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1. Introduction

The problem of correct characterization of absolute

strengths of ro-vibrational lines in polyatomic molecules

has historically remained one of the most important ones

in high-resolution molecular spectroscopy. It has been

discussed countless times in spectroscopic literature on

different types of polyatomic molecules [1–5]. The ones

presenting the greatest challenge in this context are asym-

metric top molecules [6–8]. As an illustration of this, we cite

just one of the seminal works of Flaud and Camy-Peyret [1]
who obtained the effective dipole moment in the general

form for two types of bands of an XY2 molecule (with

symmetry C2v) and its matrix elements on eigen functions

of the corresponding effective operators. The results of

this study are being used widely to this day by different

research groups in the examination of absolute strengths

of various XY2 molecules and (improved results of [1])
more complex asymmetric top molecules. Being unable

to recapitulate properly a wealth of research in this field,

we cite here only several studies [9–13] that have been

published in recent years by the authors of the present

report.

Speaking of the
”
landmark“ work [1] and other similarly

themed studies cited above, one should note that all of

them were focused on asymmetric top molecules in so-

called singlet electronic states. At the same time, even the

simplest asymmetric top molecules (XY2 with symmetry

C2v) may exist in nature not only in singlet, but also in

multiplet electronic states (an example is provided by free

radicals NO2 and ClO2, which have doublet state X2B1 as

their ground electronic state). Both the effective dipole

moment theory and calculations of absolute strengths of

lines for such molecules are significantly more complex

and differ from the models and calculations for
”
tradi-

tional“ molecules. The development of the corresponding

theory for molecules in doublet electronic states has been

progressing since the 1980s [14–17]. However, it still

cannot be said that all the needed effects (including those

of the same order of magnitude as the ones present in

models) have been taken into account. Specifically, it

is evident that a correct model of the effective dipole

moment operator should include not only purely rotational

centrifugal effects, which are the manifestations of ro-

vibrational interactions in molecules, but also spin-rotation

corrections, which, in turn, are the manifestations of

spin-ro-vibrational effects. This is understood easily if

one remembers that the influence of spin-ro-vibrational

interactions (see [18–34] and recent studies [35–37]) on

the effective Hamiltonian (and, consequently, ro-vibrational
energies) is of the same order of magnitude as the

influence of common ro-vibrational interactions. It is to be

expected that this trend should also persist in the effective

dipole moment operator. However, the influence of spin-

rotation interactions on absolute line strengths in all studies

published to date has been tracked only via the influence

on spin-rotation functions, which are the eigen functions

of the corresponding effective operators. The direct effect

of spin-ro-vibrational interactions on the effective dipole

moment operator has not been examined yet in literature.

In the present study, this effect is taken into consideration,

a more correct (compared to the one that is still being

used in literature) effective dipole moment operator is

obtained, and band ν3 of a ClO2 molecule is used as

an example to demonstrate that spin-rotation interactions

taken into account directly in the effective dipole moment
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operator may exert a significantly more profound influence

on absolute strengths than spin-rotation interactions factored

in via wave functions.

2. Effective dipole moment models and
absolute transition strengths in XY2

molecules with symmetry C2v

It is common knowledge that the absolute strength of a

ro-vibrational line of a molecule (in the present case, an

XY2 molecule with symmetry C2v) is given by

SN
ν0

=
8π3ν0

4πǫ03hc

[
1− exp

(
−

hcν0
kBT

)]

×
g i

Z(T )
exp

(
−

Ei

kBT

)
R

f
i . (1)

