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An approach for modeling the transfer function and approximating the impulse response in the +1 diffraction

order of the 4 f holography scheme of the Fourier holography under usage of high-frequency holograms

characterized by the presence of an inverse section of the dependence of the local diffraction efficiency on the

spatial frequency in the frequency range below the frequency of equality of local amplitudes of the reference

spectrum and the reference beam by the model of
”
Difference of Gaussians“ is proposed and justified. The

expediency of using, when implementing processing models that involve working only with the global maximum of

the circuit response, a transfer function that is equivalent in terms of the minimum mean square error of the impulse

response, as providing a more accurate approximation of the impulse response compared to the approximation of

the direct transfer function, is shown. The validity of the approach is confirmed by comparing the simulation results

with experimental data
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Introduction

When describing and modeling devices as part of the

linear systems approximation, two characteristics related to

the Fourier transform are traditionally used: the transfer

function and the impulse response. In relation to the

classical 4 f Fourier holography scheme with a flat off-

axis reference beam (Fig. 1), as the first of them, which

will be denoted as HP(ν), in practice, the dependence of

the local diffraction efficiency (DE) in amplitude η(ν) in

the required diffraction order p on the spatial one is used

frequency ν , associated with the spatial coordinate in the

hologram plane x by the expression x = λ f ν , where λ —
wavelength, f — focal length of the first Fourier transform

lens L1 . As part of this article, we are only interested in the

diffraction order coinciding with the direction of propagation

of the reference beam +1, in which a field is formed in

the output plane Out, described by the mutual correlation

function of the object (presented in the input plane In) and

the reference fields, therefore, we omit the indication of the

diffraction order p and the transfer function of the Fourier

holography scheme Fig. 1 for the +1-th order of diffraction,

we represent in form

H(ν) = η(ν) = ĤS(ν), (1)

where S(ν) — spatial-frequency spectrum of reference

field amplitudes, Ĥ — operator taking into account the

conditions of hologram recording (frequency of equality

of local amplitudes of the signal and reference beams ν0
and exposure characteristics of the holographic recording

medium (EC HRM). Here and below, where possible

without compromising the adequacy of the description, to

reduce the size of expressions we use the assumption of

separability of variables and, accordingly, notation with one-

variable functions.

Impulse response of a linear system h(ζ ), where ζ —
coordinate in the output plane, defined as the response

of the system to the delta function — point source in

optics — related to the transfer function by the Fourier

transform [1]. In holographic practice, the response of the

circuit in Fig. 1 is used, in +1-th diffraction order in the

output plane Out when a reference field is presented in

the input plane In — autocorrelation function (ACF) of

the standard, taking into account additional filtering on the

hologram due to nonlinearity of the EC HRM, processing

mode (development) and hologram recording conditions,

first of all — the choice of the frequency of equality of

the local amplitudes of the reference spectrum and the flat

reference beam [2–12], as well as the choice of the operating
section of the dynamic range EC HRM

R(ζ ) = F̂
(

S(ν)Ĥ
(

S(ν)
))

, (2)

where ζ — coordinate in the back focal plane of the second

Fourier transform lens L2 of the output plane of the circuit

Out, F̂ — Fourier transform operator. This response is

a diffraction-limited image of a point reference source δ

used when recording the hologram, i.e. represents the point

blur function. This definition of the impulse response, as

well as the transfer function (1), is specific to holography
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Figure 1. 4 f -Fourier holography scheme with a flat off-axis ref-

erence beam: In and Out — input and output planes, respectively;

L1, L2 — Fourier transform lenses with focal lengths f , H —
hologram, Im and δ — image and off-axis point reference source

respectively, +1-th and −1-th — corresponding diffraction orders.

and differs from its classical definition as a response to

an impulse (a point source in optics) at the input of the

system, since when a point source is presented in the input

plane In, the holographic circuit will reconstruct in the

output plane Out in +1 the diffraction order is not the

diffraction-limited image of the point represented by the

global maximum of the ACF (2), but the reference field

used to record the Fourier hologram.

Spatial-frequency spectra with a power-law decay [13,14],
characteristic of real information, taking into account the

nonlinearity of the EC HRM [3–5] and the hologram form

factor [10] are often inconvenient with from the point of

view of simplicity and clarity of the analytical description.

