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Weak localization in a highly disordered quantum well CdxHg1−xTe/HgTe/CdxHg1−xTe with a thickness of

d = 20 nm is experimentally investigated. An analysis is made of the anomalous positive magnetoresistance (APM)
caused by the suppression of the interference correction to the conductivity by a magnetic field on both sides of

the charge neutrality point: for a two-dimensional semimetal and for a two-dimensional electronic metal. For the

same values of resistivity, the APM peak in a 2D semimetal has a much wider width than in a 2D electron gas.

A quantitative comparison of the obtained results with the theory allows, in particular, to conclude that the intensity

of carrier transitions between subsystems in the 2D semimetal binary system is maximum near the charge neutrality

point, where the concentrations of electrons and holes are close, and decreases as the difference in concentrations

increases.
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1. Introduction

Gapless semiconductors such as HgTe are unique objects.

The use of quantum wells (QWs) of various thicknesses

made on their basis makes it possible to produce a wide

variety of two-dimensional electron and hole systems. It

has now been established that when the QW thickness of

HgTe is below the critical value of d < dc ≈ 6.5 nm, a two-

dimensional electron system with a normal band spectrum

and a normal band gap is realized in it. A HgTe quantum

well of critical thickness is a system of two-dimensional

Dirac fermions with a gapless dispersion law, which is

linear in respect to the wave vector k [1]. A QW with

a thickness slightly greater than the critical value, d > dc ,

has an inverted band spectrum and is a so-called two-

dimensional topological insulator, that is a system with a

band gap for bulk states and gapless edge states circulating

along the edge of the sample [2–5]. With a further increase

in thickness (d > 14 nm), the QW retains an inverted

band spectrum (Figure 1, c) where the conduction band

and the valence band are formed, respectively, by two-

dimensional subbands hh1 and hh2, arising as a result of

size quantization of the heavy hole band of bulk mercury

telluride, and the electron-like two-dimensional subband s1
(not shown in the figure) is located at a lower energy

level [6]. As can be seen from the figure, an important

feature of the wide (d > 14 nm) wells of HgTe is the

gapless energy spectrum, characterized by the overlap of

the bottom of the conduction band hh1 located in the center

of the Brillouin zone with the side maxima of the valence

band hh2.
Among the various studies of electron transport in HgTe

QWs, an important place is occupied by the observation

of effects caused by the interference of the wave func-

tion of charge carriers in the well. These include, in

particular, interference quantum corrections to conductivity

and associated localization and antilocalization types of

magnetoconductivity observed in weak magnetic fields. Ex-

perimental studies of interference effects in HgTe quantum

wells of various thicknesses have been ongoing for more

than ten years. Thus, similar effects were studied near

the topological transition for electrons in the conduction

band in QWs with both inverted (d > dc) and normal

(d < dc) spectrum [7,8], for holes in a QW with a normal

spectrum [9], for two-dimensional Dirac fermions in a QW

of critical thickness [10], as well as in a three-dimensional

topological insulator based on strained HgTe films with

thicknesses of 80 and 200 nm [11,12]. The main feature of

these effects, regardless of the well thickness, type of carriers

and energy spectrum, is the observation of pronounced

weak antilocalization, indicating rapid spin relaxation due

to the strong spin-orbit interaction in these structures. An

equally important feature of these structures is the ability to

observe weak localization effects in the presence of several

different types of charge carriers at once. Thus, in [9]
quantum interference corrections to hole conductivity in the

valence band were observed under conditions when, due to

the strong spin-orbit splitting of this band, the transfer was

performed by two types of holes. At the same time, a three-
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dimensional topological insulator based on thick strained

HgTe films [11,12] is a system where two-dimensional Dirac

fermions on the upper and lower surfaces of the sample

can be simultaneously present together with ordinary two-

dimensional holes and electrons in bulk valence band and

conduction band.

