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Features of particle trapping in vacuum by an intensifying over time light

beam with axial symmetry
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The features of the trapping of particles under high vacuum conditions in a two-dimensional potential well, which

is created by an intensifying over time laser beam with axial (cylindrical) symmetry, are theoretically studied. It is

shown that, under certain conditions, the kinetic energy of trapped particles can significantly exceed the depth of

this light-induced well. The study of such trapping of particles was at first carried out for a Gaussian light beam by

numerically solving the corresponding differential equations of particle motion. At the same time, for the beam with

a cylindrical intensity profile, detailed analysis of the features of the capture of relatively fast particles was carried

out on the basis of the visual model and rather simple mathematical relations. The theoretical results obtained can

be used in optics and spectroscopy to establish the optimal conditions for the capture and localization of various

particles in the considered light traps in vacuum, including, in certain cases, atoms and molecules.
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1. Introduction

The development of efficient methods for slowdown and

localization of particles (specifically, atoms and molecules)
under high vacuum conditions is crucial for high-resolution

spectroscopy [1–3] and optomechanics [3–5] of such parti-

cles.

Relatively simple techniques for slowdown and localiza-

tion of particles of this kind by external electromagnetic

fields, which induce potential wells with a fixed spatial

distribution and a depth increasing with time up to a certain

limit, have been proposed in [6,7]. It is assumed that

the considered particles are under high vacuum and the

forces acting on them are non-dissipative (i.e., particles

move without friction). Depending on whether these

particles have an electric or magnetic dipole moment, a

controlled electric or magnetic field and nonresonance laser

radiation may be used to capture and decelerate them in

the proposed methods [6,7]. Of special interest is the

possibility of production of such electromagnetic wells with

various fixed spatial configurations by transforming a single

laser beam, which intensifies over time, with the use of

different stationary optical elements (mirrors, prisms, lenses,

or polarizers).
In the present study, nontrivial features of particle

trapping by an axially (cylindrically) symmetric light beam

intensifying over time are identified and analyzed. It

is demonstrated that particles with their kinetic energy

being significantly greater than the depth of a light-induced

potential well may be captured by such a beam.

The general equations of motion of particles in the region

of an axially symmetric light beam intensifying over time are

presented in the next section. The trapping of particles by

a Gaussian beam is analyzed in Section 3 by solving these

differential equations numerically. The specifics of trapping

and localization of relatively fast particles by a light beam

with a cylindrical intensity profile are examined in detail in

Section 4 with the use of an illustrative model and simple

mathematical relations. Such a profile may be derived, e.g.,

from a common Gaussian beam transformed by currently

available π-shapers [8]. The key findings are summarized in

the concluding section.

2. General relations

Following [6,7], we perform a theoretical analysis within

the classical mechanics and electrodynamics. Let us assume

that a point-like particle with mass m is moving in vacuum

within a plane orthogonal to axis z of propagation of a

cylindrically symmetric light beam intensifying over time.

This beam induces an electromagnetic well for the particle.

The potential energy of the well is

U(r, t) = s(r)ϕ(t), (1)

where function s(r) ≤ 0 characterizes a fixed spatial config-

uration of the considered well with r being the distance

from the particle to the light beam axis and ϕ(t) is a

nondecreasing function of time t . Total energy E of this

particle moving with nonrelativistic velocity v is given by

E = 0.5mv2 + s(r)ϕ(t). (2)

It is assumed that the force of light (laser) beam pressure

is negligible compared to the light-induced gradient force
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acting on the particle. This condition is satisfied for

particles that are virtually transparent in the spectral range

of their irradiation. We consider radiation of a moderate

intensity with the induced dipole moment of the particle

being proportional to the light field strength; potential

energy (1) of this particle is then proportional to the

radiation intensity [3]. Thus, the motion of the particle

with coordinate vector r in potential well U(r, t) (1) is

characterized by the following equation [9]:

m
d2r

dt2
= −

∂U
∂r

= −ϕ(t)
ds(r)

dr
r

r
. (3)

