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than the charge carrier de Broglie wavelength. Charge carrier surface scattering is taken into account by the

Soffer boundary conditions. The electromagnetic wave frequency is less than the plasma resonance frequency.

The constant energy surface is an ellipsoid of revolution. Analytical expressions are obtained for the reflection,

transmission and absorption coefficients. Calculations are performed for the limiting cases of a degenerate and
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Introduction

For the time being, the basis of all semiconductor

nanoelectronics is layered nanostructures consisting of

semiconductor, metal and dielectric layers. The use of

nanocoatings in solar energy is of particular interest to

researchers. Developments are being implemented to

increase the ability of solar cells to effectively convert

electromagnetic radiation into electrical energy [1–4]. As

studies have shown, flexible solar cells based on GaAs [2]
have the highest efficiency (approximately 35%). Studies

are being carried out to increase the energy efficiency

of solar cells by growing filamentary nanostructures with

antireflective properties on the surface of a nanolayer [3].
An urgent task is to improve the physical parameters of

optical devices by applying semiconductor nanocoatings [5].

For the time being, technological methods are being

actively improved that allow to grow nanostructures, the

thickness of the layers of which can be several atomic

layers. In this case, for a theoretical description of transport

phenomena in nanolayers, it is required to take into account

the quantization of the energy spectrum of charge carriers.

There is a number of theoretical papers in the literature

in which, to calculate the electrical and optical parameters

of nanolayers, a model of an electron gas enclosed in

a quantum well with smooth walls was reviewed [6–
8]. At small thicknesses, surface roughness at the atomic

level significantly affects the phenomena of charge carrier

transport in a nanolayer, so there is a need to generalize the

models used in the papers [6–8] to the case of an uneven

surface.

The issue of taking into account surface scattering to

solve quantum problems on the static conductivity of a

thin metal film was considered in the papers [9–13].

In the papers [9–11] the Green’s function method was

used, according to which the surface carrier scattering

was reviewed as a perturbation potential. The task of

finding wave functions in a quantum well was reduced

to determining the Green’s function by solving the Dyson

equation. In the papers [12,13] the direct calculation

of the surface collision integral was carried out. In the

papers [14–16] the Soffer boundary conditions method [17]

was used to calculate the electrical and galvanomagnetic

parameters of a conducting nanolayer. The same method

was used to construct theoretical models of the inter-

action of electromagnetic radiation with a semiconductor

nanolayer [18] and with a layered nanostructure
”
dielectric-

semiconductor-dielectric“ [19]. Let us note that in the

papers [18,19] the case of a semiconductor with a spherical

band structure was reviewed.

Nanolayers of silicon and germanium are widely used in

nanoelectronics and solar energy. The constant energy sur-

face in such semiconductors has a non-spherical shape and

consists of several spheroids. In this paper, we summarize

the theoretical model constructed in the paper [19] to the

case of an ellipsoidal shape of the semiconductor constant

energy surface.
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Problem formulation

Let us review a nanostructure, which is a semiconductor

nanolayer of thickness a, placed between two insulating

layers with different dielectric constants. A plane monochro-

matic electromagnetic wave is incident on a layered nanos-

tructure. Let us introduce the coordinate system so that the

coordinate axes X and Y are directed in parallel to the plane

of the nanolayer, so is the axis Z — nanolayer inward. The

case of the H-configuration of an electromagnetic wave is

considered, i.e. the electric field strength vector is parallel

to the X axis. The dielectric layers are non-magnetic, and

the top insulating layer is non-absorbing.

