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Calculation of the flow around an oscillating cylinder with a coaxial disk

in the head at low Reynolds numbers
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The hypothesis of curved models is used to calculate the flow around a cylinder performing damped rotational

oscillations in the air flow. The influence of a disk coaxially fixed in the head of the cylinder on the oscillations is

studied. The elongation of the cylinder (the ratio of the length of the cylinder to its diameter) is nine. The diameter

of the disk is equal to 0.6 of the diameter of the cylinder. It is assumed that the only reason for the damping of on

the oscillations is aerodynamic force. The parameters characterizing the attenuation of rotational on the oscillations

of the cylinder occurring in the air flow at the Reynolds number Re = 750 are determined. It turned out that the

presence of a coaxial disk in the head leads to a faster attenuation of on the oscillations. This fact is in qualitative

agreement with the results of an experiment to determine rotational derivatives in a wind tunnel at large Reynolds

numbers. The hypothesis of quasi-stationary is applied in the calculation of translation vibrations of the cylinder.

The parameter characterizing the damping of vibrations of a cylinder with a disk in absolute magnitude slightly

exceeds the same parameter for a cylinder without a disk, which corresponds to the results of the experiment.
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Introduction

In the aerodynamics of streamlined bodies, such as

aircraft wings, the derivatives of the coefficients of aerody-

namic forces and moments with respect to the components

of angular and translational speed [1] are used to determine

the stability of motion. However, for bluff bodies, the

possibility of such derivatives use even in the simplest

problem of damping rotational or translational oscillations is

not obvious, since when the angle of inclination of the body

changes, sharp changes in aerodynamic forces and moments

occur, caused by the restructuring of extensive separation

zones. Even with small deviations from the equilibrium

position, there may be no region of linear dependence of

the aerodynamic force or moment of force on the angular

or translational speed. In this paper, damped oscillations of

a cylinder without a disk and a cylinder equipped with a

coaxial disk are studied. The purpose of this paper is to

describe the oscillations of a body in which the dependence

of forces and moments on angular and translational speed

is nonlinear and may have discontinuities. The problem is

solved numerically using the Krylov-Bogolyubov method.

The problem of flow around the rotating cylinders is solved

within the framework of the curved body hypothesis. In

the problem of translational oscillations of cylinders, the

stationarity hypothesis is used. The method of curved

models was first used in the work of G.A. Gurzhienko [2].
G.A. Gurzhienko worked on this topic at the suggestion

of Professor V.P. Vetchinkin, who wrote the preface to the

paper. The principle of fictitious curvature was previously

applied in the papers of G. Glauert when taking into account

the influence of rotation of a thin airfoil on its lifting

force [2]. The method of curved models is based on the idea

that the body movement along a curved trajectory, in which

translational and rotational components are present, can be

replaced by the translational movement of the curved body.

In this case, the local angles of attack at the corresponding

points of the body retain the same values. If you make a

curved model of body, you can measure the aerodynamic

coefficients of forces and moments in a wind tunnel. The

method of curved models was implemented in the problem

of airship motion along a circular arc. G.A. Gurzhienko

found that the center line of the curved body shall take the

form of a chain line. The coordinates of the curved axis x
and z are related by the formula

z = R0 cosα0

[

ch

(

x
R0 cosα0

)

− 1

]

,

where R0 and α0 — the radius of the circular arc

along which the body moves, and the angle that the

body axis makes with the relative gas speed vector. If

x/(R0 cosα0) ≪ 1, then the chain line is close to a parabola

and to a circular arc of radius R0 cosα0/2. The curved

model method was tested on the example of a rectangular

wing with an NACA 0012 profile [3]. Wing tests carried

out in a rotary machine at the Krylov Central Scientific

Research Institute, and experiments performed in a wind

tunnel with curved model at TsAGI gave similar results in

both linear and nonlinear regions of the dependences of the

lift force and pitching moment coefficients on the angle of

attack and angular speed. In the article [4] the method of
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curved models was used in the numerical calculation of two-

dimensional flow around the airfoil NACA0012 performing

a steady rotation. Subsequently, the method was extended

to the calculation of hypersonic flow around the bodies [5].
In the paper [6] by numerical calculations using the method

of curved models the unsteady aerodynamic characteristics

of cylindrical models in subsonic and supersonic flow were

determined.