Since the quantities used in expression (1) were discussed

in detail, e.g., in [1], these explanations are omitted here. We

focus on R
f
i , which is the squared matrix element of the

so-called effective dipole moment operator of a molecule

on ro-vibrational wave functions of states of the examined

transition and presents the greatest difficulty in calculations

of absolute strengths. Thorough clarifying descriptions of

the already available models of the effective dipole moment

and the approaches to calculation of its matrix elements

are omitted here for brevity. Let us just outline three

major approaches to the issue of determination of the

effective dipole moment operator for an XY2 molecule

(with symmetry C2v) and then characterize the fourth one,

which is the method developed in the present study, in

more detail in the next section. The simplest model (I)
of the effective dipole moment operator postulates that both

ro-vibrational and spin-rotation interactions are lacking in

a molecule.
”
Effective“ dipole moment operator PZ is

then reduced to simple form PZ = kZα, α = x , y, z ; kZα are

elements of the direction cosine matrix (matrix of transition

from a spatially fixed reference frame to a molecule-fixed

one) for a rigid asymmetric top [8]. It is well known that

the kZα operator matrix elements take the form

< Jk | kZz | Jk >= k

{
(2J + 1)

J(J + 1)

}1/2

, (2)

< Jk | kZx |Jk ± 1 >= ± < Jk | ikZy | Jk ± 1 >

=
1

2

{
(2J + 1)(J ∓ k)(J ± k + 1)

J(J + 1)

}1/2

, (3)

< Jk | kZz | J + 1k >=

{
(J + k + 1)(J − k + 1)

(J + 1)

}1/2

,

(4)

< Jk | kZx | J + 1k ± 1 >= ± < Jk | ikZy | J + 1k ± 1 >

= ∓
1

2

{
(J ± k + 1)(J ± k + 2)

(J + 1)

}1/2

, (5)

< Jk | kZz | J − 1k >=

{
(J + k)(J − k)

J

}1/2

, (6)

< Jk | kZx | J − 1k ± 1 >= ± < Jk | ikZy | J − 1k ± 1 >

= ±
1

2

{
(J ∓ k)(J ∓ k − 1)

J

}1/2

. (7)

A more rigorous model (II), which was considered in [{]1
and is applicable to molecules in a singlet electronic state,

includes ro-vibrational interactions in a molecule (i.e., takes
into account centrifugal contributions to the effective dipole

moment operator). The length of this report being limited,

we do not present the results obtained with model (II);
the reader may find them in Table II in [1]. The third

”
iteration“ of the effective dipole moment operator model

was formulated for a molecule in a doublet electronic

state. That said, the model developed in [14–17] has been

used up until now to characterize the absolute strengths

of spin-ro-vibrational transitions in molecules of this kind.

Spin-rotation interactions are taken into account in this

model only in terms of their influence on spin-ro-vibrational

wave functions that are the solution of a Schrödinger

equation with effective Hamiltonians of vibrational states the

transitions between which are considered. At the same time,

only purely rotational
”
centrifugal effects,“ which are the

manifestations of ro-vibrational interactions in molecules,

are taken into account in the effective dipole moment

operator itself. Spin-rotation centrifugal corrections, which

may emerge due to the presence of spin-ro-vibrational

interactions, are ignored. It was demonstrated in [38] that
each ro-vibrational molecular line is split within this model

into several components with their absolute strengths given

by

R
(Ñ J̃ k̃)
(NJk) = g(NJ, ÑJ̃)R

(J̃ k̃)
(Jk) , (8)

where (in the notation adopted in [14–17]) quantum number

N corresponds to the sum of rotational and spin angular

momenta; R
(J̃ k̃)
(Jk) and R

(Ñ J̃ k̃)
(NJk) are the matrix elements

of the effective dipole moment operator in models II

and III (on ro-vibrational and spin-ro-vibrational functions,

respectively); and g(NJ, ÑJ̃) are the coefficients specifying

the relative strength of components into which each ro-

vibrational transition is split due to spin-rotation interactions.

Performing transformations similar to those discussed in

the next section of the present study, one finds that

coefficients g(NJ, ÑJ̃) have the form presented in Table 1.

The values of coefficients g(NJ, ÑJ̃) from [38] differ

from the doubled values of coefficients from Table 1

by fractions of a percent, providing almost completely

matching relative strengths of splitting components for

all ro-vibrational transitions. At the same time, it may

be noted that the sums of values in the last column

of Table 1 for each of the three types of ro-vibrational

transitions are very close to unity (in [38], they are

close to 2). Thus, the coefficients in Table 1 may be
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regarded as coefficients of distribution of absolute strengths

of ro-vibrational transitions over their spin-rotation compo-

nents.

