = βω/2. At the boundary a0z (qz ) the

stability parameter is βz = 0 and the secular frequency is

�s = 0. Therefore, to excite oscillations at the boundary

a0z (qz ), one should use a static uniform field formed under

the action of a dipole voltage Uexc(t) = U0exc. In this case,

f exc(t) = f 0 = eUexc/2z 01m.

Three options for scanning the parameters a z (t) and

qz (t) to the boundary a0z (qz ) are possible: 1 — cby

hanging a z (t) at qz (t) = const, 2 — by changing qz (t) at

a z (t) = const, 3 — by changing a z (t) and qz (t). In all

cases, at the coordinate r the parameters a r and qr are

in a stable region and do not have a significant effect on

the particles mass separation process. Consider the case of

mass sweep by scanning according to the linear law of the

constant component of the supply voltage U(t) at constant

parameters V and ω [3]:

U(t) = νU t, (4)

where vU = Um/T and T — speed and duration of mass

sweep. In this case, the parameter a z (t) also changes

according to the linear law

a z (t) =
8eνU

(z 2
01 +

z 2
01

2
)ω2m

t. (5)

The scheme of oscillations excitation when scanning the

parameter a z (t) to the boundary a0z (qz ) is shown in Fig. 1.

At q < 0.5, a0z (qz ) ≈ q2
z /2 is valid, and taking into

account (4) for the excitation time dependence describing
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the mass sweep law we obtain

texc ≈
eV 2

(z 2
0 + r20/2)ω

2vU

1

m
. (6)

Due to the parameter a z (t) changes during the sweep

process, the differential equations (2) and (3) are non-

stationary. Taking into account the inertial nature of the

mass sweep at T ≫ 2π/ω, the solution of the equation of

ions motion along the axis Z can be represented by the

sum of free z 1(t) and forced z 2(t) components [3]. Func-

tion z 1(t) depends on random parameters of particles z 0

and v0z , and excitation function z 2(t) for given f exc(t) is

deterministic.

To solve the differential equation (2) and find the

functions IFx29x E and z 2(t), we use the model of a

rapidly oscillating quadrupole field in the form of a static

pseudopotential field [6]:

ϕp(z , t) =
U(t) −Up

z 2
0 +

r 2
0

2

z 2 − Uexc

2z 0

z = 0, (7)

where Up = eV 2/(z 2
01 + r201/2)ωm — pseudopotential of

the quadrupole HF field along the axis Z. Using (7), we
transform (2) to the differential equation of the harmonic

oscillator
d2z
dt2

+ �2
s (t)z = f 0, (8)

where

�s (t) ∼=
√

2e[Uexc −U(t)]/(z 2
0 + r20/2)m

— secular frequency of oscillations. Equation (8) is

non-stationary due to time variation of natural frequency

�s (t) = β(t)ω/2, where β — stability parameter.

In the first stability zone for q < 0.5, the approxima-

tion [7] is valid:

β ≈
√

a z (t) − a0z (qz ). (9)

The approximation accuracy (9) increases as parameter

a z (t) approaches the stability bpumdary a0z ≈ q2/2. Then,

taking into account (5) for the natural oscillation frequency,

we obtain

�c(t) ≃ �0

√

1− t/texc, (10)

where �0 ≈ qω/2
√
2 — the initial value of the secular

frequency.

Substituting (10) in (8), we obtain

d2z
dt2

+ �2
0

(

1− t
texc

)

z = f 0. (11)

By introducing dimensionless time η = (t/texc − 1)ϕ2/3
0

and coordinates W = z/z m, where ϕ0 = �0texc,

z m = eπUexc
3

√

t2exc/�
4
0/2z 0m, equation (11) is transformed

into Airy differential equation [8]:

d2W
dη2

−Wy =
1

π
. (12)

A pair of independent solutions to equation (12) is

expressed in terms of the Airy functions Ai(η) and Bi(η):

W1(η) = C1[Ai(η) + Bi(η)] + C2[Ai(η) − Bi(η)],

W2(η)=
2

3
Bi(η) +

η
∫

0

[Ai(ξ)Bi(η) − Ai(η)Bi(ξ)]dξ, (13)

where C1,C2 is determined by the initial conditions.