1. Formulation of problem. Numerical
method

We considered the flow around a circular cylinder, which

performs angular oscillations in the air flow according to

the harmonic law with small amplitude θ0 and frequency �.

Ratio of cylinder length to diameter is 3 = L/D = 9. In the

equilibrium position the axis of the cylinder coincides with

the direction of the oncoming flow speed. The influence

of a disk located in the head of the cylinder was studied.

The disk has a diameter of d < D and is coaxially fixed

at a distance of g from the front end of the cylinder. It

is known that such a coaxial disk in front of the cylinder

significantly reduces drag [7–9]. At the moment of time

t, when its axis makes a small angle θ = θ0 sin�t with

the direction of the oncoming flow speed, and the angular

speed is ω = θ̇ = �θ0 cos�t = ω0 cos�t . Let us consider

the condition of equality of local angles of attack of the

rotating straight and curved stationary cylinder, applied to

the cylinder axis. Let the rotating cylinder is oriented

horizontally. Fig. 1 shows images of the rotating cylinder

(left) and the curved stationary cylinder (right).
Let us determine the local angle between the axis of the

cylinder rotating with angular speed ω and the speed of the

front end relative to the medium. Relative speed vr is the

sum of two vectors. One vector is equal in absolute value to

the oncoming flow speed v and is directed horizontally. The

second vector is the vector caused by the cylinder rotation

about the axis passing through its center. It is directed

upward in Fig. 1, and its length is ωL/2. The angle between

the cylinder axis and the relative speed of the front end

is determined by the formula tanα = ωL/(2v). This angle

shall coincide with the angle between the relative speed vr

and the axis of the curved cylinder in Fig. 1 on the right.

For the curved cylinder the angle is equal to the ratio of

the arc length AB to the arc radius R. We assume that the

L/2
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Figure 1. To determine the radius of curvature of the cylinder

axis.
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Figure 2. Computational domain with half of cylinder cut in half

by a plane of symmetry.

angles are small. We retain only terms of the first order of

smallness: α ≈ tanα, vr = v . Comparing the expressions

for the angle α of the rotating and curved cylinders, we

obtain an expression for determining the bending radius R
of the axis of the curved cylinder:

ωL
2v

=
L
2R

. (1)

The above arguments are valid for any other point on the

cylinder axis. From formula (1) it follows that R = v/ω. To

find out how the aerodynamic coefficients of the pitching

moment of angular velocity change during one period of

oscillation, we specified several angles of inclination θi ≤ θ0,

and for the corresponding values of angular speed ωi and

the radius of curvature Ri we plotted the computational

grids. The symmetry of the problem allowed us to limit

ourselves to review of the flow around half of cylinder.

The shape of the calculated volume was a combination of a

quarter of sphere and a half of cylinder. The computational

grids were generated using the freely available Gmsh

program [10].
Fig. 2 shows a diagram of the computational domain in

three projections. The front boundary of the calculated

volume and its upper boundary are located at a distance of

4m from the center of the cylinder. The rear boundary of

the calculated volume is at a distance of 8m from the center

of the cylinder. The length of the cylinder is L = 0.9m, its

diameter is D = 0.1m. The coaxial disk in the head of the

cylinder had a diameter of d = 0.6D and was located at a

distance of g = 0.5D from the front end. The computational

grid is hybrid one. The elements adjacent to the wall are

hexagons, the thickness of which decreases exponentially as

they approach the wall. The rest of the calculated volume is

filled with an unstructured grid with elements in the shape

of tetrahedrons, prisms and pyramids. The main part of the

calculations was carried out with grids containing from 650

to 800 thousand elements. Some of the calculations were

carried out with grids containing from 380 to 1300 thousand
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elements in order to establish the grid independence. The

