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On the negative pressure of light in a dispersing medium
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considered, for which, using Maxwell’s equations, balance relations for the momentum of the field-matter system
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and the forces acting on small bodies in such a medium are determined. The possibility of negative pressure on
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momentum transfer in it is found.
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Introduction

The pressure of light in weak light fields has been

measured by P.N. Lebedev back in 1899. With the advent

of high-power lasers, experiments on measurement of the

pressure of light on microparticles in relatively transparent

media (liquids and gases) have become feasible. The

indicated force may be significantly stronger than the

force of gravity. Regardless of the nature of dispersion

in a medium (see references in [1] and [2–8]), these

measurements yield positive results (i.e., the pressure is

directed away from the source). V.G. Veselago was the

first to suggest the possibility of negative pressure of light

in his study [9] into the properties of media with backward

waves (BWs). These media were called left-handed ones

in [9]. A negative pressure on particles (i.e., attraction

toward the source) in left-handed media (LHM, media with

BWs) was assumed, and these media were considered to

be homogeneous and isotropic with local dielectric constant

(DC) ε and magnetic permeability (MP) µ. Locality implies

the lack of spatial dispersion (SD). Phase velocity (PV)
vector vp and wave vector k in such media are antiparallel

to Poynting vector S. The contrary case with these vectors

being parallel (or with an acute angle between them)
corresponds to right-handed media (RHM). Vectors E, H,

and k form a right-hand system in common homogeneous

and isotropic RHM; i.e., power flux S = Re(R×H∗)/2 is

directed along k. In LHM, a left-hand system is formed and

the power flux is directed opposite to the PV. Backward

waves are observed in such media, and the dispersion is

anomalous (negative) [10]. Negative refraction (NR) is

observed if a plane wave is incident onto the RHM–LHM

boundary. Isotropic LHM are infeasible [11], and all known

media with BWs are anisotropic or bianisotropic (with a

marked SD). NR and BWs are different and independent

phenomena [12,13]. NR is observed in anisotropic media

and depends strongly on the orientation of the incident wave

vector with respect to the isofrequency surface of a crystal

or a photonic crystal (PC) [13]. Quasiphotons (polaritons)
are quasiparticles of the electromagnetic field in a dispersing

medium. Their energy is ~ω; however, their momentum is,

in contrast to that of photons in vacuum, still a subject of

debate. The issues of energy density and the form of the

energy–momentum tensor (EMT) [1–8] are also debatable,

although the matter of energy density in certain simple

model media (e.g., cold plasma) has been settled [14].

The aim of the present study is to consider the possibility

of negative pressure of light on the basis of rigorous electro-

dynamic relations for the model of an isotropic dispersing

local medium (without SD) characterized by spectral DC

ε(ω) = ε′(ω) − i ε′′(ω) and MP µ(ω) = µ′(ω) − iµ′′(ω).
Even in this simple formulation, the problem is not an easy

one to solve. The results may be extended to anisotropic

media with SD, but this requires separate consideration.

V.G. Veselago has made a mistake in his proof of negative

pressure in [9]. He introduced negative refraction index

(RI) n =
√
εµ < 0, having used the Minkowski expression

for the momentum density (gM = D× B = n2S/c2) without

any justification. He then introduced energy density w

in the Umov formulation (S = −wvp = −wck/|n|) and

defined the momentum of a
”
photon“ (polariton) as

p = ~k. Here, |n| should be regarded as a retardation

coefficient. These relations were left unsubstantiated. It

is demonstrated below that the momentum in the medium
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considered by Veselago moves in the direction of energy

transfer (i.e., away from the source). No homogeneous

and isotropic media with the energy moving opposite to

the momentum or to the phase have been discovered or

produced since 1967, although a great number of studies

into NR, metamaterials with a
”
negative RI,“ etc., have

been published (see, e.g., [15–40] and references therein).
Several different designations for such hypothetical (as was
noted in [9]) media have been proposed. For example,

they were referred to as media with NR and media with

a negative group velocity (GV). This is incorrect. NR is

not characterized entirely by a medium and depends on the

medium from which a wave (ray) is incident and on the

incidence angle. Notably, NR is feasible even at µ = 1 (i.e.,
without BWs). This is also incorrect in regard to a negative

GV: the GV does not characterize the rate of energy motion

in dissipative media and metamaterials. It has already been

established that media with BWs, NR, and a negative GV

and NR differ in nature and that these phenomena may exist

independently of each other [12,13]. A negative GV is true,

e.g., of plasmons (waves at the interfaces of media), and the

existence of BWs in this case is not the same as a negative

GV [41]. Media with ε and µ being
”
simultaneously“ (at

one and the same frequency) negative may also be referred

to as media with BWs. The formal introduction of such

scalar parameters into Maxwell equations does indeed turn

a plane wave into a backward one. There is not need to

introduce an RI in this case. However, if infinitely small

losses are added to the DC and MP, the ambiguity of

the square root vanishes: n =
√
εµ < 0. All metamaterials

fabricated to verify the results from [9] are anisotropic with

SD. It is impossible to fabricate isotropic metamaterials

without SD with the DC and MP being negative at one

and the same frequency (i.e., with a negative RI) [11,38].
However, it is instructive to examine a plasma with electric

and magnetic monopoles (charges) that has been mentioned

in [9]. A medium with ε = µ − 1 (anti-vacuum), which

is called the Veselago medium, has also been introduced

there. The aim of the present study is to examine waves

and pressure in such a medium, in a medium with ε < 0,

µ > 0 (plasma), in a medium with ε > 0, µ < 0, and in a

common weakly dissipative medium.