3. Improved model (IV) of the effective
dipole moment of a molecule with the
dependence on spin-ro-vibrational
interactions factored in

With no possibility to provide a detailed account of

the derivations here, we note only that the Schrödinger

equation for the effective Hamiltonian assumes the following

form if spin-ro-vibrational interactions in a molecule are

characterized correctly:

H̃ | v ′,Ri(Nk, SJ)〉 = δvv′E
(v)
v,R i (Nk,SJ) | v, Ri(Nk, SJ)〉

= δvv′E
(v)
v,R i (Nk,SJ) | v〉 | Ri(Nk, SJ)〉, (9)

and the squared matrix element of the effective dipole

moment operator in formula (1) may be written as

R
(ṽ, R̃ j (Ñ k̃, S J̃))

(v,R i (Nk,SJ)) =

=

∣∣∣∣ (〈J| ⊗ 〈S|)N
k ‖〈v |

(
G+P(1)G

)1

| ṽ〉‖
(
|J̃〉 ⊗ |S〉

)Ñ

k̃

∣∣∣∣
2

=

=

∣∣∣∣
(
〈J|⊗〈S|

)N

k

∑

α

{
1

2
kŴ

Zα,
(α)µŴ̃

rot+
(α)µŴ̃

sp-rot

}γ

+

(
|J̃〉⊗|S〉

)Ñ

k̃

∣∣∣∣
2

,

(10)

where γ = (Ŵ× Ŵ̃). The right-hand side of expression (10)
features two terms. The first one corresponds to the ap-

proximation of model III. The second term was neglected in

previous studies, although it may be demonstrated (see also

Section 6 of the present study) that its contributions to the

end result are comparable in magnitude to the contributions

of the first term. As above, we skip intermediate calculations

and proceed directly to the analysis of the influence of this

second term on two major types of absorption bands in

molecules with axial symmetry C3v .

4. Parallel ro-vibrational bands

It may be demonstrated that index γ in expression (10)
is equal to A2 in this case and (with an accuracy up to the

contributions that are small relative to expressions (2)–(7))
the following five operators should be taken into account in

the second term of effective dipole moment operator (10):

{∑

α

kŴ
Zα, µŴ̃

sp-rot

}A2

+

=

{
kZx , µ̃

(v−ṽ)
1 (R · S) + µ̃

(v−ṽ)
2 (Rz Sz )

+ µ̃
(v−ṽ)
3 (Rx Sx −RySy )

}

+

+

{
kZy , µ̃

(v−ṽ)
4 (Rx Sy +Ry Sx )

}

+

+

{
kZz , µ̃

(vṽ)
5 (Rx Sz + Rz Sx )

}

+

. (11)

The matrix elements of five operators from formula (11) on

ro-vibrational functions (|J〉 ⊗ |S〉)N
k take the form

(〈J| ⊗ 〈S|)N
k

{
kZx , µ̃

(v−ṽ)
1 (R · S)

}

+

(
|J̃〉 ⊗ |S〉

)Ñ

k̃

= µ
(v−ṽ)
1

√
g̃(NJ, ÑJ̃) 〈Jk|kZx |J̃ k̃〉

[
J̃(J̃ + 1)

− Ñ(Ñ + 1) + J(J + 1) − N(N + 1) − 2S(S + 1)

]
, (12)

where k̃ = k ± 1 and µ
(v−ṽ)
1 is a rewritten (multiplied by

an insignificant constant) µ̃
(v−ṽ)
1 parameter. The matrix

elements of the next two operators are

(〈J| ⊗ 〈S|)N
k

{
kZx , µ̃

(v−ṽ)
2 (Rz Sz )

}

+

(
|J̃〉 ⊗ |S〉

)Ñ

k̃

= µ
(v−ṽ)
2

√
g̃(NJ, ÑJ̃) 〈Jk|kZx |J̃ k̃〉

×

{
k2

N(N + 1)

[
J(J + 1) − N(N + 1) − S(S + 1)

]