The semiconductor nanolayer thickness can be compara-

ble or less than the de Broglie wavelength of the charge

carrier. In this case, the energy spectrum of charge

carriers in the direction perpendicular to the plane of the

nanostructure is quantized. It is assumed that the constant

energy surface is an spheroid with the main axis parallel to

the plane of the nanolayer. There is a review of the cases

when the axis of rotation is parallel and perpendicular to the

electric field strength vector (let’s call them the longitudinal

and transverse directions of the axis, respectively, to the

electric field). The expression for the total energy of an

electron (hole) has the form

εl =
m‖,⊥

2
v2

x +
m⊥,‖

2
v2

y + εz l, (1)

where εz l = (π~l)2/(2m⊥a2) — the eigenvalue of the

charge carrier energy in the lth sub-band, m‖ and m⊥ — the

longitudinal and transverse effective masses of the electron

(hole), respectively, the first index at m in expression (1)
corresponds to the longitudinal direction of the main axis of

the ellipsoid, and the second index — transverse direction,

~ — Planck’s constant.

The present paper suggests a small deviation of the

system of the charge carriers from the equilibrium state.

In this case, the Liouville equation can be reduced to the

following form [15]:

−iω f l + vz l
∂ f l

∂z
+

eE
~

∂ f l

∂k‖
= −

f l − f (0)
l

τ
, (2)

where τ — relaxation time, ω — electromagnetic wave

frequency, f l — charge carrier distribution function on the

ith sub-band, playing the role of a diagonal element of the

density matrix ρll , f (0)
l — equilibrium distribution function,

~ — Planck’s constant, E — electric field strength, vz l —
z - component of the charge carrier velocity in the l- th

sub-band, e — electron (hole) charge.

The function f l has the following expansion [15]

f l(z , k‖, t) = f (0)
l + f (1)

l (z , k‖) exp(−iωt), (3)

f (0)
l =

1

1 + exp((εl − µ)/k0T )
, (4)

where f (1)
l — non-equilibrium correction, µ — chemical

potential, k0 — Boltzmann constant, T — temperature.

Let us note that in the case of an ellipsoidal band structure

of a semiconductor, the relaxation time is a second-rank

tensor [14,15,20]:

τ =





τ‖,⊥ 0 0

0 τ⊥,‖ 0

0 0 τ⊥



 . (5)

Here the first index corresponds to the longitudinal orien-

tation of the main rotation axis of the ellipsoid of constant

energy, and the second index corresponds to the transverse

orientation. Parameter τ‖ represents the characteristic time

for establishing an equilibrium state of a system of charge

carriers under the action of an external force directed

parallel to the main axis of the spheroid, respectively,

and τ⊥ — perpendicular to the main axis. To find the

correction to the distribution function in the case of a

longitudinal orientation of the rotation axis of a constant

energy ellipsoid, it is required to substitute the parameter

τ‖ into equation (2), and in the case of a transverse

orientation — τ⊥ .

The boundary conditions are described by the Soffer

model [17], which takes into account the dependence of the

reflection coefficients of the surfaces of the q1,2 nanolayer

on the g1,2 roughness parameters and the charge carrier

incidence to the internal surface of the ϑ nanolayer:

{

f (1)+
l = q1(g1, ϑ) f (1)−

l if z = 0,

f (1)−
l = q2(g2, ϑ) f (1)+

l if z = a,
(6)

q1,2(g1,2, ϑ) = exp
(

−(4πg1,2 cos ϑ)2
)

, (7)

g1,2 =
gs1,2

λB
, (8)

where f (1)±
l — the functions of the distribution of the

electrons (holes) with a positive and negative projection of

the wave vector on the axis Z, gs1,2 — the mean square

height of the surface relief of the lower and upper surface,

respectively, λB — the de Broglie wavelength of the charge

carrier.

The current density and integral conductivity in the case

of longitudinal and transverse orientations of the rotation

axis of a constant energy ellipsoid are determined by the

expressions [14,15]

j‖,⊥ =
2ekz1

(2π)3

∑

l

x
vx

(

f (1)+
l‖,⊥ + f (1)−

l‖,⊥

)

dkx dky , (9)

σa‖,⊥
=

a
∫

0

j‖,⊥
Ex

dz , (10)

where kz1 — z - component of the wave vector of the charge

carrier located in the first sub-band, f (1)±
l‖ and f (1)±

l⊥ —

respectively, non-equilibrium corrections to the distribution

functions of charge carriers in the case of longitudinal and
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transverse directions of the main axis of a constant energy

ellipsoid.