Therefore, a number of papers [3,7–9,15,16] are devoted

to the issue of approximation of these characteristics of

the Fourier holography circuit, in which the approximation

model is consistent with the processing model, in particular,

with the measured response characteristic of the circuit —
its power, signal-to-noise ratio and/or correlation radius,

which is a fundamental information characteristic of the

processed field [17,18]. In a number of tasks, for example,

when implementing information processing models based

on fuzzy-valued logic [19–21], in the output plane Out it is

the radius of the correlation response (2) that is measured at

a given level β (symbol α in this article, as in [16], is used
to denote the level of DE measurement and the transfer

function H(ν) in the hologram plane).

An important aspect of the problem of approximating

experimentally measured characteristics (1) and (2) — is

the convenience of the approximation model, both in terms

of simplicity and clarity, and in terms of minimizing the

requirements for computing resources in relation to digital

holography methods [22–24]. The article [16] shows the

opportunity of approximating the transfer characteristic of

the circuit in Fig. 1 with exponential functions for the case

of recording low-frequency holograms, i.e., holograms in

which the frequency of the local amplitudes of the signal

and reference beams is equal to ν0 = 0, since the amplitude

of the reference beam is equal to or greater than the value

of the amplitude spectrum of the standard at zero spatial

frequency. As a result, in such holograms the maximum

diffraction efficiency (DE), which is also the maximum

transfer function (1), is localized at zero spatial frequency.

If the frequency of equality of the local amplitudes of the

reference beam and the amplitude spectrum ν0 is different

from zero, then the maximum of the transfer function

H(ν) is localized in the area of this frequency ν0, and

in the frequency range ν < ν0 there is usually an inverse

dependence of the DE on the frequency with respect to

the standard spectrum η(ν): 1
S(ν) . For such holograms,

called high-frequency ones, the paper [15] proposed an

approximation by the sum of two symmetrically shifted

Gaussian functions, the magnitude of the function shift

corresponds to the frequency of the maximum DE of the

hologram.

Approach (15) is convenient from the point of view

of analytical description and numerical modeling, but has

a number of practically significant limitations due to the

insufficient flexibility of the model, since it has only

two parameters for matching with experimental data η(ν):
frequency of equality of local amplitudes of the signal and

reference beams ν0 and Gaussian function parameter ν0.606.

In particular, this approach does not always allow to ap-

proximate adequately the transfer function in two important

areas of the frequency range: the inverse dependence of the

DE in the low-frequency range and the high-frequency one.

A significant
”
dip“ of DE in the area of low frequencies,

up to their rejection, arises due to the limited dynamic

range of the EC HRM [6–8] when choosing a sufficiently

high frequency of equality of the local amplitudes of the

signal and reference beams ν0 [2,9]. Taking into account

the inverse section of the η(ν) dependence in the model is

important both in the case of implementing dynamic models

of information processing, i.e. for holographic circuits of

resonance architecture, since a strong attenuation of low

spatial frequencies leads to a change in the type of system

dynamics from convergent to intermittent mode or to a

restructuring of stable type of solution [20,21], and in

terms of changes in the ACF model (impulse response of

the system) — growth and subsequent dominance of side

maxima [21].

The high-frequency range of the η(ν) dependence should

be taken into account in the model, since it makes the

main contribution to the formation of the global maximum

of the autocorrelation function. The course of the η(ν)
dependence in this area is determined not only by the

reference spectrum, but also by the modes of recording

the hologram and displaying the HRM. In particular, when

recording high-frequency holograms under the condition

ν0 ≫ 0 , the high-frequency components of the spectrum
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fall into the range of the exposure characteristics of the

HRM with the maximum transmission coefficient, as a

result, the specific gravity of the high-frequency components

recorded on the hologram relative to the reference spectrum

increases.

The type of dependence η(ν) is also significantly influ-

enced by the choice of the working section of the dynamic

range of the EC HRM. In particular, if the local exposure at

a frequency equal to the local amplitudes of the reference

spectrum and the reference beam ν0 corresponds to the

saturation sub-range of the EC HRM, then in a certain

vicinity of ν0 the dependence η(ν) flattens — instead of

a clearly pronounced maximum η(ν0) there is a plateau,

width which is determined by local overexposure.

Therefore, adequate approximation of the transfer func-

tion of the Fourier holography scheme with one convenient

function for all hologram recording conditions (options
for choosing the ν0 value and manifestation) is extremely

problematic. But there is a number of tasks in which

only the global maximum of the response and its shape

are important. For example, when implementing fuzzy-

valued logics, the measured characteristic of the response

is the correlation radius at a given level [19]. For such

a limited class of tasks, in this article, in development of

the papers [15,16], an approach to modeling the transfer

function of a circuit with strong, even rejection, attenuation

of low spatial frequencies on a hologram, is proposed and

justified by the DOG function (Difference of Gaussians),
widely used in a number of practical applications: wavelet

analysis [25], digital image processing [26], holographic

particle capture schemes [27], and etc.