+
k̃2

Ñ(Ñ + 1)

[
J̃(J̃ + 1) − Ñ(Ñ + 1) − S(S + 1)

]}
, (13)

where k̃ = k ± 1,

(〈J| ⊗ 〈S|)N
k

{
kZx , µ̃

(v−ṽ)
3 (Rx Sx − Ry Sy )

}

+

(
|J̃〉 ⊗ |S〉

)Ñ

k̃

= µ
(v−ṽ)
3

√
g̃(NJ, LJ̃) 〈Jk|kZx |J̃ l〉

{(
〈J̃| ⊗ 〈S|

)L

l

×

[(
R(1) ⊗ S(1)

)2

2
+

(
R(1) ⊗ S(1)

)2

−2

](
|J̃〉 ⊗ |S〉

)Ñ

k̃

}

+ µ
(v−ṽ)
3

{
(〈J| ⊗ 〈S|)N

k

[(
R(1) ⊗ S(1)

)2

2
+

(
R(1) ⊗ S(1)

)2

−2

]

× (|J〉 ⊗ |S〉)M
m

}√
g̃(MJ, ÑJ̃) 〈Jm|kZx |J̃ k̃〉, (14)

the last expression holds true both at (k̃ = k ± 1) and at

k̃ = k ± 3, and nonzero matrix elements of the operators

found in (14) take the form

(〈J| ⊗ 〈S|)N
k

(
R(1) ⊗ S(1)

)2

±2
(|J〉 ⊗ |S〉)N

k̃=k∓2

= (−1)2(N−J) (2N + 1)

4J(2J + 1)

× {(N ± k − 1)(N ± k)(N ∓ k + 1)(N ∓ k + 2)}1/2 ,
(15)
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Table 1. Nonzero values of coefficients g̃(NJ, ÑJ̃) (
”
relative strengths“) of spin-rotation components of rotational transitions

Ñ J̃ J 1J = J̃ − J Value

Ñ = N − 1 J̃ = Ñ + 1/2 = N − 1/2 J = N + 1/2 1J = 1N 2N−1
4N

J̃ = Ñ − 1/2 = N − 3/2 J = N − 1/2 1J = 1N 2N+1
4N

J̃ = Ñ + 1/2 = N − 1/2 J = N − 1/2 1J 6= 1N 1

4N2

J̃ = Ñ − 1/2 = N − 3/2 J = N + 1/2 1J 6= 1N 0

Ñ = N J̃ = N + 1/2 J = N + 1/2 1J = 1N N(2N+3)

4(N+1)2

J̃ = N − 1/2 J = N − 1/2 1J = 1N (N+1)(2N−1)

4N2

J̃ = N − 1/2 J = N + 1/2 1J 6= 1N 1
4N(N+1)

J̃ = N + 1/2 J = N − 1/2 1J 6= 1N 1
4N(N+1)

Ñ = N + 1 J̃ = Ñ + 1/2 = N + 3/2 J = N + 1/2 1J = 1N 2N+1
4(N+1)

J̃ = Ñ − 1/2 = N + 1/2 J = N − 1/2 1J = 1N 2N+3
4(N+1)

J̃ = Ñ − 1/2 = N + 1/2 J = N + 1/2 1J 6= 1N 1

4(N+1)2

J̃ = Ñ + 1/2 = N + 3/2 J = N − 1/2 1J 6= 1N 0

and

(〈J| ⊗ 〈S|)N
k

(
R(1)⊗S(1)

)2

±2
(|J〉 ⊗ |S〉)(N+1N)

k̃=k∓2
=

1N(k−k̃)

4

×

{
(N±k)(N∓k+1)[(N+1)+1N(2∓k)][N+1N(2∓k)]

(2J+1)(2J+2+1N)

}1/2

.