Under the given conditions, the force at the right-hand

side of Eq. (3) exerts no dissipative influence on the particle

motion (i.e., the friction force is zero). An important

corollary for the time derivative of total particle energy E
follows from relations (1)−(3):

dE
dt

= s(r)
dϕ(t)

dt
≤ 0. (4)

According to inequality (4), the growth of function ϕ(t)
with time t leads to a reduction in particle energy E in

the region of the potential well where coordinate function

s(r) ≤ 0 (1). This enables the capture of particles by an

electromagnetic trap of this kind. Similar localization of

particles in potential wells type (1) has been demonstrated

earlier only by means of examples with particle energy E
eventually reaching negative values [6,7]. However, under

certain conditions, the considered axially symmetric laser

beam may perform such trapping even for particles with

their kinetic energy being significantly greater than the

depth of a light-induced potential well.

In the case of axial beam symmetry, it is more convenient

to solve equations of motion (3) in cylindrical coordinates of

the particle: distance r from the beam center to the particle

and rotation angle ψ of radius vector r. It is worth noting

that angular momentum M of the particle about axis z is

conserved under this symmetry [9]:

M = mr2
dψ
dt
. (5)

Variations of radial particle coordinate r with time t are

derived from the following equation of motion that follows

from relations (3), (5) and the expression for effective

potential energy Uef = [U(r, t) + 0.5M/(mr2)] in a central

field [9]:

m
d2r
dt2

= −
∂Uef

∂r
= −ϕ(t)

ds(r)

dr
+

M2

mr3
. (6)

3. Particle trapping by a Gaussian light
beam

Let us apply the general relations from Section 2 to a light

beam that intensifies over time and features a transverse

Gaussian distribution of intensity. For a particle with an
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Figure 1. Particle motion trajectory (in plane xy) in the

region of a Gaussian light beam intensifying over time. The

cylindrical coordinates and velocity components of the particle at

initial point A (at time instant t = 0) are as follows: r0 = 4.23R,
ψ0 = −0.456, vr0 = −7.18R/T . Calculations were performed at

J0 = 200mR2/T 2, M = −13.84mR2/T for function ϕ(t) (8) with

parameter n = 0.5.

induced dipole moment, this radiation produces potential

well type (1) in plane xy with the following coordinate

function:

s(r) = −J0 exp
(

−
r2

R2

)

, (7)

where R is the characteristic light beam radius and J0 > 0 is

a fixed quantity (specified by the particle polarizability) with

the dimension of energy. Let us examine the following

example time dependence ϕ(t) (1) of the beam intensity:

ϕ(t) =
( t

T

)n
η(T − t) + η(t − T ) (n > 0, t ≥ 0), (8)

where η(q) is a step function (η(q) = 1 at q ≥ 0 and

η(q) = 0 if q < 0). Function ϕ(t) (8) grows from 0 to 1

within the 0 ≤ t ≤ T time interval and assumes a value of

1 when t > T .
Figure 1 presents the two-dimensional motion trajectory

of a particle calculated numerically based on Eqs. (5)
and (6). It is evident that this particle first moves freely

in vacuum from point A and is then captured by Gaussian

beam (7) intensifying over time. We consider the scenario

where the particle enters the beam region at distance r ∼ R
with radial velocity component vr = dr

dt that is much smaller

than angular component v t = r dψ
dt . Following its capture,

the particle is localized at the periphery of a light-induced

trap (Fig. 1).
Figure 2, a shows the dependence of distance r(t) from

the particle to the light beam axis on time t . The conditions

are the same as in Fig. 1. It is evident that the trapped

particle remains localized in the peripheral region of the

Gaussian beam with effective radius r ∼ R. According to

Fig. 2, b, total particle energy E (2) decreases from the

initial level of E0 ≈ 0.16J0 to constant E f ≈ 0.633E0 in the
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Figure 2. Dependence of radial particle coordinate r (a) in

units of R and its total energy E (b) on time t (in units of T )
for a Gaussian light beam intensifying over time. The conditions

are the same as in Fig. 1; energy E in Fig. 2, b is divided by

J0 = 200mR2/T 2.