Theorem on the momentum balance in a
monochromatic field

A homogeneous isotropic medium with a monochromatic

wave is characterized by Maxwell equations of the following

form:

∇×H(ω) = iωε0ε(ω)E(ω) + J(ω), (1)

∇× E(ω) = −iωµ0µ(ω)H(ω), (2)

Here, ε(ω) = ε′(ω) − i ε′′(ω) and µ(ω) = µ′(ω) − iµ′′(ω),
and dissipation imposes conditions ε′′(ω) > 0, µ′′(ω) > 0.

It follows from (1) that

iωε0ε(ω)∇ · E(ω) = −∇ · J(ω) = iωρ

or

∇ · E(ω) = ρ/(ε0ε(ω)).

Here, ρ is the density of foreign charges corresponding

to the sources of field J. In the electrodynamics of an

infinite medium, density J may also correspond to drains

(i.e., characterize a certain particle that absorbs the field

energy). It is convenient in this case to consider field

sources as the ones positioned at infinity. One needs

to analyze the momentum conservation law in order to

determine forces and pressures. Let us use Eqs. (1) and (2)
for this purpose. We multiply the first equation vectorially

on the left by µ0µ
∗H∗, multiply the complex conjugate of

Eq. (2) vectorially by ε0εE, and combine them:

µ0µ
∗H∗ ×∇×H + ε0E×∇× ε∗E∗

= iωc−2 (µ∗εH∗ × E + εµ∗E×H∗) + µ0µ
∗H∗ × J.

(3)
The complex conjugate of Eq. (3) is

µ0µH×∇×H∗ + ε0E
∗ ×∇× εE

= −iωc−2 (µε∗H× E∗ + ε∗µE∗ ×H) + µ0µH× J∗.

(4)
We then find the complex conjugate of Eq. (1) and multiply

it by µ0µ
∗ and vectorially on the left by H, multiply Eq. (2)

by ε0ε and vectorially by E∗, and combine them:

µ0H×∇× µ∗H∗ + ε0E
∗ ×∇× εE = −iωc−2

(µ∗ε∗H× E∗ + εµE∗ ×H) + µ0µ
∗H× J∗. (5)

The complex conjugate of Eq. (5) is

µ0H
∗ ×∇× µH + ε0E×∇× ε∗E∗

= iωc−2 (µεH∗ × E + ε∗µ∗E×H∗) + µ0µH
∗ × J. (6)

Let us set µH = a, H∗ = b, εE = ã, and E∗ = b̃ in these

four relations and combine them all. The left-hand side of

the equality containing magnetic fields takes the form

2µRe(a×∇× b + b×∇× a)

= 2µ0Re{−µ∇ ·
(

Î |H|2 − 2H⊗H∗
)

+ 2µH (∇ ·H∗)}.

The following well-known vector–tensor identity was used

here:

a×∇× b + b×∇× a−∇

× [Î (a · b) − a⊗ b− b− b⊗ a] + a(∇ · b) + b(∇ · a).
(7)

The part containing electric fields is transformed in a

similar fashion. The right-hand side containing sources takes

the form

−2µ0Re (J× (µ∗ + µ)H∗) = −4µ0µ
′Re(J×H∗).
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The remaining part of the right-hand side is written as

2ωc−2Im((εµ − ε∗µ∗)E×H∗)

= −2ωc−2(ε′µ′′ + ε′′µ′)Re(E×H∗).

It is equal to zero in a loss-free medium. In the context of

the nonstationary balance equation [1], this part is equal to
the time derivative of the period-average momentum density

(i.e., the field momentum increment). The momentum is not

accumulated or spent in a monochromatic field in a loss-

free medium, and this quantity is zero. Let us introduce the

following notation for complex quantities:

S̃ = E×H∗/2, F̃L = J× µ0µ
′H∗/2,

g̃M = εE∗ × µ∗H∗/(2c2), p̃J = J · E∗/2,

and real quantiles:

p̃s = ωε′′|E|2/2, p̃µ = ωµ′′|H|2/2,

w̃e = ε0ε
′|E|2/4, w̃µ = µ0µ

′|H|2/4,
with the application of (7) leading to tensor 6:

6̂ =Re
(

µ0µ
(

Î |H|2 − 2H⊗H∗
)

+ε0ε
(

Î |E|2 − 2E⊗ E∗
))

/4. (8)

S̃ has the meaning of a complex Poynting vector. It

features in the Poynting theorem on complex power [42].
Its real part is the period-average power flux density

S̃′ = Re(E×H∗)/2. The complex balance equation for

power takes the form

−∇S̃ = p̃ε p̃µ + 2iω(w̃ε − w̃µ) + p̃J. (9)

Real and imaginary parts of this equation may be taken.

The physically relevant one is equation [42]

−∇ · S̃′ = p̃ε + p̃µ + p̃′J.

Here, sum p̃ε + p̃µ characterizes the power of field losses

in a medium and P̃′

J is the active power density of sources

focused on producing the field. It is spent on losses and

emission. The imaginary part is

−∇ · S̃′′ = 2ω(w̃ ′

ε − w̃ ′

µ) + p̃′′J .

Reactive source power density p̃′′J specifies the doubled

time derivative of the difference between electric and

magnetic field energy densities and the reactive power flux.

