08,09

Near-infrared Emission in $Na_5Y(WO_4)_4: Nd^{3+}$

© A. Pusdekar¹, N.S. Ugemuge¹, R.A. Nafdey², S.V. Moharil³

 ¹ Department of Physics, Anand Niketan College, Anandwan, Warora, 442907 India
² Department of Physics, Shri Ramdeobaba College of Engineering and Management, Nagpur, 440013 India
³ Department of Physics, RTM Nagpur University, Nagpur, 440033 India
E-mail: pusdekarashvini2407@gmail.com

Received September 21, 2023 Revised September 21, 2023 Accepted September 25, 2023

> Luminescence in Na₅Y(WO₄)₄: Nd³⁺ is investigated for the first time. The emission is in the near-infrared region. The well-known ${}^{4}F_{3/2} \rightarrow {}^{4}I_{9/2}$ transition leads to most intense line at 1069 nm. The excitation and emission spectra are interpreted using the energy level diagram of Nd³⁺. The excitation spectrum is made up of a large number of sharp lines attributable to various f - f transitions. A weak band at 360 nm in the excitation spectrum is assigned to the host. Notwithstanding large Y–Y distances, the luminescence is quenched at concentrations exceeding 2 mol.%. The critical distance for energy transfer among Nd³⁺ ions is found to be 32.85 Å.

Keywords: luminescence, phosphor, tungstate, Nd³⁺.