(16)
Having analyzed expressions (14)–(16), one may draw an

important inference that, in addition to possible quantum

number variations k̃ = k ± 1 and Ñ = N ± 1, these expres-

sions allow k̃ = k ± 3 and Ñ = N, N±). The following is

obtained for the last two operators in expression (11) for

the effective dipole moment:

(〈J| ⊗ 〈S|)N
k

{
kZy , µ̃

(v−ṽ)
4 (Rx Sy + Ry Sx)

}

+

(
|J̃〉 ⊗ |S〉

)Ñ

k̃

= µ
(v−ṽ)
4

√
g̃(NJ, MJ̃) 〈Jk|kZx |J̃ l〉(l − k)

{(
〈J̃| ⊗ 〈S|

)M

l

×

[(
R(1) ⊗ S(1)

)2

2
−

(
R(1) ⊗ S(1)

)2

−2

] (
|J̃〉 ⊗ |S〉

)Ñ

k̃

}

+ µ
(v−ṽ)
4

√
g̃(NJ, MJ̃) 〈Jk|kZx |J̃ l〉(l − k)

{(
〈J̃| ⊗ 〈S|

)M

l

×

[(
R(1) ⊗ S(1)

)2

2
−

(
R(1) ⊗ S(1)

)2

−2

] (
|J̃〉 ⊗ |S〉

)Ñ

k̃

}
,

(17)

(〈J| ⊗ 〈S|)N
k

{
kZx , µ̃

(v−ṽ)
5 (Rx Sz + Rz Sx )

}

+

(
|J̃〉 ⊗ |S〉

)Ñ

k̃

= µ
(v−ṽ)
5

√
g̃(NJ, LJ̃) 〈Jk|kZx |J̃ l〉

{(
〈J̃| ⊗ 〈S|

)L

l

×

[(
R(1) ⊗ S(1)

)2

−1
−

(
R(1) ⊗ S(1)

)2

1

] (
|J̃〉 ⊗ |S〉

)Ñ

k̃

}

+ µ
(v−ṽ)
5

{
(〈J| ⊗ 〈S|)N

k

[(
R(1) ⊗ S1

)2

−1
−

(
R(1) ⊗ S(1)

)2

1

]

× (|J〉 ⊗ |S〉)M
m

}√
g̃(MJ, ÑJ̃) 〈Jm|kZx |J̃ k̃〉,

(18)
where

(〈J| ⊗ 〈S|)N
k

(
R(1) ⊗ S(1)

)2

±1
(|J〉 ⊗ |S〉)N

k̃=k∓1

= (−1)2(N−J) (2N + 1)(1∓ 2k)

4J(2J + 1)
{(N ± k)(N ∓ k + 1)}

1/2
,

(19)

(〈J| ⊗ 〈S|)N
k

(
R(1) ⊗ S(1)

)2

±1
(|J〉 ⊗ |S〉)(N+1N)

k̃=k∓1

=
1N(k−k̃)(N ∓ 2k+1)

4

{
(N ∓ k+1)[N+1N(2∓ k)]

(2J + 1)(2J + 2 + 1N)

}1/2

.

(20)
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5. Perpendicular ro-vibrational bands

Index γ in formula (10) is equal to E in this case, and

it can be seen that five operators again need to be taken

into account in the second term of effective dipole moment

operator (10), although these five differ from the ones for

parallel bands:

{∑

α

kŴ
Zα,µ

Ŵ̃
sp-rot

}B2

+

=

{
kZz , µ̃

(v−ṽ)
1 (R · S) + µ̃

(v−ṽ)
2 (Rz Sz )

+ µ̃
(v−ṽ)
3 (Rx Sx − Ry Sy)

}

+

+
{

kZy , µ̃
(v−ṽ)
4 [(Ry Sz + Rz Sy )]

}

+

+
1

2

{
kZx , µ̃

(v−ṽ)
5 [(Rx Sz + Rz Sx)]

}

+
.