However, quantity w̃ε + w̃µ has the meaning of energy

density only in non-dispersing (and, consequently, loss-free)
media. It is impossible in the general case to determine

the energy density in a monochromatic field in dispersing

media. Nonstationary field production processes [39,40] are
then required, since one needs to find out how the energy

was accumulated. In a high-frequency monochromatic field,

the electric field energy is converted into the magnetic field

energy (and vice versa), and the energies are not defined

exclusively by fields, the DC, and the MP. For example,

energy in plasma may be accumulated in the form of kinetic

energy of charge oscillations [14]. A theorem on oscillating

power [42] may be formulated in order to obtain additional

relations. Let us denote vector g̃M as the Minkowski period-

average complex momentum density. Its real part charac-

terizes the period-average momentum density in a trans-

parent medium: g̃′M = Re(εE× µ∗H∗)/(2c2) = ε′µ′S̃′/c2.

Likewise, F̃′

L = µ0µ
′Re(J×H∗)/2 -is the period-average

density of the Lorentz force with which the field acts on

sources (recoil force). Tensor 6̂ has the form of the period-

average Maxwell stress tensor and characterizes the fluxes

of momentum components. Dividing the obtained relation

by eight, we find the momentum conservation law in the

form

−∇ · 6̂ + Re(ε0εE(∇ · E) + µ0µH)(∇ ·H)/2

+ ωc−2(ε′µ′′ + ε′′µ′)S̃′/2 = −F̃′

L. (10)

The term at the left-hand side of (10) is equal to zero

wherever there are no sources. If a field is produced by a

point-like dipole, this is the entire space with the exception

of the dipole position (where the field is singular). If sources
are distributed, this term assumes the value of Re(ρE)/2;
i.e., this is the period-average density of the electric force

with which the field acts on sources. When source currents

are solenoidal, it is zero.

Let us examine a plane wave with dependence

exp(iωt − ikr). The divergence operation then corresponds

to scalar multiplication (e.g., ∇ · E = −ik · E), while the

curl operation is vector multiplication (∇× E = −ik× E).
In the case of a plane wave, there are no sources (they are

at infinity) and fields are solenoidal. The balance takes the

form

−∇ · 6̂ + ωc−2(ε′µ′′ + ε′′µ′)S̃′/2 = 0. (11)

If a medium is non-dissipative, ∇ · 6̂ = 0. Only one

component 6̂z z is relevant to a plane wave moving along

axis z, and ∂z6̂z z = 0; i.e., 6̂z z(z) = const. If ε′ and µ′

change sign, it follows from (8) that 6̂z z also changes sign.

Since the motion of a wave along z implies the motion

of phase, the sign changes with respect to the motion

of phase. The sign of the right term in Eq. (11) also

changes; therefore, the momentum transfer is codirectional

with the transfer of energy S̃′ regardless of the type of the

medium. If ε′ and µ′ are of different sign, the sign of

6̂z z in (8) depends on which of the
”
energies“ is greater

and, with respect to S̃′, on the relation between electric and

magnetic losses. This scenario is of little interest, since a

wave of this type always decays strongly. In the case of

a plane wave in electron plasma (µ = 1), Hy = η0
√
εEy,

η0 =
√
ε0/µ, and the sign in (8) changes at point ε′ = −1

under weak dissipation; in addition, the right-hand side

of (11) is ωc−2ε′′S̃′/2 and does not change sign. The

conditions in strongly dissipative media are more complex.

Although 6̂z z produces a momentum flux in direction z,
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one should not suppose that a force acting on a particle in

the field has the same direction. This is true only in a first

approximation with the particle being so small as to induce

a near-zero perturbation of the field. In order to characterize

the influence of a particle with DC ε̃, one needs to present it

as polarization current Jp = iωε0(ε̃ − ε)E in the right-hand

side of (1). We assume for simplicity that DC ε̃ remains

unchanged within the particle. At its boundary, the DC

”
drops“ sharply to ε. Thus,

∇ · ((ε̃ − ε)E) = (ε̃ − ε)∇ · E + E · ∇(ε̃ − ε).

Differentiating the jump from ε̃ to ε, we obtain a delta

function: ∇(ε̃ − ε) = −ν(ε̃ − ε)δ(ν). Here, ν is the

outward normal to the particle surface and ν is the

coordinate measured along the normal from the surface.

Since the field undergoes a jump ε̃E−

ν = εE+
ν , one may

introduce induced surface charge density

σ = εε(E+
ν − E−

ν ) = ε0εE+
ν (1− ε/ε̃).

The divergence is then

∇ · Jp = iωε0⌊(ε̃ − ε)∇ · E + E−

ν (ε − ε̃)δ(ν)⌋.

If a body is inhomogeneous, ε0∇ · E is the density of

the volume charge interacting with the electric field. In the

present case, ∇ · E = 0 within the homogeneous particle,

and only the surface divergence and the surface charge

density remain: ∇ · Jp = −iωσδ(ν). It should be noted

that, in accordance with the properties of the delta function,

∇ · Jp = 0 outside the surface. Integrating over the particle

volume, we find, by virtue of the Gauss theorem, that the

integral of σ over the particle surface (net surface charge)
is zero. To factor in the presence of a particle, one needs to

introduce current density Jp into balance (11). The balance

then takes the form

−∇ · 6̂ = −Re(σEε/ε̃)δ(ν)/2

− ωc−2(ε′µ′′ + ε′′µ′)S̃′/2− F̃p. (12)

The first term on the right is the surface Coulomb force

density, the second term is the striction force density, and

the third term is the density of the volume magnetic Lorentz

force acting on the particle:

F̃p = ωc−2µ′Re(i (ε̃ − ε)S̃)

= ωc−2µ′⌊(ε̃′′ − ε′′)S̃′ − (ε̃′ − ε′)S̃′′⌋.
(13)

The second term is zero in a non-dissipative medium.