grids in these calculations were refined or coarsened in

the region of the boundary layer and in other regions of

the calculated volume. Numerical calculations were carried

out using the freely distributed software package SU2 [11],
version 7.2.1

”
Blackbird“. The Navier-Stokes equations at

the Reynolds number Re = 750 were solved by the finite

volume method. The solver for incompressible medium

was used. The Courant-Friedrichs-Levy number for the

finest grid did not exceed four. At the outer boundary of

the calculated volume, the direction and speed of the air

flow were specified. The gas density, viscosity and Prandtl

number were assumed to be constant. Visualization of the

results was carried out using the freely distributed Paraview

program. The amplitude of oscillations was taken equal

to θ0 = 0.1 rad. The dimensionless oscillation frequency

Sh = �L/(2πv) took two values — 0.286 and 0.057,

which corresponds to the oscillation amplitude of the

dimensionless angular speed ω∗ = ω0L/v 0.18 and 0.036,

respectively. The similarity numbers in the paper are the

Reynolds number Re, the elongation of the cylinder L/D,

the dimensionless diameter of the disk d/D, the ratio of

the gap between the cylinder and the disk to the diameter

of the cylinder g/D, amplitude of rotational oscillations,

dimensionless amplitude of angular speed oscillations. Thus,

the results apply to a wide class of objects for which the

indicated similarity numbers coincide. The proportions of

the cylinder with the disk L/D, d/D, g/D were chosen

from the following considerations: there are experimental

results on the damping of rotational oscillations obtained

with cylinders and disks of such proportions (at other

Reynolds numbers); resiliently fixed cylinders of smaller

aspect ratio enter in the flow into oscillations with a

constant amplitude; damped oscillations are not typical for

cylinders of small aspect ratio; the selected dimensions of

the coaxial disk and the distance from the cylinder to the

disk provide a significant reduction in drag. Calculation

of flow around at high Reynolds numbers is, in particular,

of practical interest for modeling the cargo transportation

under a helicopter on a hardpoint. In this case, calculations

of turbulent flows are required. In the simplest version,

the Reynolds-averaged Navier-Stokes equations are used to

calculate turbulent flows. For closure, additional equations

that model turbulence are used. However, this approach in

the case of bluff bodies can lead to incorrect results [12].
For correct modeling, it is necessary to use eddy-resolving

approaches that require significant computational resources,

so we limited ourselves only to the flow at low Reynolds

numbers, following in this example the article [9].

2. Flow around cylinder undergoing
rotational oscillations

Let us consider the oscillations of the angular speed of

the cylinder with dimensionless amplitude ω∗ = 0.18. Fig. 3

shows the distribution of air flow speeds near the cylinder in

0
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0.25

0.50

0.75

1.20a

b

Figure 3. Relative flow speeds v/v∞ near a cylinder without a

disk (a) and a cylinder with a disk (b).

the plane of symmetry of the curved cylinder. The cylinder

is in the air flow, the angle of inclination of the cylinder is

θ = 3.17◦ . This angle corresponds to the radius of curvature

of the cylinder axis R = 6m.

In the top image there is cylinder without disk, in

the bottom there is cylinder with coaxially fixed disk.

Comparison of flow around patterns reveals a pattern: the

disk significantly reduces the size of the separation zones

adjacent to the cylinder near the head part. A decrease in

the size of the separation zones when installing the coaxial

disk is observed for the entire set of cylinder inclination

angles and angular speeds. Changing the size of the

separation zones and the flow around the rear part of the

cylinder affects the change in pressure distribution over

the surface of the cylinder and the change in the moment

coefficient. These changes at different flow around angles

lead to different consequences. In particular, for the angle

of inclination and negative angular speed, corresponding to

Fig. 3, the moment coefficient changes insignificantly. Let

the cylinder have a moment of inertia Iz and can rotate

around the axis OZ passing through the center of mass.