(21)
Proceeding in the same way as in the previous section, one

finds

(〈J| ⊗ 〈S|)N
k

{
kZz , µ̃

(v−ṽ)
1 (R · S)

}

+

(
|J̃〉 ⊗ |S〉

)Ñ

k̃

= µ
(v−ṽ)
1

√
g̃(NJ, ÑJ̃) 〈Jk|kZz |J̃ k̃〉

[
J̃(J̃ + 1) − Ñ(Ñ + 1)

+ J(J + 1) − N(N + 1) − 2S(S + 1)

]
,

(22)

(〈J| ⊗ 〈S|)N
k

{
kZz , µ̃

(v−ṽ)
2 (Rz Sz )

}

+

(
|J̃〉 ⊗ |S〉

)Ñ

k̃

= µ
(v−ṽ)
2

√
g̃(NJ, ÑJ̃) 〈Jk|kZz |J̃ k̃〉

×

{
k2

N(N + 1)
[J(J + 1) − N(N + 1) − S(S + 1)]

+
k̃2

Ñ(Ñ + 1)

[
J̃(J̃ + 1) − Ñ(Ñ + 1) − S(S + 1)

]}
, (23)

where k̃ = k ;

(〈J| ⊗ 〈S|)N
k

{
kZz , µ̃

(v−ṽ)
3 (Rx Sx − Ry Sy )

}

+

(
|J̃〉 ⊗ |S〉

)Ñ

k̃

= µ
(v−ṽ)
3

√
g̃(NJ, LJ̃) 〈Jk|kZz |J̃ k〉

{(
〈J̃| ⊗ 〈S|

)L

l=k

×

[(
R(1) ⊗ S(1)

)2

2
+

(
R(1) ⊗ S(1)

)2

−2

] (
|J̃〉 ⊗ |S〉

)Ñ

k̃

}

+ µ
(v−ṽ)
3

{
(〈J| ⊗ 〈S|)N

k

[(
R(1) ⊗ S(1)

)2

2
+

(
R(1) ⊗ S(1)

)2

−2

]

× (|J〉 ⊗ |S〉)M
m=̃k

}√
g̃(MJ, ÑJ̃) × 〈Jk̃|kZz |J̃ k̃〉,

(24)

(〈J| ⊗ 〈S|)N
k

{
kZy , µ̃

(v−ṽ)
4 (Ry Sz + Rz Sy )

}

+

(
|J̃〉 ⊗ |S〉

)Ñ

k̃

= µ
(v−ṽ)
4 (l − k)

√
g̃(NJ, LJ̃) 〈Jk|kZx |J̃ l〉

{(
〈J̃| ⊗ 〈S|

)L

l

×

[(
R(1) ⊗ S(1)

)2

−1
+

(
R(1) ⊗ S(1)

)2

1

] (
|J̃〉 ⊗ |S〉

)Ñ

k̃

}

+ µ
(v−ṽ)
4 (k̃ − m)

{
(〈J| ⊗ 〈S|)N

k

[(
R(1) ⊗ S(1)

)2

−1

+
(

R(1)⊗ S(1)
)2

1

]
(|J〉 ⊗ |S〉)M

m

}√
g̃(MJ, ÑJ̃)〈Jm|kZx |J̃ k̃〉,

(25)

(〈J| ⊗ 〈S|)N
k

{
kZy , µ̃

(v−ṽ)
5 (Rx Sz + Rz Sx )

}

+

(
|J̃〉 ⊗ |S〉

)Ñ

k̃

= µ
(v−ṽ)
5

√
g̃(NJ, LJ̃) 〈Jk|kZy |J̃ l〉

{(
〈J̃| ⊗ 〈S|

)L

l

×

[(
R(1) ⊗ S(1)

)2

−1
−

(
R(1) ⊗ S(1)

)2

1

](
|J̃〉 ⊗ |S〉

)Ñ

k̃

}

+ µ
(v−ṽ)
5

{
(〈J| ⊗ 〈S|)N

k

[(
R(1) ⊗ S(1)

)2

−1
−

(
R(1) ⊗ S(1)

)2

1

]

× (|J〉 ⊗ |S〉)M
m

}√
g̃(MJ, ÑJ̃) 〈Jm|kZy |J̃ k̃〉.

(26)

Quantum numbers Ñ and k̃ in the last three expressions

may assume the values of 1N = Ñ − N = 0,±1,±2 and

1k = k̃ − k = 0,±2.