Integrating over the particle volume, we obtain

−
∮

S

ν · 6̂d2r +
ε′

2
Re

∮

s

(σ/ε̃)Ed2r +

∫

V

F̃pd3r = 0. (14)

Since the normal is an outward one, the first term on the left

is the field momentum inflowing into the particle. It is spent

on electric Fε (surface integral in (14)) and magnetic Fµ

(volume integral) forces with which the field acts on the

particle. It is evident that volume density (13) may

change sign when the relation between real and imaginary

parts of the DC changes. It also changes sign when µ′

undergoes sign reversal. However, this scenario is infeasible

in optics of common media and metamaterials characterized

by local DCs [35]. The electric force changes sign when ε′

undergoes sign reversal, which may be observed in plasma.

Since the net charge at the particle is zero, the contribution

of the second term in (13) is, in a first approximation,

the force acting on a dipole. The dipole moment of a

unit volume is P = ε0(ε̃ − ε)E. The dipole moment for a

spherical particle with radius r is p = 4πr 3ε0(ε̃ − ε)E/3.
The particle alters the field; therefore, it is affected by local

field [14]

El =
3(ε̃/ε)

2(ε̃/ε) + 1
E. (15)

The energy of the dipole in the field is Wd = −p · El , and

the corresponding force is

Fd = 2π3ε0∇|E|2Re
(

ε̃(ε̃/ε − 1)

2(ε̃/ε) + 1

)

. (16)

Local force (16) estimates the second surface integral

in (14). We averaged it over a period. In a plane wave,

|E|2 = |Ex |2 exp(−2k′′

z z),

and

∇|E|2 = −2k′′

z |Ex|2 exp(−2k′′

z z).

The following relations hold true for a plane wave:

E = x0Ex exp(−ikzz),

H = y0η0Ex exp(−ikzz),

kz = k0

√
εµ,

S̃ = |Ex|2η0η,

η =
√

ε/µ,

where

kz = k0

√
εµ = k′

z − ik ′′

z ,

η =
√

ε/µ = η′ + iη′,

k′

z = ±k0

×

√

√

(ε′µ′−ε′′µ′′)2+(ε′µ′′+ε′′µ′′)2+(ε′µ′′+ε′′µ′′)2

2
,

k′′

z = ±k0

×

√

√

(ε′µ′ − ε′′µ′′)2+(ε′µ′′+ε′′µ′′)2−(ε′µ′′+ε′′µ′′)

2

≥ 0,
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η =
√

(ε′µ′ + ε′′µ′′) + i (ε′µ′′ − ε′′µ′)
/

|µ| = η′ + iη′,

η′=

√

√

(ε′µ′+ε′′µ′′)2+(ε′µ′′−ε′′µ′)2+(ε′µ′+ε′′µ′′)

2|µ|2 ,

η′′=

√

√

(ε′µ′+ε′′µ′′)2+(ε′µ′′−ε′′µ′)2−(ε′µ′+ε′′µ′′)

2|µ|2 .

The minus sign should be chosen for k′

z when both DC and

MP have negative real parts. In the case of a plane wave in

a non-dissipative medium,

kz = ±k0

√

ε′µ′, S̃′ = 0,

η = η′ =
√

ε′/µ′,

and the magnetic force is written as

Fµ = ωc−2µ′ε̃′′
∫

V

S̃′d3r. (17)

Since ∇|E|2 = 0, electric force (16) is zero. In a Veselago

medium, kz = −k0; i.e., there is no need to introduce a

negative RI, but the introduction of infinitely small losses is

required in order to determine the sign of wave admittance:

η =

√

ε′ − i δε
µ′ − i δµ

=

√

ε′µ′ + δεδµ − i (ε′δµ − δεµ′)

µ′2 + δ2µ

=

√

1 + δεδµ + i (δµ − δε)

1 + δ2µ
.

The complex number under the radical sign is in the

first quadrant if magnetic losses are greater than electric

ones (first case). In the contrary (second) case with

magnetic losses being smaller than electric ones, the point

is in the fourth quadrant. Physical considerations need to

be taken into account in order to resolve the ambiguity

of the square root. In the present case, this condition

is Im(η) < 0 (or Im(η−1) > 0 for impedance). Contrary

conditions correspond to an active medium. In the first case,

η should be located in the third quadrant of the complex

plane; at infinitely small losses, η = −1 (i.e., the force does

not change sign when magnetic losses exceed electric ones).
In the second case, η = 1. The force then does change sign.

The following holds true for a body in the form of a layer

with thickness t and a large area S:

Fzµ = ωc−2µ′ε̃′′SE2
0

t
∫

0

exp(−2k′′z)dz ≈ ωc−2µ/ε̃′′StE2
0 ,

i.e., pressure Fzµ/Smay be defined. It is easy to demonstrate

that kz = −k0 always holds at infinitely small losses and

Re(kz) > 0. It follows from (17) that the force for a small

spherical particle is

Fµ = ±4πr 3ωc−2ε̃′′|Ex|2η0/3,

where plus and minus signs correspond to the first and the

second cases, respectively. The force is undefined in a loss-

free medium.