1. Approach and approximation model

Let us represent the transfer characteristic (1) of the

circuit in Fig. 1 by the difference of two exponential

functions

H(ν) = H1(ν) − H2(ν) = a1 exp

(

− ln(α)

(

ν

ν1

)D1
)

− a2 exp

(

− ln(α)

(

ν

ν2

)D2
)

, (3)

where D1 and D2 — exponents, ν1 and ν2 — model

parameters — frequencies measured by level

αi =
Hi(να)

Hi(0)
.

The approximating function (AF) (3) is the development

of a transfer characteristic suitable for approximation in

the case of low-frequency holograms of the model [16] by
adding a second term (subtracted), required to represent the

inverse section of the dependence of DE on frequency in the

range [0, ν0]. The model (3) includes six parameters, and

to find their values, both the numerical approach presented

in [15] and the analytical one can be used. To analytically

find the parameters, we impose the following conditions on

the approximating function (AF) (3) in terms of matching

H(ν) with experimental data η(ν):
A) non-negativity in the approximation range

ν ∈ [0, νmax] : H(ν) ≥ 0, (4)

where νmax — determined by the EC HRM or the aperture

in the Fourier plane H is the upper bound of the frequency

range recorded on the hologram;

B) localization:

B.1.) of maximum transfer characteristic

dH(ν0)

dν
= 0, (5)

where ν0 — frequency of localization of the DE dependence

maximum on frequency η(ν), in the first approximation,

sufficient for the approximation task, coinciding with the

equality frequency of the local amplitudes of the reference

and signal beams when recording a hologram [3,7];
B.2) and the minimum DE at zero frequency

d2H(0)

dν2
> 0; (6)

C) normalization of the maximum transfer characteristic

at the maximum frequency DE ν0:

max
(

H(ν0)
)

= η(ν0) = 1; (7)

D) for the coincidence of the values of AF (3) and the

experimentally measured DE at the point ν = 0

H(0) = η(0) = a1 − a2; (8)

E) intersection of the experimental dependence of DE

and AF at a given level α

H(να) = η(να). (9)

We are interested in the option of strong attenuation of

low frequencies, i.e., taking into account in the model the

inverse decline of DE in the ν < ν0 area, so selection of

α > η(0) makes sense. This implies the requirement that

condition (9) be satisfied at two frequencies: ναInv < ν0 in

the inverse and ναMatch > ν0 ranges consistent (to some

approximation) with the spectrum of the standard S(ν)
depending on DE versus frequency η(ν).
As a result, we have 7 conditions, i.e. they are redundant,

since AF (3) includes only 6 parameters. At the same time,

in analytical modeling, function (3) in its general form gives

very lengthy and inconvenient expressions. Therefore, the

”
convenient“ option α = 0.606 and D = 2 is of practical

interest, i.e. the DOG function

H(ν) = J1(ν) − J2(ν) = a1 exp

(

−0.5

(

ν

ν1

)2
)

− a2 exp

(

−0.5

(

ν

ν2

)2
)

. (10)
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The DOG function is attractive both from the point of view

of reducing the dimension of the task (four parameters),
which is important when using numerical methods, and

in terms of analytically determining approximate parameter

values, which, if required, can then be refined or corrected

numerically.

Since ναInv < ναMatch, and from the property of non-

negativity DE (4) and condition (8) follows a1 > a2, then

analysis of the roots of the equation solved with respect

to the parameter ν1 when substituting the DOG function

(10) into condition (7) shows that in approximation,

acceptable taking into account the usual requirements for

the accuracy of analogue methods, the matched AF section

in a certain neighborhood α can be described only by the

first term (10), i.e.

α ≈ a1 exp

(

−0.5

(

ναMatch

ν1

)2
)

.