After the approximate calculation of the integral in (13)
and inverse change of variables, the solution of the differ-

ential equation (8) takes the form: in the stability region

0 < t < t1:

z 1(t) =
1

4
√
1− t/t0

[

z 0 cosϕ(t) +
ν0z

�0

sinϕ(t)

]

,

z 2(t) =
z m

πϕ
2/3
0

[

1

1− t/t0
=

1
4
√
1− t/t0

cosϕ(t)

]

, (14)

in the excitation region t1 < t ≤ 2texc − t1:

z 1(t) ≃ z 1(t1) + z ′

1(t1)(t − t1),

z 2(t) ≃ z 2(t1)

[

c1 + c2

t − t1
t1

+
3

2
c1c2

(

t − t1
t1

)2]

, (15)

where ϕ(t)= 2
3
ϕ0

[

1−
√

(1−t/texc)3
]

, t1=(1−1/ϕ
2/3
0 )texc,

c1 ≈ 0.355, c2 ≈ 0.259.

The use of pseudopotential model (7) of the rapidly

oscillating quadrupole field in compiling the differential

equation (8), which does not take into account the HF com-

ponents of the oscillations of charged particles. determines

the approximation of expressions (14), (15). The level of

error is estimated by the value

zHF(t) =
qz

2
[z 1(t) + z 2(t)] sinωt. (16)

The high-frequency component (16) in free and forced

oscillations of ions can be the reason for the ambiguity with

the period 2π/ω of the mass peaks of the analyzer, which

is minimized with the parameter q decreasing.

Results of the numerical solution of the differential equa-

tion (2) — motion of ions in three-dimensional quadrupole

trap with parameters z 01 = r01 = 60mm, V = 3000V,

f = 0.4MHz, vU = 3 · 105 V/s, Uexc = −5V — are shown

in Figures 2 and 3. The results of numerical simulation and

calculations by formulas (14), (15) coincide up to the HF

component of oscillations zHF(t).
As can be seen from Fig. 2, the superposition of the

uniform excitation field on a rapidly oscillating quadrupole

field makes it possible to implement the condition

z 2(texc) ≫ z 1(texc) of achieving the high resolution of the

ion resonant output method. The ratio z 2(texc) ≫ z 1(texc)
can be maximized by optimizing the mode parameters.

The trajectories of motion of ions with masses M = 200

and 100Da are shown in Fig. 3. The excitation time in

accordance with (6) is in inverse proportion to the mass of

the ions.
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Figure 2. Trajectories of motion of ions with mass M = 200Da

in three-dimensional ion trap: 1 — with an excitation uniform field;

2 — with initial energy IFx100x E eV; 3 — with initial coordinate

z 0 = 1mm.
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Figure 3. Trajectories of motion of ions with masses

M1 = 200Da (1) and M2 = 100Da (2) and initial parameters

z 0 = 0, v0z = 0 in a three-dimensional quadrupole analyzer with

resonant excitation of oscillations at the stability boundary a0z (qz ).

2. Ion trap with superposition of linear
and uniform electric fields

The method of mass-selective separation of ions with

oscillations excitation at the stability boundary a0z (qz )
can be implemented in IOS with two-dimensional or

three-dimensional quadrupole rapidly oscillating fields upon

superposition of uniform static excitation fields to them. To

form fields with potential distribution (1), we use three-

dimensional ion trap as IOS. The diagram of trap IOS is

shown in Fig. 4. The feature of the ion trap in comparison

with the known options of its use [1,5] is the power supply

1

2
5

4

ded

dr

ued1 uc1

z01

z

3 r01

r

uc2
ued2

Figure 4. Diagram of IOS of three-dimensional ion trap with

superposition of linear and uniform electric fields: 1, 2 — end;

3 — ring hyperbolic electrode; 4, 5 — correcting electrodes in the

form of truncated cones.

system and the presence of correcting electrodes 4, 5. The

use of corrective electrodes allows, at limited sizes dr

and ded, to increase the accuracy of distributions of the

quadratic along the axes Z and r and linear along the axis Z
potentials.