Let us consider a possible approach to the problem

in anisotropic media. Any body (including bodies with

tensor DC and MP and even bianisotropic ones) may be

characterized by its polarization currents in vacuum. This

method is fairly efficient in terms of producing relations

based on the momentum balance theorem [1], since the

EMT for vacuum is known. The approach provides an

opportunity to determine the force acting on any small

body within a large one excited by certain specified sources

(including a plane wave incident from vacuum). However,

volume integral equations need to be solved in the case

of a body of an arbitrary shape. Formulating the theorem

for, e.g., a homogeneous layer thick along z and positioning

the sources at infinity, we obtain a model of motion of a

plane wave upon diffraction at the layer. Wave propagation

constant kz is derived from Fresnel equations of the fourth

order [37]. Setting kx = ky = 0 (i.e., a wave moving

normally to the boundary) and assuming for simplicity

that µ̂ = 1 (magnetic properties are lacking), we find two

solutions

kz = k0

√

εxx(ω) and kz = k0

√

εyy(ω)

for two wave polarizations. It is also assumed for simplicity

here that the tensor is reduced to principal axes. The wave

acts on a medium with Lorentz force densities related to

polarization current densities. In the case of the considered

polarization, these are

Jpx = iωε0(εxx(ω) − 1)Ex and ELz = µ0Re(Jz xH
∗

y )/2.

Using the Maxwell equation, we find force density

FLz = ε0|Ex |2Re(ik
∗

z(εxx(ω) − 1))/2.

The lack of dissipation translates into the lack of local

densities of such forces. A plane wave acts on the layer

and transfers momentum to it via reflection and via the

indicated local density. The total force is always directed

away from the source. If a small particle with DC ε̃(ω) is

located within the layer, the problem may be solved using

the perturbation method. It is evident that the nature of the

force is specified by the sign of

k′

x(ε̃
′′(ω) − ε′′xx(ω)) − k′′

x (ε̃′(ω) − ε′xx(ω)).

This force may be either attractive or repulsive. It acts

relative to the medium. If the medium is sufficiently

transparent and ε̃′(ω) ≈ ε′xx(ω), repulsion is observed at

ε̃′′(ω) > ε′′xx(ω) (a greater momentum is transferred to the

particle than to the corresponding volume of the medium),
while attraction is found at ε̃′′(ω) < ε′′xxω.
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Model of a Veselago medium and plasma

A model of a Veselago medium should be examined in

order to analyze in more detail the wave electrodynamics

in it. The only legitimate model mentioned (but not

considered) in [1] is the model of a rarefied cold plasma

of electric and magnetic monopoles. A magnetic monopole,

which was characterized theoretically by Dirac in 1931, has

not been discovered yet, although attempts at detecting

it are still being made. For example, measurements at

collision energies of 8 and 13 TeV have been performed

in 2012 and 2015, respectively, with the MoEDAL detector

at the Large Hadron Collider. The existence of magnetic

monopoles would introduce symmetry into electrodynamics.

It specifies the conditions of charge quantization: the

elementary (minimum) magnetic charge should be equal

to gµ = ~c/(2e) = 137e/2 in the Gaussian system where

charges have the same dimension. In the International

System of Units, e = 1.6 · 10−19 K, g = h/e in the Weber

convention, and gµ = 2π~c2ε in the Ampere-meter con-

vention. The existence of magnetic monopoles does not

contradict quantum mechanics and electrodynamics, since

all electric charges are quantized. Magnetic monopoles

interact with each other in accordance with the Coulomb

law. A moving monopole produces an electric field and

may interact with an electric charge. Hypothetical particles

with both electric and magnetic charges (Schwinger dyons)
are also subject to the quantization condition. If a dyon with

charges e2 and g2 is positioned at the origin of coordinates

and another dyon with mass m and charges e1 and g1 is

moving at point r with velocity v (ν ≪ c), the force acting

on it is [43,44]

F =
(e1e2 + g1g2)r + (e1g2 − e2g1)v× r/c

r 3
. (18)

This relation is written in the Gaussian system

where charges have the same dimension. Since

F = mdv/dt, a conserved moment of momentum

L = r× mv− (e2g2 − e2g1)r/(cr) and its quantization

condition e1g2 − e2g1 = ν~c are obtained at v ⊥ r . Like-

wise, the equation of motion of a magnetic monopole in the

field of an electric charge is

Fm
dv
dt

= −g1

c
v× E = −g1e2

r 3c
v× r. (19)

The conserved moment of momentum for Eq. (19) takes

the form

L = r× mv + e2gr/(cr),

and quantization yields e2g1 = ν~c. The Dirac quantization

for a monopole yields condition eg = ν~c/2, where ν is an

integer number.

A moving electric charge and a moving magnetic

monopole produce intrinsic magnetic and electric fields,

respectively [43,44]. At nonrelativistic velocities, these

fields are weak relative to the Coulomb one in (19). In

the International System of Units, the Lorentz force of

interaction of the field with monopoles e and g in the Weber

convention takes the form

FL = e(E + v× B) + g

(

B

µ0
− v× E

µ0c2

)

= e(E + v× B) + g(H− v× D). (20)

This result follows from the momentum conservation

law with electric and magnetic sources. Given that

E = e2r/(4πε0r 3), FL = − g1e2
4πr 3 v× r for Lorentz force (19).

The dimension of a magnetic monopole here is V·s. In

the case of elementary charges, g/e = h/e2 = 2.56 · 104 �.

The field of a magnetic monopole moving with an arbitrary

velocity is defined in the same way as the field of a

moving electric charge [45]. Thus, the mentioned forces

may be generalized to arbitrary velocities. We consider a

plasma of electric and magnetic monopoles in the field of

a weak monochromatic electromagnetic wave. If a wave

is weak and its frequency is sufficiently high, charges are

first accelerated in a certain direction and then (when the

wave sign changes) in the opposite one. The maximum

velocity is well below the speed of light (especially at

higher frequencies). Therefore, the ν ≪ c approximation

may be used. The following is true under this condition for

a common plasma of electric charges:

ε(ω) = 1−
ω2
εp

ω2 − iωωεc
. (21)

The plasma is considered to be electrically neutral (i.e.,
consisting of heavy and light electric charges of different

signs). The plasma frequency is then governed by light

charges and takes the form ω2
εp ≈ Nεe2/(mεε0). Result (21)

was obtained without account for the force of interaction

between an oscillating charge and the magnetic field of a

wave (this force is weak relative to the electric Coulomb

one). If this interaction is taken into account, SD emerges.