This implies an approximate estimate of the parameter of

the first term in AF (10)

ν1 ≈ ναMatch

√

1

2
(

ln(a1) − ln(α)
)

∣

∣

∣

∣

α=0.606

= ν0.606Match

√

1

1 + 2 ln(a1)
, (11)

from which we obtain an approximate estimate of the value

of the parameter a1

a1 ≈
1−

ν2
0

ν2
αMatch

√

exp

(

0.5
ν2
0

ν2
αMatch

)

. (12)

The value of the a2 parameter is found by substituting (12)
into condition (8).
The value of the parameter ν2 is obtained from condi-

tion (9) for ναInv

ν2 =
ν0 Inv

√

−2 ln

(

a1

a2
exp

(

−0.5
ν2
0 Inv

ν2
1

)

−
α
a2

)

. (13)

Thus, we have approximate values of all four parameters

AF (10) for approximating the dependence η(ν) in the

range from zero to some frequency greater than ν0.

But it is quite obvious that this approach does not allow

us to fully reflect the features of recording and processing

holograms taking into account EC HRM — the course of

the η(ν) dependence both in the high-frequency range and

in the frequency region where the local amplitudes of the

reference spectrum and the reference beam are equal ν0
when recording a hologram in overexposure mode. These

ranges of the η(ν) dependence are not presented separately

as part of the DOG (10) model; there are no tools for

adjusting AF (10) for approximation in these ranges in the

model. The traditional approach to approximation using

the integral criterion of the minimum mean-square error

(MSE) does not solve the problem of representing the

high-frequency range, since due to the small proportion

of high-frequency components they make an insignificant

contribution to the value of the MSE. But it is impossible

to ignore the high-frequency part of the dependence of DE

on frequency, since it is precisely this that dominates in the

formation of the global maximum of the ACF, primarily —
its peak and the practical values of the response radius

measurement level β . As a result, using model (10) as

presented can lead to an inadequate model of the response

of the holographic circuit, and ultimately it is the response

of the circuit that is of interest.

To solve this problem, it is meaningful to use the ap-

proximation criterion not in the Fourier space H (hologram
plane), but in the response space — at the output plane

of the circuit Out. Accordingly, the task of finding the

transfer function no longer appears as an approximation,

but as a simulation — finding a function equivalent to the

transfer function according to a given criterion, for example,

the criterion of the minimum error of the global maximum

impulse response and/or GM ACF, and/or the response

radius according to required level β .

Impulse response of a circuit as a Fourier transform of

the approximating function (10)

h(ζ ) = F̂
(

H(ν)
)

= F̂

(

a1 exp

(

−
1

2

(

ν

ν1

)2)

− a2 exp

(

−
1

2

(

ν

ν2

)2)
)

= a1 exp

(

−
1

2

(

ζ

ζ1

)2)

− a2 exp

(

−
1

2

(

ζ

ζ2

)2)

,

(14)
where the parameters

ζ1 =
1

2πν1
and ζ2 =

1

2πν2

are measured at the level β = 0.606 [28].
The presence in the response space of only one cri-

terion — minimum RMS or response radius error at a

given leve β — does not allow solving the four-parameter

optimization problem analytically. Taking into account

normalization (7), the problem can be reduced to a three-

parameter one by adopting a1 = 1, but this does not solve

the problem of analytically finding the parameters. A

transition to numerical techniques is required.

2. Numerical simulation
and experimental verification

To check the validity of the presented approach to

simulation of the equivalent transfer function, determined

Optics and Spectroscopy, 2023, Vol. 131, No. 7
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Mean-square errors in approximation of the DE dependence on frequency and the global maximum of the impulse response

Hologram
RMS of DE approximation RMS of GM IE approximation

Analytically Numerically Analytically Numerically

I 0.164 0.259 0.208 3.75 · 10−3

II 0.249 0.087 1.8 · 10−2 1.027 · 10−3

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1.0
0 2.63 5.26 7.89 10.52 13.15 15.78
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6

15.78

a b

Figure 2. Dependences of the normalized local diffraction efficiency η of holograms I (a) and II (b) on the spatial coordinate x and spatial

frequency ν : solid line — experimental data, dashed line — analytically found approximating DOG function (10), dotted line — DOG

function (10), equivalent in terms of the minimum error criterion to the global maximum of the impulse response (14).

by the criterion of minimum RMS for the GM response

in the output (correlation) plane, Fourier holograms were

used, recorded under different conditions from a reference

image representing the implementation of two-dimensional

fractal Brownian agitation with a power law spectrum [29]

S(ν) = ν2H+1,

where H ∈ [0, 1] — Hurst exponent. The holograms were

recorded on a PFG-03m HRM (JSC Slavich Company),
developer GP-8, at values of frequency equal to the local

amplitudes of the signal and reference beams ν0, ensuring

the presence of a clearly expressed section of the inverse

dependence of the DE in the low-frequency range ν < ν0.