The present study suggests that the range of the

electromagnetic-radiation frequencies is limited from above

the frequency of the plasma resonance. The electromagnetic

wave is weak, so the effects related with the quantum nature

of the electromagnetic radiation are not taken into account.

The behavior of an electromagnetic wave can be described

by Maxwell’s equations, which can be used to determine

optical coefficients:

{

∂Ex
∂z = ikHy ,
∂Hy

∂z − ik(1− sin2 θ)Ex = − 4π
c j .

(11)

Here k — the module of the wave vector, θ — the incidence

of the electromagnetic wave, c — the speed of light in

vacuum.

Mathematical calculations

The task is solved by the method similar to the given

studies in the paper [15]. Solving equation (2) taking

into account the boundary conditions (6), substituting the

expression for the distribution function in (9) and (10), we
obtain the following expression for the integral conductivity:

σa‖,⊥ =
8πe2ak0Tvz1

ν‖,⊥m‖,⊥
√m‖m⊥

(

m0

h

)3

×
∞
∑

l=1

ln

(

exp
(µ − εz l

k0T

)

+ 1

)

(

1− χ(�‖,⊥)
)

,

(12)

χ(p) =
1

2p
(1− e−p)

2− q1 − q2 + (q1 + q2 − 2q1q2)e−p

1− q1q2e−2p
,

(13)

m0 = 3

√

m‖m2
⊥, �‖⊥ =

aν‖,⊥
vz l

. (14)

Here the designation ν‖,⊥ = τ −1
‖,⊥ − iω — complex scatter-

ing frequencies of the charge carrier moving in directions

parallel and perpendicular to the main axis of the constant

energy ellipsoid, respectively, vz1 — z - component of the

charge carrier velocity in the first sub-band is introduced.

The relationship between the reflectance R, transmit-

tance T , absorption A and integral conductivity σa (12) will

be obtained using the results of the paper [21]:

R =

∣

∣

∣

∣

√

ε − sin2 θ(p̄ + p1p2) + cos θ(p̄ − p1p2)
√

ε − sin2 θ(1 + p̄) + cos θ(1− p̄)

∣

∣

∣

∣

2

, (15)

T = cos θRe
(

√

ε − sin2 θ
)

×

∣

∣

∣

∣

p2 − p1
√

ε − sin2 θ(1 + p̄) + cos θ(1− p̄)

∣

∣

∣

∣

2

, (16)

A = 1− R − T, (17)

p̄ =
p1 + p2

2
, ε =

ε2

ε1
, p1 = −1, p2 =

√
ε1 cos θ − B

√
ε1 cos θ + B

,

(18)

B =
2πσa

c cos θ
, (19)

where ε1 and ε2 — dielectric constants of the upper and

lower insulating layers.

Let us note that in the paper [21] the case of mirror

boundary conditions and a spherical constant energy surface

was reviewed.

Expressions (15)−(19) can be used when reviewing the

ellipsoidal band structure if the electric field strength vector

is oriented parallel or perpendicular to the rotation axis of

the ellipsoid. In this situation, the current density vector

will be parallel to the electric field strength. In case of a

longitudinal direction of the main axis of a constant energy

ellipsoid, it is necessary to substitute σa‖ into formula (19),
and in case of a transverse orientation — σa⊥.

Putting the expression for σa‖,⊥ into the function B (20),
we get

B‖,⊥ =
16π2e2ak0Tv1

c cos θν‖,⊥m‖,⊥
√

m‖m⊥

(m0

h

)3

×
∞
∑

l=1

ln

(

exp
(µ − εz l

k0T

)

+ 1

)

(

1− χ(�‖,⊥)
)

,

(20)
where B‖ corresponds to the longitudinal direction of the

main axis of the ellipsoid, and B⊥ — transverse one.