Let us then assume that an electric plasma is combined

with a neutral magnetic plasma. A similar equation may be

written:

µ(ω) = 1−
ω2
µp

ω2 − iωωµc
. (22)

Here, ω2
µo ≈ Nµg2/(mµµ0). The motion of monopoles

under the influence of a wave produces additional contri-

butions to polarization that induce SD. These contributions

are neglected due to the fact that a plasma is strongly

rarefied and particle velocities are low. Collision rates ωεc

and ωµ may also be neglected in this case. The period-

average energy density of the field–matter system may be

determined in a closed form for the considered cold rarefied

plasma without SD (just as for a rarefied gas of Lorentz

oscillators). The energy of oscillations of charges should

be taken into account here, and the formula takes the form

w = wε + wµ, where [14]

wε =

[

1 +
ω2
εp

(ω2 + ω2
εc)

]

ε0|E0|2
4

,
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wµ =

[

1 +
ω2
µp

(ω2 + ω2
µc)

]

µ0|H0|2
4

. (23)

Squared absolute amplitudes of fields of a plane wave are

given here. Since H0 = η
√
ε/µE0 in a plane wave,

µ0|H0|2
4

=
ε0|E0|2

4

∣

∣

∣

∣

ε

µ

∣

∣

∣

∣

.

However, relations (23) in a plane wave hold true at a fixed

point. If the wave decay is to be taken into account, factor

exp(−2k′′

z z) should be introduced into the squared absolute

amplitudes. Since

S̃′

z = η0|E0|2 exp(−2k′′

z z)Re(
√

ε/µ)/2,

the energy transfer rate may be determined:

νe =
S̃′

z

w
= 2c

Re(
√
ε′µ)

[

1 +
ω2
εp

(ω2+ω2
εc)

]

+
[

1 +
ω2
µp

(ω2+ω2
µc)

]
∣

∣

∣

ε
µ

∣

∣

∣

. (24)

Let particle concentrations Nε and Nµ be such that

the plasma frequencies match. The collision rates

are also assumed to be equal. Then, ε = µ and

νe = c/(1 + ω2
p/(ω

2 + ω2
c)). The energy transfer rate is

fairly low at low frequencies, is approximately equal to c/2
around the plasma frequency, and tends to c at high frequen-

cies. Let us consider a Veselago medium with ε = µ = −1.

It is modeled by a cold collisionless dimonopole plasma

at frequency ω = ωp/
√
2. An intriguing result is obtained:

νe = c/3. It may be interpreted in the following way: the

energy of the field–matter system is distributed completely

between the kinetic energy of oscillations of electric and

magnetic particles and the electromagnetic field energy, but

only the third part is carried by the field. As for the Maxwell

tensor,

6̂ = −Re

(

µ0
ÎH2−2H⊗H∗

4
+ ε0

ÎE2−2E⊗ E∗

4

)

,

i.e., it does indeed change sign in a left-handed medium,

although with respect to the direction of phase motion. In a

plane wave,

6̂z z = −ε0E
2
0Re(ε/µ + 1)/4.

It is assumed here that the initial phase of the electric field

amplitude is zero. 6̂z z = −ε0E2
0/2 for a Veselago medium.

This holds true in an infinite medium. The momentum

transfer rate may be determined if the momentum density

is known. In a Veselago medium, the momentum should

not be transferred from the field to matter. The Poynting

vector has component S̃′

z = η0E2
0/2. Since the momentum

is not transferred to the medium, it may be contained only

in the field; i.e.,

g = gM
z = n2S̃′/c2 = η0E

2
0/(2c2).

In order to identify the direction of momentum motion,

one needs to examine the momentum balance in the case

of incidence of a plane wave from vacuum onto an ideal

medium layer. Since nothing is reflected off it and the

momentum is not transferred to the medium, vacuum den-

sity η0E2
0/(2c2) enters the layer. The same density emerges

from it. Although fluxes change sign at the boundaries, the

sign of normals also changes. Thus, the rate of momentum

motion is νmom= c. Just as the energy transfer, it is

driven exclusively by field polaritons. The phase of these

polaritons moves in an opposite way, thus distinguishing

them from photons in vacuum. Significant differences

emerge upon diffraction of strongly nonstationary short

wave packets by an arbitrary dispersing medium layer. Any

medium is characterized by a certain polarization settling

time. In plasma, this is the time needed to accumulate the

energy of kinetic oscillations, and the duration of a quasi-

monochromatic wave packet should be considerably longer.

Let us examine a more familiar medium: neutral cold

electron–ion plasma. It has µ = 1. The electric field acceler-

ates electrons, and the magnetic field transfers momentum

to them. In a dissipative plasma, electrons transfer this

momentum to heavy ions. The transfer of momentum from

the field to matter is observed, and the latter starts moving.