As an example, in Figs. 2, a and b for two characteristic

cases of recording holograms, experimental dependences

of the DE on the spatial coordinate x (lower abscissa

axis) are given, associated with that presented on the

upper axis abscissa spatial frequency ν by x = λ f ν , where

λ = 633 nm — wavelength, f = 600mm — focal length

of the first Fourier transform lens L1, as well as functions

of the DOG model (10): approximating and modeling,

equivalent in terms of the minimum error criterion to the

global maximum of the impulse response (14).

Hologram I was recorded when the local exposure at

frequency ν0 was matched with the upper limit of the

operating section of the dynamic range of the EC HRM —
there is a pronounced maximum of the dependence η(ν)

in the area ν0, while in the area of high spatial frequencies

(approximately ν > 3.5mm−1) there is a clear inadequacy

approximation of the η(ν) dependence by the DOG (10)
model.

Hologram II was recorded with overexposure — due to

the choice of local exposure at frequency ν0, corresponding

to the saturation range of the EC HRM; in the area ν0 there

is not a maximum of the dependence η(ν), but a kind of

plateau. As a result of overexposure in area ν0:

—
”
DE dip“ in the area of zero frequencies is deeper

than that of hologram I;

— the high-frequency range is significantly wider than

that of hologram I, since it fell into the working section of

the dynamic range of EC HRM, while the high-frequency

part is quite adequately approximated by the DOG function

(10).
Figure 3, a, b shows the impulse responses of the circuit

in Fig. 1 for these holograms; the designations correspond

to those in Fig. 2. Response modules are given, since only

their powers are actually measured.

The table shows the RMS of the DE measured depen-

dence on the frequency η(ν) and the global maximum of

the experimental impulse response (IR): by the analytical

model (10) and numerically according to the criterion of

the RMS (14) for these holograms.

Figure 4 shows the absolute values of the relative errors

in approximation of the response radius depending on the

β level. For hologram I, the dependence of the relative

56 Optics and Spectroscopy, 2023, Vol. 131, No. 7
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Figure 3. Impulse responses (normalized values) of the circuit in Fig. 1 for the holograms I (a) and II (b) shown in Fig. 2, ζ — coordinate

in the correlation plane: solid line — for experimental data, dashed line — for the analytically found approximating dependence η(ν) of

the DOG function (10), dotted line — DOG function (14), satisfying the criterion of minimum error of the global maximum impulse

response.

error is given only for the numerical selection of the

equivalent function, since in the analytical approximation

of the transfer function the relative error, as is clearly

seen from Fig. 3, a, is clearly large — its values are in

the range 0.4−0.67.

Similar results were obtained for other high-frequency

holograms — in all cases, the numerical selection of the

parameters of the function (14) gave a better approximation

of the impulse response of the circuit, compared with

the approximation of the transfer function itself by the

DOG (10) model.

Conclusion

Thus, in case of high-frequency Fourier holograms,

characterized by the presence of a clearly expressed section

of the inverse dependence of the diffraction efficiency

on the spatial frequency in the frequency range below

the frequencies of equality of local amplitudes of the

reference spectrum and the reference beam, simulation of

the equivalent in terms of the minimum error criterion

for approximating the impulse response of the transfer

function circuit with the DOG function gives an adequate

model for the global maximum of the impulse response,

taking into account the generally accepted requirements for

analog processing error of maximum 0.1. The advantage

of this approach — is the simplicity and clarity of the

analytical description of the holographic circuit, which is

practically important from the point of view of reducing the

requirements for computing power and processor memory

in computer implementations, and the use of discrete space-

time modulators and sensors [22–24].

Fig. 3, a, b clearly demonstrate that the presented ap-

proach to approximating the impulse response by simulation

of the equivalent transfer function is valid only within the

limits of the global maximum of the impulse response.

0 1.00.2 0.80.4 0.6
0

0.005

0.010

0.020

0.030

0.040

R

b

0.015

0.025

0.035

Figure 4. Dependences of the absolute values of the relative

error R of the radius approximation of the impulse response

within the global maximum on its level β : solid line — hologram

I, numerical selection of parameters of the DOG model (14),
dashed line — hologram I , analytical approximation of the transfer

function by the DOG (10) model, dotted line — hologram II,

numerical selection of the parameters of the DOG (14) model.

Accordingly, the approach is applicable only in information

processing problems that involve working exclusively with

the global maximum of the circuit response, for example,

in tasks of correlation pattern recognition [22–24], including
computer methods, implementation of fuzzy logic [21] etc.
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