To analyze the obtained expressions, it is required to

introduce dimensionless parameters

uz l =
εz l

k0T
, uµ =

µ

k0T
, (21)

x0 =
a

λB⊥
, xλ =

3

λB⊥
, y0 = ωτ0v , (22)

z 0‖,⊥ = ν‖,⊥τ0ν =
τ0ν

τ‖,⊥
− iωτ0ν = κ‖,⊥ − iy0, (23)

ρ =
v0ν

c
, y p = ωpτ0ν , γ =

m⊥

m0

, (24)

where 3 — free path of charge carriers taking into

account volume scattering, τ0ν — scalar relaxation time in

a macroscopic sample, determined through the longitudinal

and transverse components of the relaxation tensor τν as

follows:

τ0ν = 3

√

τν‖τ
2
ν⊥. (25)

Parameters uz l and uµ —characterize, respectively, the

discrete component of the total energy of the charge carrier

and the chemical potential, normalized to k0T ; y0 and

y p — respectively, the product of the frequency of the

electromagnetic wave and the plasma frequency ω by the

parameter τ0ν . Parameters x0 and xλ represent the thickness

of the nanolayer and the free path of charge carriers,

normalized to the de Broglie wavelength of the charge

carrier λB⊥ in the direction perpendicular to the plane of
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the nanostructure;ρ — the ratio of the characteristic speed

of the charge carrier v0ν to the speed of light (characteristic
speeds will be discussed below).
The parameter z 0‖,⊥includes the ratio of the scalar

relaxation time in a macroscopic sample to the longitudinal

(transverse) component of the relaxation time tensor. Let

us find the connection between the longitudinal (transverse)
components of the relaxation tensor τ and the scalar relax-

ation time τ0, defined similarly to (25). From the expression

for the total energy of the charge carrier (1) it follows

that the ratio between the major and minor semi-axis of

the spheroid in velocity space is equal to
√

m⊥/m‖ In

this paper, it is assumed that the parameter 3 is determined

by scattering on impurities and crystal lattice defects and

does not depend on the thickness of the semiconductor

nanolayer. The average charge carrier velocity is inversely

proportional to the relaxation time. The ratio between the

longitudinal and transverse components of the relaxation

tensor will be equal to
√

m‖/m⊥. From what has been

said

τ0
3

√

τ‖τ
2
⊥ = 6

√

m‖

m⊥
τ⊥ =

√

m0

m⊥
τ⊥, (26)

τ0 = 3

√

m⊥

m‖
τ‖ =

√

m0

m‖
τ‖, (27)

κ‖,⊥ =
τ0ν

τ‖,⊥
=

√

m0

m‖,⊥

τ0ν

τ0
=

√

m0

m‖,⊥

v0

v0ν

, (28)

v0 and v0ν — respectively, characteristic velocities of

charge carriers with and without taking into account the

quantization of the energy spectrum of charge carriers,

which are introduced as follows:

nv2
0 = 4

(m0

h

)3

vz1
5

3

∞
∑

l=1

x
V 2

l f (0)
l dvxdvy , (29)

n0v
2
0v = 2

(m0

h

)3

vz1
5

3

∞
∑

l=1

y
V 2 f 0d3v, (30)

V 2
l =

(m‖v
2
x + m⊥v

2
y + m⊥v

2
z l)

m0

, (31)

V 2 = (m‖v
2
x + m⊥v

2
y + m⊥v

2
z )/m0. (32)

Here n and nv — respectively, the concentration of

charge carriers with and without taking into account the

quantization of the energy spectrum of charge carriers,

determined in the papers [14,15].
Integrating expressions (29), (30), we obtain

v0ν =

(

10

3

k0T
m

I3/2
I1/2

)1/2

, (33)

v0 =

(

10

3

k0T
m

K
P

)1/2

, (34)

Is =

∞
∫

0

us du
exp(u − uµ) + 1

, (35)

K =

∞
∑

l=1

∞
∫

uz l

udu
exp(u − uµ) + 1

, (36)

P =

∞
∑

l=1

ln
(

exp(uµ − uz l) + 1
)

. (37)

In case of a degenerate electron gas, v0, v0ν transform

into the effective Fermi velocity VF =
√
2εF/m0, and in the

case of a non-degenerate Fermi gas they are of the order of

the average thermal velocity of charge carriers [14,15].