To form the field with quadratic potential distribu-

tion along the coordinates z and IFx46x E, a voltage

ur(t) = U(t) + V cosωt . The uniform static field is formed

under the action of exciting potentials on the end electrodes

Uexc ed1 = −Uex ed2 = Uexc. In this case, ued1 = ur(t) + Uexc,

and ued2 = ur(t) −Uexc.

In three-dimensional ion trap made of hyperbolic elec-

trodes the distribution of the excitation field potential along

the axis Z very differs from linear, and the accuracy of

the quadratic distribution depends on the sizes ded and dr

of end and ring electrodes. To improve the accuracy

of the potential distributions of the homogeneous and

quadrupole fields at limited parameters ded and dr , cor-

recting electrodes 4, 5 in the form of truncated cones with

potentials uc1 = aur(t) + bUexc and uc2 = aur(t) − bUexc

(Fig. 4) are installed. With fixed parameters z 01 = r01,
ded = 1.48z 01, dr = 1.82z 01 the optimal values of the

coefficients aopt = 0.55 and bopt = 30.8 are determined. At

optimal parameters a and b the relative errors δ = 1ϕ/ϕ

of the potential distributions (Fig. 5) of the quadrupole and

homogeneous fields did not exceed the values |δsq| < 10−4

and |δl | < 2 · 10−3, which correspond to the achievable

resolution of the analyzer R = M/1M > 103 .

Conclusion

To study the oscillations of charged particles in composi-

tions of nonstationary quadrupole and homogeneous static

fields, the pseudopotential model of the rapidly oscillating
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Figure 5. Dependences of relative errors: a — quadratic distribution of the potential 1, 2, 3 at a = 0.50; 0.55; 0.60 and b – linear potential

distribution 1, 2, 3 at b = 29.8; 30.8; 31.8.

field is applicable. In the first stability region of the

Mathieu diagram, at a constant q and linear change in

the parameter a(t) the motion of ions is described by Airy

differential equations. The independent solutions z 1(t) and

z 2(t) of the equations are oscillatory functions with slowly

changing secular frequency and amplitude in the stable

region and unlimited change in the vicinity of the boundary

a0(q). Free component z 1(t) — function with random

parameters z 0 and v0z , and deterministic excitation function

z 2(t) contains the monotonically increasing component in

addition to the oscillating component and is a monopolar

function. The properties of the solution z (t) = z 1(t) + z 2(t)
of the Airy equation form the basis of the method of

ions separation by specific charge with resonant excitation

of oscillations at the stability boundary IFx129x E under

the influence of homogeneous static fields. The method

efficiency is determined by the differences in the functions

z 1(t) and z 2(t) in the stable and excitation regions. The

analysis of the solutions of the Airy equation and the results

of numerical simulation show that optimization of the mode

parameters at the moment of oscillations excitation texc

ensures the ratio z 2(texc) ≫ z 1(texc) achievement, which

provides a high resolution of the analyzer. The problem of

the ambiguity of mass peaks due to the superimposition of

HF component IFx98x on the secular oscillation is solved by

minimizing the parameter q and choosing the optimal mass

sweep method. The monopolarity of the excitation function

z 2(t) > 0 simplifies IOS design and the ion registration

system of the mass-analyzer.

To implement the method of resonant output of ions at

the Mathieu stability boundary, IOSs with two- and three-

dimensional quadratic potential distribution with elements of

superposition of uniform excitation fields on them can be

used. The simplest version of applying excitation potentials

±Uexc to opposite electrodes forms the field with large

deviations from the uniform one. To increase the linearity

of the potential distribution along the axis Z, the correcting

electrodes in the form of truncated cones are installed along

the boundaries of the hyperbolic electrodes of the three-

dimensional trap. At optimal constant and high-frequency

potentials on correcting electrodes, the errors of linear and

quadratic potential distributions do not exceed the values

δϕl < 2 · 10−3 and δϕsq < 10−4, which corresponds to the

achievable resolution R > 103 .
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