The cylinder is resiliently fixed, and its motion, which is

oscillations damped under the influence of the aerodynamic

torque, is described by the following equation:

Iz θ̈ + kθ = sL
ρ0v

2

2
mz (θ, ω), (2)

where k — elastic suspension stiffness, mz — aerodynamic

moment coefficient, s — cross-sectional area of the cylinder,

ρ0 — air density. Let’s introduce designations

µ = sL
ρ0v

2

2Iz
, �2 =

k
Iz
.

Equation (2) will be written as follows

θ̈ +�2θ = µmz (θ, ω). (3)

In actual elastic suspension, friction is always present, which

contributes to the damping of vibrations. However, in

a computational experiment it is possible to ignore the

suspension resistance and consider aerodynamic forces as

the only reason for the damping of oscillations. Parameter

µ ≪ �2. This means that the moment of aerodynamic
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Figure 4. Moment coefficient mz vs. angle of inclination θ:

1, 3 — cylinder without disk, 2, 4 — cylinder with disk; 1, 2 —
calculation, 2, 4 — equivalent ellipses. The amplitude of the

dimensionless angular speed is — 0.18.

forces is small compared to the moment of elastic forces.

Then the oscillations will be close to harmonic, and a

small aerodynamic moment will cause a slow change in

the oscillation amplitude θ0 and a slow change in the phase

shift ϕ:

θ = θ0 cosψ, ψ = �t + ϕ.

The equations for amplitude and phase can be obtained

by applying the Krylov-Bogolyubov method to the first

approximation [13]:

dθ0
dt

= −
µ

2π�

2π
∫

0

mz (ψ) sinψdψ, (4)

dψ
dt

= �−
µ

2πθ0�

2π
∫

0

mz (ψ) cosψdψ. (5)

The integral in equation (4) can be divided into the sum of

two integrals with limits from 0 to π and from π to 2π. Then

we will change variables θ = θ0 cosψ. After the simplest

transformations we obtain the following equation for the

amplitude of rotational oscillations:

dθ0
dt

= −
µ

2π�θ0

θ0
∫

−θ0

[mz1(θ) − mz2(θ)]dθ = −
µ

2π�θ0
Sθ,

(6)
where mz2 and mz1 — moment coefficients on the intervals

0 < ψ < π and ψ < ϕ < 2π respectively, Sθ — the area

of closed contour, which is a graph of the aerodynamic

moment coefficient mz vs. angle of inclination θ. This graph

is shown in Fig. 4.

If the oscillations are damped, then the area surrounded

by the closed line is proportional to the work expended

by aerodynamic forces during one period of oscillation to

reduce the total energy of the oscillatory system. In the

same way, you can plot moment coefficient vs. dimension-

less angular speed of the cylinder ξ = ωL/v . The area Sω
surrounded by the closed loop on this graph is proportional

to the change in oscillation frequency:

dψ
dt

= �−
µv

2π�2θ20L

ω0L/v
∫

−ω0L/v

[mz3(ξ) − mz4(ξ)]dξ

= �−
µv

2π�2θ20L
Sω, ξ =

L
R
, (7)

where mz3 and mz4 — moment coefficients at intervals

π/2 < ψ < 3π/2 and 3π/2 < ϕ < 5π/2, respectively. Typ-

ically, the damping of oscillations is described by the

rotational derivative of the moment coefficient mω
z . It is

believed that at small angles θ the linear approximation is

valid

mz = mθ
zθ + mω

z ξ. (8)

In the case of a bluff body, the range of angles near

zero, in which the linear approximation (8) is valid, is

either very small or absent, since the dependence is

discontinuous. Let us generalize the concept of rotational

derivative to the case of nonlinear dependence of the

moment coefficient on the angle and angular speed to

the ranges of these variables, where this nonlinearity is

significant, and introduce the parameters mθ
z and mω

z , which

describe the damping oscillations in certain ranges of angles

and angular speed. In the general case, these parameters

do not coincide with rotational derivatives. Substituting

expression (8) into equation (4) and taking into account

that θ = θ0 cosψ, ω = −θ0� sinψ, we obtain

dθ0
dt

= −
µ

2π�

2π
∫

0

(

mθ
zθ0 cosψ − mω

z θ0� sinψ
L
v

)

sinψdψ

=
µ

2
θ0mω

z
L
v
.