Taking into account the above-mentioned dimensionless

parameters, the expressions for the functions B‖ and B⊥

take the form

B‖,⊥ =
ρy2

p
√

u0ν

4 cos θx0I1/2z 0‖,⊥8‖,⊥(γ)

×
∞
∑

l=1

ln
(

exp(uµ − uz l) + 1
)

(

1− χ

(

2x2
0z 0‖,⊥

√
γ

lxλ8‖,⊥(γ)

))

.

(38)
The following notations are introduced here

8⊥(γ) =
√
γ, 8‖(γ) =

1

γ
,

m0v
2
0ν

2k0T
, (39)

Limit cases

Let us review the case of a spherical band structure

(γ = 1). In this situation, the results obtained taking into

account the longitudinal and transverse orientations of the

main axis of the constant energy ellipsoid coincide with each

other. Setting γ = 1 in (38), we obtain

B‖ = B⊥ =
ρy2

p
√

u0ν

4 cos θx0I1/2z 0

∞
∑

l=1

ln
(

exp(uµ − uz l) + 1
)

×
(

1− χ

(

2x2
0z 0

lxλ

))

.

(40)
The obtained result coincides with the results of the

paper [19].

Let us consider the case of a degenerate electron

gas (uµ ≫ 1), corresponding to high concentration, low

effective mass of charge carriers and low temperature. The

equilibrium function of distribution takes the form of the

stepped approximation:

f (0)
l (εl) =

{

1, 0 < εl < εF ,

0, εl > εF ,
(41)

where εF — Fermi energy.

The reflectances, the coefficients of transmission, absorp-

tion will be determined by the expressions (15)− (17), in
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which the functions B‖ and B⊥ have the following form:

B‖,⊥ =
3ρy2

p

8xλz 0‖,⊥ cos θ82
‖,⊥(γ)

×
N

∑

l=1

(

1−
l2

4x2
0

)(

1− χ

(

2x2
0z 0‖,⊥

√
γ

xλl

))

.

(42)
Let us note that the upper limit of summation in expres-

sion (42) is equal to the integer N, i.e. the ratio of the wave

number of the charge carrier in the uppermost sub-band

kz N to the wave number of the charge carrier in the first

sub-band kz1 [14,15]:

N =
kz N

kz1
=

[

kF

kz1

]

= [2x0]. (43)

Let us proceed to the case of a non-degenerate electron

gas (uµ → −∞), corresponding to a low concentration, a

large effective mass of charge carriers, and a high temper-

ature. The equilibrium function of distribution transfers to

the classical distribution of the Maxwell-Boltzmann.

f (0)
l (εl) = exp

(

(ν − εl)/k0T
)

. (44)

The functions B‖ and B⊥ included in the expres-

sions (15)−(17) are defined as follows:

B‖,⊥ =
ρy2

p

2 cos θxλz 0‖,⊥8
2
‖,⊥(γ)

√

5

2π

×
∞
∑

l=1

exp

(

−
5l2

8x2
0

)(

1− χ

(

2x2
0z 0‖,⊥

√
γ

xλl

))

.

(45)

Analysis of results

Figure 1 shows the plotted dependences of the coeffi-

cients of absorption on the dimensionless thickness of the

semiconductor nanolayer. There is a review of the cases of

longitudinal (solid curves) and transverse (dashed curves)
directions of the rotation axis of a constant energy ellipsoid.

The absorption coefficient was calculated using formula (17)
taking into account the expression for the functions B‖ and

B⊥ (45) in the case of a non-degenerate electron gas.