In this context, the study of weak antilocalization effects

in wide (d > 14 nm) HgTe quantum wells (QWs) is of

significant interest. In samples based on them, equipped

with an electrostatic gate, it is possible to move the Fermi

level from the conduction band, where the only type of

charge carriers are electrons, to the region of overlap of

the conduction band and valence band, where two types

of carriers are simultaneously present in the QW: electrons

and holes, i.e. a two-dimensional semimetal is realized

(see diagrams in Figure 2) [13,14]. This study presents the

results of investigation of features of the magnetotransport

caused by the suppression by a weak magnetic field of

interference quantum corrections to the conductivity in a

bulk doped 20 nm HgTe quantum well. The wide range

of gate voltages used made it possible to investigate the

behavior of weak antilocalization both in the case of a two-

dimensional electron gas in the conduction band and in a

two-dimensional semimetal. As a result of comparing exper-

iment with theory, the parameters characterizing systems of

two-dimensional electrons and two-dimensional semimetal

were determined.

2. Samples

To prepare experimental samples, a 20 nm QW of

CdxHg1−xTe/HgTe/CdxHg1−xTe with x = 0.74 and (013)

orientation of the surface, which layer-by-layer structure is

shown in Figure 1, a. The main feature of this well, in

comparison with previously studied similar wells, is the

presence of an additional disorder created by bulk doping

of the QW with indium (nIn ≈ 1017 cm−3) to enhance

the relative magnitude of the quantum correction to the

measured resistance due to a decrease in mobility. Based

on this QW, Hall bridges with a width of W = 50µm

and a distance between potentiometric contacts of 100

and 250µm were fabricated using optical lithography and

plasma-chemical etching (Figure 1, b). Ohmic contacts

to the two-dimensional electron system in the QW were

achieved by burning indium onto the contact pads. To

fabricate a gate on the structure, a dielectric layer consisting

of 100 nm SiO2 and 200 nm Si3N4 was first grown on

the structure. Then, the TiAu gate was deposited. The

change in charge carrier density in the QW with variation

of the gate voltage was 1.09 · 1015 m−2/V. Magnetotransport

measurements in the described structures were carried out

at a temperature of ≈ 200mK, in weak magnetic fields of

< 1T, at a frequency of 13Hz, in a standard four-point

configuration.
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Figure 1. a — layer-by-layer structure of the quantum well;

b — top view of the sample; c — schematic representation of the

band spectrum of a 20 nm HgTe QW. The area of conduction band

and valence band overlap is highlighted. (The colored version of

the figure is available on-line).

3. Results and discussion

Figure 2 shows the sample resistivity as a function of

the gate voltage in a zero magnetic field. Form of the

dependence is typical for wide HgTe QWs. At high

positive biases on the gate, the Fermi level is located in

the conduction band, but above the side maxima of the

valence band, and therefore outside the overlap region of

these bands (see the diagram on the right in Figure 2). In

this case, a two-dimensional electron metal with a relatively

high concentration and mobility of carriers is realized in

the sample. When the gate voltage changes from positive

to negative value, the Fermi level drops and at some point

crosses the top of the valence band, while remaining in the

conduction band. In this case, the resistance increases and

reaches a maximum at a gate voltage that corresponds to the

approximate equality of electrons in the conduction band

and holes in the valence band — at the so-called charge

neutrality point (CNP): (VCNP ≈ −1.25V). With a further

increase in the negative bias up to its maximum values, the

Fermi level drops lower in the valence band, but at the same

time, due to the high density of states in the valence band,

it does not leave the conduction band (see the diagram on

the left in Figure 2). Thus, starting from the gate voltages

corresponding to CNP and for all gate voltages to the left of

it, the QW simultaneously contains both holes in the valence
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Figure 2. Sample resistance as a function of gate voltage at

B = 0. The area of the charge neutrality point is highlighted in

green. Black symbols indicate the magnetic field values for which

the magnetic field dependences were measured. Blue symbols

highlight points with close values of ρ(B = 0), for which the

behavior of AMR is compared in Figure 4. (The colored version

of the figure is available on-line).
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Figure 3. a — concentration of electrons and holes as a function of the gate voltage; b — mobility of electrons and holes as a function

of the gate voltage gate voltage; c — partial (electron σe and hole σh) and total (σtotal) conductivities as functions of the gate voltage;

d — dependences of the characteristic magnetic field B tr separately for electrons Be
tr , for holes Bh

tr and averaged magnetic field Bav
tr for

bipolar transport in a 2D semimetal.

band and electrons in the conduction band, i.e. the state of

a two-dimensional semimetal is realized.