(9)
Expression (8) substitution into equation (5) gives

dψ
dt

= �−
µ

2π�θ0

2π
∫

0

(

mθ
zθ0 cosψ

− mω
z θ0� sinψ

L
v

)

cosψdψ = �−
µ

2�
mθ

z . (10)

Equations (6) and (7) comparison with equations (9)
and (10) gives expressions for the parameters mω

z and mθ
z :

mω
z = −Sθ

v

π�θ20L
= −Sθ

R
πθ0L

,

mθ
z = Sθ

v

π�θ20L
= Sω

R
πθ0L

. (11)
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The parameters mω
z and mθ

z , determined by formulas (11),
characterize the process of oscillations damping, and in the

case when the linear dependence (8) is valid, they coincide

with the rotational derivatives of moment coefficient. The

areas of closed contours in Fig. 4, composed of straight

segments connecting the points obtained as a result of the

calculation, are equal to the areas of the ellipses plotted in

Fig. 4. The area of the ellipse corresponding to cylinder

with coaxial disk is greater than the area of the ellipse

corresponding to cylinder without disk. This means that

the oscillations of the cylinder with the disk will damp

faster. This fact is in qualitative agreement with the results

obtained during the experiment performed at high Reynolds

numbers [14].
In all the considered cases, there is an angle of inclination

of the cylinder at which the moment coefficient changes

sharply. This is most clearly expressed for slow oscillations,

in which the dimensionless amplitude of the angular speed

is ω∗ = 0.036. Fig. 5 shows the patterns of flow around the

cylinder with disk at two close inclination angles −1.05

and −0.5◦ . The radii of curvature of the cylinder axis

are 25.4 and 25.1m, respectively. In two images in Fig. 5

the flow around patterns differ significantly. When the

angle of inclination changes from −0.5 to −1.05◦, the

area of reduced pressure in the rear section moves from

the bottom surface of the cylinder to the top. In this

case, the moment coefficient mz changes sign and increases

sharply from −0.064 to 0.025. Dependence of the moment

coefficient mz on the angle of inclination θ of the cylinder

with disk, which for fast oscillations was a shape close to

ellipse, for slow oscillations turns into a zigzag curve. It

is shown in Fig. 6. The areas of closed curves related

to cylinders without disk and with coaxial disk, as in the

case of fast oscillations, differ. The evaluation of areas of

closed contours allows us to conclude that the coaxial disk

accelerates the damping of the rotational oscillations of the

cylinder. The Table summarizes the values of the calculated

parameters.

The hypothesis of curved bodies is an approximate

one for the unsteady rotational motion of bodies. In

particular, this paper does not take into account that the

flow perturbations created by the head part of the cylinder

reach other fragments of the cylinder not instantly, but over

0

1.00

0.25

0.50

0.75

1.20a

b

Figure 5. Relative flow speeds v/v∞ for two near angles of

inclination of the cylinder with disk: a — angle of inclination 0.5,

b — angle of inclination 1.05◦ .
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Figure 6. Moment coefficient mz vs. angle of inclination θ: 1 —
cylinder without disk, 2 — cylinder with disk. The amplitude of

the dimensionless angular speed is —0.036.