6. Illustration: a fragment of the ν3 band
of a 35ClO2 molecule

To illustrate the validity and importance of the obtained

results, we present here a small fragment of the spectrum

(a series of
”
forbidden“ transitions with 1k = −2) of the

ν3 band of a 35ClO2 free radical for the lowest values of

quantum number k (see the figure). The lowest k values

were chosen for the fact that the corresponding transitions

provide the most vivid demonstration of the necessity of

application of improved (compared to model III) model IV

in order to perform a correct analysis of experimental data.

Analyzing the results presented in Section 5, one sees

readily that the values of matrix elements corresponding

to Q transitions decrease as k√
N

with increasing quantum

number N, while the values of matrix elements corre-

sponding to P and R transitions increase as
(

N2−k2
√

N

)
.

This is the reason why we present a short series of

”
forbidden“ R transitions as an illustration in Table 2

and the figure; signs
”
+“ and

”
−“ in the first column

of Table 2 correspond to two different components of

spin-rotation doublets, the experimental line positions and

transmittance in columns 3 and 4 were taken from [37],
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Table 2. Illustration of the
”
forbidden“ 1k = −2 transitions in band ν3 of a 35ClO2 molecule

Transition νcalc, νmeas, Transmittance,

[N′ = N + 1 K′

a = 0 K′

c (σ ′)] − [N Ka = 2 Kc (σ )] cm−1 cm−1 %

1 2 3 4

[4 0 4 (−)] − [3 2 1 (−)] 1106.7267 1106.7262 92

[4 0 4 (+)] − [3 2 1 (+)] 1106.7824 1106.7828 92

[6 0 6 (−)] − [5 2 3 (−)] 1107.7978 1107.7976 95

[6 0 6 (+)] − [5 2 3 (+)] 1107.8319 1107.8315 89

[8 0 8 (−)] − [7 2 5 (−)] 1108.6547 1108.6546 86

[8 0 8 (+)] − [7 2 5 (+)] 1108.6882 covered 62

[10 0 10 (−)] − [9 2 7 (−)] 1109.1992 1109.2000 80

[10 0 10 (+)] − [9 2 7 (+)] 1109.2575 covered 61

[12 0 12 (−)] − [11 2 9 (−)] 1109.3568 1109.3563 85

[12 0 12 (+)] − [11 2 9 (+)] 1109.4050 1109.4050 80

1109.20 1109.25 1109.401109.30 1109.35

T
ra

n
sm

it
ta

n
c
e

0.3

0.9

0.6

0.7

0.8

1 0.

Wavenumber , cmn
–1

0.4

0.5
N = 9

N = 11

35
2ClO

n3

–

+

–

+

Small fragment of the experimental spectrum of a ClO2 molecule

from [37].
”
Forbidden“ 1k = −2 transitions are denoted by dark

circles. The experimental conditions are as follows: spectral

resolution — 0.0015 cm−1 ; number of scans — 400; radiation

source — Globar; detector — MCT313; KBr beam splitter; optical

path length — 0.23m; aperture — 1.15mm; temperature —
22.0±0.3◦C; pressure — 100 Pa; CO2 and H2O lines were used

for calibration.

and the predicted positions of
”
forbidden“ transitions were

calculated with parameters also taken from [37]. It can be

seen that the indicated transitions are fairly strong and are

even on par in terms of strength with
”
allowed“ transitions

(not shown in the figure). The reader might argue that

these transitions may be produced in the spectrum by

a superposition of basis wave functions within the well-

known model III; however, actual calculations demonstrate

that the potential contributions of such superpositions to

absolute strengths of the examined lines are incomparably

smaller than the contributions of the discussed effects in

model IV.

7. Conclusions

A new model of the effective dipole moment of an

asymmetric top molecule in a doublet electronic state was

developed. The general form of matrix elements of the

obtained effective dipole moment operators, which are

needed to characterize correctly the absolute strengths of

spin-ro-vibrational transitions in molecules of this kind, for

both parallel and perpendicular bands was determined. The

derived expressions allow one both to include higher-order

corrections for
”
allowed“ transitions and to characterize

weak
”
forbidden“ transitions.
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