Analysis of the magnetofield dependences ρxx(B) and

ρxy(B) in classically weak magnetic fields using the Drude

model for a system with two types of charge carriers

makes it possible to plot dependences of the concentration

and mobility of electrons and holes for gate voltages

corresponding to position of the Fermi level in the band

overlap region. Figure 3, a and b show the dependences

obtained in this way, as well as similar dependences for the

two-dimensional electron metal to the right of VCNP. Using

the obtained dependences, it is also possible to determine

the dependence of the hole σh and electron σe contributions

to the total conductivity of the system σtotal on the gate

voltage (Figure 3, c). We will need these dependencies later.

Over the entire available gate voltage range, i. e. both for

its values corresponding to the state of a two-dimensional

electron gas, and for those at which the state of a two-

dimensional semimetal is realized, the behavior of ρ(B)
demonstrates typical features that are usually associated

with the suppression of interference corrections to conduc-

tivity by a weak magnetic field. For comparison, Figure 4

shows samples of the ρ(B) dependences in the range of

|B | ≤ 0.1T for the semimetal (Vg < VCNP) (a) and for the
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two-dimensional electron gas (Vg > VCNP) (c) with similar

resistivity values in zero magnetic field. An important

distinguishing feature of the ρ(B) behavior in the region of

gate voltages of Vg < VCNP is the presence of a significant

contribution from the classical Drude magnetoresistance,

which is always present in a system with two types of

charge carriers and which must be excluded if the study is

focused on the interference corrections to conductivity. The

latter was achieved by subtracting from the experimental

dependence ρ(B) (red curve in Figure 4, a) the classical

magnetoresistance (blue curve in Figure 4, a), modeled

using the Drude formula for the concentration and mobility

of electrons and holes corresponding to a given gate voltage.

The resulting dependence is shown in Figure 4, b. Such

actions were required neither for Vg ≈ VCNP, where the

contribution of classical magnetoresistance (MR) is weak,

nor for Vg > VCNP, where classical MR is absent. It

can be seen from Figure 4 that in the studied samples,

both in the state of two-dimensional electron gas and in

the state of two-dimensional semimetal, a positive MR

ρ(B) − ρ(B = 0) > 0 is observed, due to the suppression of

interference corrections by the magnetic field (also known

as anomalous MR (AMR) or weak antilocalization), which,

as already noted, is typical for HgTe QWs of any thickness

and is due to the rapid spin relaxation because to strong

spin-orbit interaction in this system. Moreover, in contrast

to a semimetal, where the quantum MR is always positive,

for a two-dimensional electron metal, at a certain value of

the magnetic field, a change in the MR sign from positive

to negative could be observed. Also, it should be noted that

for the same values of ρ(B = 0) the AMR peak for the two-

dimensional electron metal has a significantly smaller width

than that for the semimetal. For the most distant values of

the gate voltage, Vg = +1V and Vg = −5V, the difference

in AMR peak width exceeds 2 orders of magnitude.

The experimental dependences ρ(B) (taking into account

the additional processing described above in the case of

the semimetallic state, as well as after determining the zero

of the magnetic field and symmetrization) were reduced

to the following form: δσ (B) = 1/ρ(B) − 1/ρ(0), which

corresponds to the magnetoconductivity caused by the

suppression of the interference correction to conductivity by

the magnetic field. In Figures 5, a and 6, a series of similar

dependences are shown for the semimetal (Vg < VCNP)
and for the electron metal, including the CNP region

(Vg ≥ VCNP), respectively.
The choice of theory suitable for quantitative analysis

of the dependences shown in Figures 5, a and 6, a is

based on the magnitude of the characteristic magnetic field

B tr = ~/2el, where e is electron charge, and

l =
~

e

√

(

2πNs

gv

)