The dependence of the absorption coefficient on thickness

is non-monotonic. As the thickness decreases, the absorp-

tion coefficient increases, and at x0 < 1 it decreases. This

dependency behavior can be explained as follows. At large

thicknesses, the nanolayer has a fairly high concentration

of free charge carriers, which influence the formation of

a secondary reflected wave. Almost all the energy of

the incident wave is converted into reflected energy. As

the thickness decreases, the concentration of free charge

carriers entering the conduction band decreases, as a result

of which part of the electromagnetic wave penetrates into

0 1 2 3 4

A

0

0.8

0.2

0.6

0.4

x0

1

2

3

4

5

6

Figure 1. Dependences of the absorption coefficient A on the

dimensionless thickness x0 at values g1 = g2 = 0.2; ρ = 0.005;

y p = 200; xλ = 8; ελ = 7; ε2 = 4; γ = 0.6; θ = 48◦ . 1, 4 —
y0 = 10; 2, 5 — y0 = 17; 3, 6 — y0 = 25. Solid curves 1−3 —
the case of the longitudinal direction of the main axis of a constant

energy ellipsoid, dashed curves 4−6 — the case of the transverse

direction.

0 1 2 3 4

R

0

1.0

0.2

0.6

0.4

x0

12

3

45

6

0.8

Figure 2. Dependences of the reflectance R on the dimensionless

thickness x0 at values g1 = g2 = 0.2; ρ = 0.005; y p = 200;

xλ = 8; ελ = 7; ε2 = 4; γ = 0.6; θ = 48◦. 1, 4 — y0 = 10;

2, 5 — y0 = 17; 3, 6 — y0 = 25. Solid curves 1−3 — the

case of the longitudinal direction of the main axis of a constant

energy ellipsoid, dashed curves 4−6 — the case of the transverse

direction.

the nanolayer and is absorbed by it, and the absorption

coefficient increases. With a further decrease in thickness

(x0 < 1), the concentration of free charge carriers becomes

insufficient for effective absorption of radiation; the absorp-

tion coefficient decreases and is practically equal to zero

at x0 < 0.5. There are oscillations in the dependences of

optical coefficients on thickness, the reason and conditions

for their occurrence are given in the work [18]. Figure 1

shows that the maximum absorption value in the case of

a longitudinal orientation of the main axis of a constant

energy ellipsoid is blurred and is half as much as the

absorption maximum calculated taking into account the

transverse orientation. At the diffuse maximum of the

solid curve 1 there are small oscillations in contrast to the

Optics and Spectroscopy, 2023, Vol. 131, No. 7
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A
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0.15
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g1

1

2

3

4

5

6

0.4 0.5

Figure 3. Dependences of the absorption coefficient A on the

roughness parameter of the upper surface g1 at values y0 = 4;

ρ = 0.005; y p = 200; g2 = 0; xλ = 50; γ = 0.7; ε1 = 3; ε2 = 5;

θ = 66◦: curves 1, 4 — x0 = 1; 2, 5 — x0 = 1.5; 3, 6 — x0 = 2.

Solid curves 1−3 — the case of degenerate, dashed curves 4−6 —
non-degenerate electron gas.

curve 4, i.e. in the case of a longitudinal orientation of

the main axis of a constant energy ellipsoid, the oscillatory

effect is observed at lower frequencies than in the case of a

transverse orientation.

Figure 2 shows the dependence of the reflectance,

calculated using formula (15) taking into account (45),
on the dimensionless thickness of the semiconductor layer.

From Fig. 2 it follows that at a certain thickness there

is a minimum of reflection. A potential reason for the

behavior of the dependence of the reflectance on thickness

is as follows. As the thickness decreases (up to x0 = 0.8),
the reflectance decreases, since the concentration of free

charge carriers forming the reflected wave decreases. At

small thicknesses (x0 < 0.5), another mechanism for the

formation of a reflected wave operates, similar to the case

of a dielectric layer: as a result of multiple reflection

of radiation from the upper and lower surfaces of the

nanolayer. The presence of a small amount of free

carriers absorbing radiation prevents the formation of a

reflected wave. There is a decrease of the reflectance at

0.5 < x0 < 0.8.