The contribution of the momentum transfer by matter in

common relatively weak fields is negligible compared to

the rate of momentum transfer by the field. It is often

assumed that matter is stationary. In a collisionless plasma,

a wave transfers momentum to electrons within one half-

period and takes this momentum away within the other

half-period. Therefore, the momentum is not accumulated in

matter, and it does not move. The momentum density may

then be determined in the Abraham form. Êz z = ε0ε
′E2

0 in

plasma; i.e., the sign changes approximately at the plasma

frequency. The flux is negative below it; this is observed,

e.g., when plasmons move along the metal surface with an

energy flux into the bulk of a metal. This is relating to the

Poynting vector component directed toward the interface:

its flux in a metal is opposite to the flux in vacuum, and

all fluxes are directed toward the interface [46]. The fluxes

along the boundary are always unidirectional, and a plasmon

is always a forward one. A metal layer with the flux in it

being opposite to the flux in vacuum is needed to support

a backward plasmon [46]. In the case of electron plasma,

w =
ε0E2

0

4

[

1 + |ε|2 +
ω2

p

(ω2 + ω2
c)

]

, (25)

S̃′

z = ν0E
2
0Re(

√
ε)/2. (26)

Let us examine the correlation between these formulae and

the Brillouin formula [14,47]. Thus,

∂ω(ωε(ω)) = 1 +
ω2

p(1 + iωc/ω)2

ω2(1 + ω2
c/ω

2)
,

Re(∂ω(ωε(ω))) = 1 +
ω2

p

(ω2 + ω2
c)

−
ω2

pω
2
c

ω4(1 + ω2
c/ω

2)2
,
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∂ω(ωε′(ω)) = 1 +
ω2

p

(ω2 + ω2
c)

−
2ω2

pω
2
c

ω4(1 + ω2
c/ω

2)2
.

At ωc/ω ≪ 1, two formulae yield results that are different,

but similar to (25) within ωc (i.e., at sufficiently high fre-

quencies) and match in loss-free conditions. With weak dis-

sipation,
√
ε =

√
ε′(1− i ε′′/2ε′) at frequencies significantly

higher and lower than the plasma one. In the first case,

Re(
√
ε) ≈ ε′′/(2

√

|ε′|). In the second case, Re(
√
ε) ≈

√
ε′.

A fairly low energy transfer rate corresponds to the first

case. The momentum flux is given by 6̂z z = ε0ε
′E2

0/2. This

quantity changes sign when ε′ undergoes sign reversal. If

one assumes that gM
z = η0ε

′E2
0/(2c2), a momentum transfer

rate of νmpm= c is obtained. For the Abraham momentum,

we find νmom= cε′ . This rate goes to zero at frequency

ω =
√

ω2
p − ω2

c and changes sign at the same frequency.

At high frequencies, it approaches the speed of light from

below. At ultralow frequencies, ε′ ≈ −− ω2
p/ω

2
c assumes

a large negative value, and the rate may be substantially

greater in magnitude than the speed of light. It should be

noted here that losses cannot be neglected at frequencies

this low (since |ε′′| ≫ |ε′|); therefore, the Abraham formula

is inapplicable. While the oscillatory energy of electrons

may be accumulated in the ωc ≪ ω < ωp plasmonics

region, it is not accumulated (i.e., is dissipated only) at

ω < ωc . Since the momentum is not transferred by a

stationary medium, gM = η0ε
′|E|2/(2c2) should be set for

its density, and the transfer rate should be assumed equal to

the speed of light A phase shift exists between the electric

and magnetic fields in plasma; there is no power flux at

Re(
√
ε) = 0 and no flux and momentum at ε′ = 0.

Backward fluxes and negative pressure

It is of interest to note that backward power and

momentum fluxes in a monochromatic wave are observed

not only in media (existing and hypothetical), but also

in vacuum. A nonplane wave is needed for this. More

specifically, a wave beam should be transversally bounded

(or even unbounded, but decaying strongly in the transverse

direction). The Poynting vector then does not form a

laminar flow; instead, it swirls in a manner similar to flow

lines in a turbulent jet. A large number of studies intro wave

beams (including optical laser vortex wave beams) with

backward energy fluxes (even in vacuum) have recently

been published [48–99]. The Poynting vector in such wave

beams is swirling in nature, allowing for backward energy

transfer. The transfer of energy and momentum to the

source, including the action of forces of
”
attraction“ to the

source or
”
negative pressure“ on a nanoparticle in such a

flux, and the potential to construct
”
optical tweezers“ are

considered. In contrast to a hypothetical infinite plane elec-

tromagnetic wave, these wave beams may have a moment

of momentum of the field and flux singularities S̃′ . A

negative force acting on a nanoparticle does not necessarily

correspond to a negative flux. The inverse is also true:

a negative flux does not always yield a negative force.

Negative fluxes have been observed in acoustic beams [100].
They are feasible even in X-ray beams [101]. The following

types of monochromatic beams with different transverse

field distributions (unbounded ones included) are being

examined at present: Gaussian, Bessel, Hermite−Gaussian,

and Laguerre−Gaussian beams. A transverse confinement

or a field intensity reduction necessitates the emergence of

backward fluxes, since solenoidal lines of flux are closed.