µ

is free path length, gv is valley degeneracy. The deter-

mination of B tr , which is trivial in the case of a two-

dimensional electron metal, is not entirely obvious in the
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Figure 4. Samples of magnetofield dependences of resistance

ρ(B) for: a — semimetal, Vg = −5V, ρ(B = 0) = 1.3 kOhm (red
curve). Blue color shows the contribution of the classical MR

for a given Vg ; b — AMR for Vg = −5V after subtracting the

classical MR; c — AMR for 2D electron metal with Vg = −0.25V,

ρ(B = 0) = 1.1 kOhm. T ≈ 0.2K. (The colored version of the

figure is available on-line).

case of a two-dimensional semimetal, when two types of

charge carriers — electrons and holes — are involved in the

transport. In addressing this issue, we follow the approach

proposed in [15], according to which the effective free path

lav in the case of a semimetal is determined by the sum

of the natural free paths for electrons and holes, taken with

weighting factors equal to the ratio of the partial contribution

Semiconductors, 2023, Vol. 57, No. 5
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to each curve; b — on b = B/Bav
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to the conductivity of a given type of carrier to the total

conductivity:

lav = le
σe

σtotal
+ lh

σh

σtotal

(also, see Figure 3, c).
The values of Bav

tr obtained in this way for the semimetal,

as well as the eigenvalues Be
tr and Bh

tr for electrons and holes

are shown as functions of the gate voltage in Figure 3, d.

The values of ±Bav
tr for the semimetal in Figure 5, a and

values of ±Be
tr for electrons in Figure 6, a that correspond

to the δσ (B) dependences are indicated by round symbols

superimposed on these dependencies. The results of re-

calculating the dependences of magnetoconductivity δσ (B)
into δσ (b), where b = B/Bav

tr for semimetal and b = B/Be
tr

for electrons, are shown in by symbols in Figure 5, b and

6, b, respectively.

The use of a diffusion description of the magnetofield

dependences of the interference correction to conductivity

is considered acceptable if the part of the δσ (B) depen-

dence that is significant for analysis is within the limits

of |B | < B tr . In the case of a semimetal, the δσ (B)

dependences are antilocalization
( dσ (B)

dB < 0
)

in the entire

range of magnetic fields, and the part of them that is

within |B | < Bav
tr (Figure 5) is quite sufficient to obtain

reliable information about the system. In the case of

a two-dimensional electron metal in magnetic fields of

|Bc | ≥ 0.01 T, a change in the sign of
dσ (B)

dB is observed

with |Bc | > Be
tr for all dependences. However, due to the

fact that the nature of this sign change is not completely

clear, the consideration for electrons, as in the case of

a semimetal, will be limited to the analysis of only the

antilocalization part of the dependence, which is within the

limits of |B | < Be
tr . To increase the accuracy in all cases,

comparison of theory with experiment was carried out in

the range of |b| ≤ 0.4, marked by vertical lines in Figure 5, b

and 6, b. The test has shown that ∼ 25% variations of the
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Symbols indicate the values corresponding to each curve Be
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on the b = B/Be
tr parameter. Symbols — experimental curves,

solid lines — fitting by formula (1). Vertical lines indicate the

range of the b parameter where the fitting was performed.
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|b| range used for the comparison with the theory have no

effect on the values of the extracted parameters.

To describe the antilocalization dependence δσ (b) in

the diffusion limit
( dσ (b)

db < 0 at |b| < 1
)

, the standard

expression [16,17] is used:

1σ (b) = αG0H

( τ

τφ
, b

)

H(x , y) = ψ

(

1

2
+

x
y

)

− ψ

(

1

2
+

1

y

)

− ln(x), (1)

where

G0 =
e2

2π2~
,

ψ(x) is digamma function, and the prefactor α and the ratio

of the pulse relaxation transport time to the phase coherence

time β = τφ/τ are used as fitting parameters.

Figure 5, b and 6, b show the experimental curves

(symbols) and the results of fitting to them (solid lines)
using formula (1). It can be seen that the diffusion

theory of interference corrections to conductivity describes

well all experimental dependences in the selected range of

|b| ≤ 0.4.