Figures 3 and 4 show the dependences of the absorption

and transmittance coefficients on the roughness parameter

of the upper surface, plotted in the case of the longitudinal

direction of the main axis of a constant energy ellipsoid. The

calculation was carried out using formulas (16) and (17)
taking into account the expression for the function B‖ (42)
in the case of a degenerate electron gas and (45) in the case

of a non-degenerate electron gas. In Figs. 3 and 4, there

are absorption maxima and transmittance minima at certain

roughness values. In Fig. 3 and 4 it is clear that curves 1, 4

have one absorption maximum (transmittance minimum),
and curves 2, 3, 5, 6 — two maxima (minima). A potential

reason for the non-monotonic behavior of the dependences

of the absorption and transmittance coefficients on the
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Figure 4. Dependences of the transmittance coefficient T on

the roughness parameter of the upper surface g1 at values y0 = 4;

ρ = 0.005; y p = 200; g2 = 0; xλ = 50; γ = 0.7; ε1 = 3; ε2 = 5;

θ = 66◦: curves 1, 4 — x0 = 1; 2, 5 — x0 = 1.5; 3, 6 — x0 = 2.

Solid curves 1−3 — the case of degenerate, dashed curves 4−6 —
non-degenerate electron gas.
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Figure 5. Dependences of the reflectance R on the roughness

parameter of the upper surface g1 at values x0 = 0.7; ρ = 0.005;

y p = 200; g2 = 0; xλ = 50; γ = 0.7; ε1 = 3; ε2 = 6; θ = 37◦ :

curves 1, 4 — y0 = 2; 2, 5 — y0 = 4; 3, 6 — y0 = 6. Solid

curves1−3 — the case of degenerate, dashed curves 4−6 — non-

degenerate electron gas.

roughness parameter is explained by the discrete structure

of the energy bands of the semiconductor.

Figures 5 and 6 show the dependences of the reflectance

calculated using formula (15) taking into account (42)
(solid curves) and (45) (dashed curves) on the roughness

parameter of the upper surface. The dependences are

plotted in the case of the longitudinal direction of the

main axis of a constant energy ellipsoid. Fig. 5 is

constructed in the case when the dielectric constant of

the upper insulating layer ε1 is less than the dielectric

constant of the lower layer ε2, and Fig. 6 — vice

versa. In Fig. 5 there are reflection minima, and in

Fig. 6 there are maxima. With an increase in the

frequency of the electromagnetic wave, the maxima (min-

ima) decrease and shift towards higher surface roughness

values.
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Figure 6. Dependences of the reflectance R on the roughness

parameter of the upper surface g1 at values x0 = 0.7; ρ = 0.005;

y p = 200; g2 = 0; xλ = 50; γ = 0.7; ε1 = 6; ε2 = 3; θ = 37◦:

curves 1, 4 — y0 = 2; 2, 5 — y0 = 4; 3, 6 — y0 = 6. Solid

curves1−3 — the case of degenerate, dashed curves 4−6 — non-

degenerate electron gas.

Conclusion

In this paper, as part of the quantum theory of transport

phenomena, analytical expressions are obtained for the

reflectance, transmittance and absorption coefficients of a

layered nanostructure
”
dielectric-semiconductor-dielectric“

taking into account the anisotropy of the band structure of

the semiconductor.

It has been specified that in case of a transverse

orientation of the main axis of a constant energy ellipsoid,

the maximum value of the absorption coefficient is almost

twice as high as the absorption coefficient calculated in the

case of a longitudinal orientation. In case of the longitudinal

direction of the rotation axis of the ellipsoid high-frequency

oscillations in the dependences of the absorption coefficient

on the thickness of the semiconductor layer can be observed

at lower frequencies than in the case of the transverse

direction.

A non-monotonic behavior of the dependences of the

optical coefficients on the roughness parameters of the

semiconductor nanolayer boundaries was discovered. At

certain roughness values, there are absorption maxima and

transmission minima, the appearance of which may be

associated with quantization of the energy spectrum of the

semiconductor.
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