Monochromatic waves are examined in the majority of

studies. Such a wave implies infinite operation of sources

with a harmonic dependence on time. The transition to

it from the nonstationary case is not a trivial one. The

transition from dynamics to statics is also challenging. An

example here is provided by the endless discussion on the

possible existence of electromagnetic energy, momentum,

and moment of momentum fluxes in static fields (including
fluxes circulating along closed trajectories) that has been

ongoing since the days of Poynting. All processes in nature

are nonstationary to a certain extent, and all of them had

their beginning. In quasistatics, the energies of quanta are

fairly low, but the number of these quanta needed to obtain

the final energy is fairly high. The impact of a wave packet

is substantially nonstationary at the initial moment, and the

fluxes are then positive on the average. Negative fluxes

may emerge with quasi-monochromatic processes. It is of

interest that such fluxes also exist in the near field of a

point-like dipole in the vicinity of the field singularity if

one considers the real Poynting vector S = Re(E) × Re(H);
notably, they oscillate in time. Let pz be the dipole current

moment. We then obtain [102]

E′

r =
pz cos(θ)

2πωε0

[

k0 cos(k0r )
r 2

− sin(k0r )
r 3

]

,

E′

θ =
pz sin(θ)

4πωε0

[

k0 cos(k0r )
r 2

− sin(k0r )(1 − k2
0r

2)

r 3

]

,

H ′

ϕ =
pz sin(θ)

4πωε0

[

cos(k0, r )
r 2

− k0 sin(k0r )
r 3

]

.

In addition, Sr = E′

θH
′

ϕ and Sθ = −E′

r H
′

ϕ . The period-

average flux is zero: S̃′

r = 0. The front flattens progressively

in the far field, and negative fluxes gradually vanish. All

fields may be expanded in plane waves. The fluxes in a

solitary plane wave are always forward ones. However, it is

interesting to note that back in 1997 B.Z. Katsenelenbaum

has discovered a backward Poynting vector flux in several

plane waves moving at an angle in different directions [103].

Conclusion

The issue of
”
negative pressure“ was highlighted in the

title of the paper. However, while the term
”
pressure“

is well-established,
”
force“ is a word more fitting to the

examination of the influence of the field on a particle.

”
Pressure“ is an apt term for analyzing the impact of a
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plane wave on an interface or striction distributed pressure

on a plane matter layer; it is also applicable when the wave

front and the surface on which it acts are locally planar.

The force acting on a particle in a dispersing medium

depends essentially on the relation between dissipation in

the medium and in the particle. Dissipation in the medium

leads to the transfer of momentum to it and to a local force

density. The force acting on a particle is negative when a

smaller momentum is transferred to the particle than to the

corresponding volume of the medium. Thus, it is a force

relative to the medium. In loss-free conditions, this force is

always positive (i.e., directed away from the source) for a

plane wave.

The issues examined above are related to a more

than 110-year-long discussion regarding the EMT form in

electrodynamics of continuous media for the field−matter

system [1–8,104–114]. The Abraham and Minkowski EMT

forms corresponding to non-dispersing media are not the

only ones available; other known forms include those

proposed by Polevoi and Rytov [115] and Pitaevskii [116],
the canonical EMT, etc. Several forms have been examined

in [108,109,112–114]. Forces in dispersing but non-

dissipative media have been analyzed in [113]. The EMT in

moving media has been considered in [109].
We will not dwell here upon the issue of correctness

or incorrectness of certain EMT forms. Note only that a

classical field acts on a dispersing medium in such a way

that the medium gets accelerated; the EMT of the closed

field–matter system should then be symmetrical and factor

in the transfer of energy and momentum by both subsystems

(field and matter) and their interaction [117,118]. The field

momentum in weak fields is tiny, and the medium and the

process are often considered to be stationary. In the general

case, one should turn to nonstationary electrodynamics of

moving dispersing media.

The Minkowski relations [41,47] without dispersion are

still being used in the electrodynamics of moving media. A

system may be closed only if sources producing the field

are taken into account. Free waves in a medium without

sources are considered most often. Nonstationary field-

producing processes [39,40] need to be examined in order to

determine the energy density of the field–matter system and

the momentum density; heating and acceleration of matter,

which complicate the analysis, are possible in this case.

We have examined weak monochromatic fields that do

not accelerate matter and do not raise its temperature. A

rigorous determination of the energy and momentum den-

sity in this approximation necessarily involves analyzing the

transient process of production of a quasi-monochromatic

field in a dispersing dissipative medium with this process

reaching the set monochromatic field amplitudes [39]. As

oscillations settle, such a wave packet eventually acquires a

narrow instantaneous spectrum 1ω ≪ ω0. The commonly

used Brillouin formula for the approximate energy density

of a narrow wave packet in a non-dissipative medium was

derived by expanding the quasi-stationary quadratic integral

asymptotically to the first order in 1ω0 [47]. The group

velocity for a narrow wave packet is determined in a similar

fashion. In loss-free conditions, the omission of all other

orders actually implies the lack of dispersion. This may

be illustrated using the example of the Lorentz dispersion

formula with several resonance frequencies: an infinite

separation of frequencies in needed to achieve zero losses.

Note that forces under the impact of wave packets have

been considered in [113]. It was demonstrated there that,

depending on the parameters of LHM–RHM interfaces,

both
”
light pressure“ and

”
light attraction“ are possible at

such interfaces. As for the assertion regarding the negative

pressure on a particle in a left-handed medium made in [9],
it is erroneous: the pressure in a plane wave is always

directed away from the field source. Note also that the

impact of the field on a medium may be analyzed rigorously

if the latter is characterized by its polarization with respect

to vacuum. The Maxwell equations are then considered

in vacuum, and the medium is characterized as secondary

field sources in the form of polarization currents [1]. This

approach leads to the Einstein−Laub force [119]. It is

applied most easily to bodies of a finite volume.

The approach used above is applicable to anisotropic

media and media with SD, but requires a separate intricate

analysis. As for a hypothetical Veselago medium, its

existence would be problematic even if magnetic charges

do exist. Rarefaction and the lack of SD require low

concentrations and plasma frequencies (i.e., low frequencies

at which the effect could be manifested).
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