Figure 7, a and b show dependences of the α and

β = τφ/τ parameters on the gate voltage obtained as a

result of fitting. Let’s first consider the behavior of the α

parameter. It is well known that the value of the prefactor

α in the case of weak localization should be equal to 1,

and in the case of weak antilocalization it should be

−1/2. It can be seen in Figure 7, a that in the semimetal

region α increases monotonically from ≈ −0.7 to ≈ −0.3

immediately before the charge neutrality point. In the

vicinity of CNP and immediately beyond this point α

decreases to almost the same values as those observed in

the semimetal region at minimum electron concentrations.

Finally, under conditions of pure electron conductivity, α

reaches the value of −1/2 expected in the case of weak

antilocalization. Typically, in a situation where several

different groups of charge carriers are present in the system,

as, for example, in [8,9,11,12], the following reasoning is

used to describe the behavior of α. If the frequency

of carrier transitions between groups is low compared to

1/τφ , then these groups can be considered as independent

subsystems, whose contributions to the experimentally

determined α are summed up: α = −0.5− 0.5 = −1. If,

on the contrary, the transition frequency is high (≫ 1/τφ),
then the difference between the groups is leveled out and

α = −0.5, as in a system with one group of carriers. The

above is obviously true for groups of carriers with the same

sign. It is not entirely clear whether similar reasoning

is applicable to semimetal, where electrons and holes are

simultaneously present. The behavior in Figure 7, a in

the semimetal region can be interpreted as follows: the

largest absolute value of α coincides with regions where

the concentrations of electrons and holes are very different.

This may indicate that under these conditions the frequency

of transitions between these groups of carriers is minimal,
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fitting (see Figure 5, 6) depending on the gate voltage. The inset

to (b) shows τ e
φ (Vg ) dependences for electrons: the experimental

dependence (blue symbols) and the theoretical dependence (green
symbols), plotted using formula (2).

while it increases as the concentrations of electrons and

holes in the vicinity of CNP equalize.

As for the interpretation of the β = τφ/τ parameter

behavior (Figure 7, b), in the semimetal region it is compli-

cated by the fact that in this case both τ and τφ are complex

combinations of corresponding quantities for electrons and

holes. In the region of two-dimensional electron metal, on

the contrary, the obtained values of β make it possible to

immediately determine the dependence of τ e
φ on the gate

voltage for electrons (see inset to Figure 7, b). The same

figure shows the theoretical dependence τφ(Vg) obtained

using the following formula [18]

1

τφ
≈

kBT
~

e2/~
σ

ln

(

σ

e2/~

)

. (2)

It can be seen that far from the CNP in the region of

high electron concentrations, the experimental τ e
φ values are

well consistent with the theory. However, as the electron

concentration decreases with approaching the CNP, the

experimental dependence τ e
φ (Vg) drops significantly below
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the theoretical one, and the difference reaches almost an

order of magnitude at Vg ≈ VCNP. This behavior may

indicate that even a slight presence of holes, not directly

detected in the transport, can significantly limit the phase

coherence time of electrons.

4. Conclusion

Thus, in this study, interference corrections to conductiv-

ity in a two-dimensional semimetal based on 20 nm HgTe

QW — a binary two-dimensional system, including sub-

systems of degenerate electrons and holes simultaneously

participating in transport — were investigated for the first

time. To enhance the relative magnitude of the quantum

correction to the measured resistance, QWs were used, in

which additional disorder was created using bulk doping

that reduces conductivity of the system. Magnetotransport

measurements carried out in a wide range of electron

and hole concentrations in a two-dimensional semimetal,

as well as in the region of a two-dimensional electron

metal, revealed the presence of a positive MR, indicating

a high intensity of spin relaxation in the system under

study. A quantitative analysis of the data obtained indicates

a possible correlation between the intensity of carrier

transitions between the subsystems of electrons and holes

in a two-dimensional semimetal with the ratio of carrier

concentrations in these subsystems.
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