Coefficients mω
z , mθ

z

Coefficients Fast oscillations Slow oscillations

mω
z without disk −0.23 −0.42

mω
z with disk −0.55 −0.56

mθ
z without disk 0.046 0.015

mθ
z with disk 0.56 0.35

a period of time. If the angle of inclination of the body

changes, then the time of perturbations arrival in the case

of streamlined bodies is taken into account by introducing

another rotational derivative mθ
z . In oscillatory motions of

the body the damping effect is described by the sum of two

rotational derivatives mω
z + mθ

z . For the aircraft the rotational

derivative mθ
z is from 40 to 60% of mω

z [15]. Thus, in this

paper the damping effect is underestimated, and the results

obtained are have qualitative nature.

3. Flow around cylinder undergoing
translational oscillations

To model translational oscillations of poorly flowed

around bodies, a quasi-stationary approximation is often

used, in which it is assumed that the aerodynamic normal

force acting on the body depends on the instantaneous

angles of attack only [16]. Normal force coefficients can

be determined in a wind tunnel or calculated numerically.

Let damped translational oscillations of the cylinder occur

along the axis OY , directed perpendicular to the oncoming

flow speed vector v and the cylinder axis, y — coordinate

of center of mass of the cylinder. During translational

oscillations, the tangent of the local angle of attack a is

the ratio of the vertical speed of the body, taken with the

opposite sign, to the speed of the oncoming flow. For a

Technical Physics, 2023, Vol. 68, No. 8
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Figure 7. Normal force coefficient cy vs. angle of attack α: 1 —
cylinder without disk, 2 — cylinder with disk.

small angle of attack

α ≈ tanα = −
ẏ
v
.

If the normal force coefficient is related linearly to the

dimensionless speed of motion of the body along the

axis OY ẏ
v
, then within the framework of the quasi-

stationary approximation the vibrational derivative c ẏ
y is

equal to the rotational derivative cαy , taken with the opposite

sign:

cy = c ẏ
y

ẏ
v

= −cαyα.

Values of normal force coefficient cy were numerically

determined depending on the angle of attack α for uncurved

cylinder with and without disk. Results are shown in

Fig. 7. The points on the graph deviate significantly from

linear relationships passing through the origin. Deviations

are maximum in the vicinity of the origin. Therefore, we

estimated the effective coefficients describing the damping

of translational oscillations using the method outlined above

for rotational oscillations. Let harmonic translational os-

cillations y = y0 cosψy , where ψy = �y t + φy , occur with

amplitude at which the maximum instantaneous angle of

attack is α0 = 0.05 rad. Then, using the Krylov-Bogolyubov

method, we find that the effective rotational derivative is

determined by the expression

cαy =
v

y0�yπ
Sy =

1

α0π
Sy ,

where Sy — the area of the closed contour, which forms

the dependence of the normal force coefficient cy on the

dimensionless coordinate η = y/y0. coefficients cαy are

equal to 2.41 for the cylinder without disk, and 2.76 for

the cylinder with disk. The disk presence increases the

rotational derivative cαy . This fact is in qualitative agreement

with the results of the experimental determination of

the rotational derivative at high Reynolds numbers [17].
The stationarity hypothesis (quasi-stationary hypothesis) for
describing translational oscillations of poorly flow around

bodies is also approximate, but there is evidence that it

gives results that coincide with experimental ones [16].

Conclusion

As a result of the calculations coefficients were deter-

mined that characterize the damping in the flow of rotational

and translational oscillations of resiliently fixed cylinder with

coaxially fixed disk and without disk in the head part. These

coefficients are a generalization of aerodynamic derivatives

that characterize the influence of aerodynamic forces on

the damping of oscillations of streamlined bodies. The

calculations used the curved model hypothesis and the

quasi-stationary hypothesis. The method is proposed in

which the numerical solution of the Navier-Stokes equations

is carried out jointly with the use of the Krylov-Bogolyubov

method. Fast and slow oscillations were considered. It

turned out that the coefficients describing the damping of

rotational oscillations depend on the amplitude of oscilla-

tions of the angular speed of the cylinder. The coefficients

describing the damping of translational oscillations depend

on the amplitude of translational oscillations. The presence

of coaxial disk promotes faster damping of oscillations.
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