course of radiation intensification within the 0 ≤ t ≤ T time

interval. Thus, the kinetic energy of the trapped particle

in the considered scenario exceeds the maximum possible

depth J0 (7) of potential well (1). This is attributable

to the fact that particle velocity v0 = (v2r + v2t )
0.5 is a

combination of its radial component vr and orthogonal

angular component v t . The trapped particle may escape

from the examined electromagnetic trap with cylindrical

symmetry only when the value of radial velocity com-

ponent |vr | exceeds a certain threshold. Therefore, if

condition |v t| ≫ |vr | is satisfied, this trap may capture

particles with their kinetic energy 0.5m(v2r + v2t ) exceeding

the trap depth.

In the next section, the mechanisms and specific features

of such trapping of relatively fast particles are analyzed

in more detail with the use of an illustrative model and

fairly simple mathematical relations derived for a light beam

that intensifies over time and has a cylindrical intensity

profile.

vt
v1

vr0 vr1

P1

v0

ri

P2

P3

O

Dl
R Dl

Figure 3. Diagram of trapping and subsequent localization of

a particle by a laser beam that intensifies over time and has a

cylindrical intensity profile (see text).

4. Particle trapping by a cylindrical light
beam

Instead of (7), the following coordinate function s(r)
should be used in expression (1) for the potential energy

in the case of a cylindrical light beam with radius R:

s(r) = −J0η(R − r), (9)

where η(R − r) is a step function. The process of particle

trapping by this beam may be analyzed without the use of

general equations of motion given in Section 2.

Indeed, consider a particle with mass m that moves

freely in vacuum and eventually (at time instant t) reaches

point P1 (Fig. 3) at the boundary of light-induced potential

well (1), (9) with its depth increasing over time up to

a certain limit value J0 > 0 (9). Initial particle velocity

v0 at point P1 has radial component vr0 directed toward

center O of the light beam and orthogonal transverse

(angular) component v t . This transverse component v t

remains unchanged when the particle enters the potential

well at point P1 at time instant t, while radial component vr0

increases to a certain value vr1 (Fig. 3). The relation

between vr0 and vr1 is derived from formula (2) for total

particle energy E :

0.5mv2r0 = 0.5mv2r1 − J0ϕ(t). (10)

According to equation of motion (3) with coordinate

function s(r) (9), the considered particle should move in

a straight line within the potential well with a constant

absolute value of velocity v1 = (v2r1 + v2t )
0.5 until it travels

over distance 1l and reaches another point P2 at the

boundary of the light-induced well (Fig. 3) at the next time
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Figure 4. Dependences of radial component vrm of the particle velocity in units of w = 2R/T (a, b) and quantity χ characterized by

formula (17) (c, d) on time t (in units of T ) for a laser beam with a cylindrical intensity profile, J0 = 162mR2/T 2, coefficient p = 0

(curve 1), 4 (2), and 10 (3), and parameter n = 2 (a, c) and 0.5 (b, d) in function ϕ(t) (8).

instant t1 :

t1 = t +
1l
v1

= t +
2R|vr1|

(v2r1 + v2t )
. (11)

This particle does not cross the light beam boundary

at point P2 if its radial velocity component vr1 satisfies

condition

0.5mv2r1 < J0ϕ(t1), (12)

where time t1 was defined in (11). Having undergone

specular reflection from the boundary of the potential well

at point P2, the particle travels again over distance 1l ,

reaching the next boundary point P3 (Fig. 3) at time instant

t2 = t + 21l/v1. Relation ϕ(t2) ≥ ϕ(t1) for nondecreasing

function of time ϕ(t) (1) ensures that the particle continues

its movement within the confines of the light beam. The

region of particle localization is bounded by outer radius R
(9) of the cylindrical light beam and inner radius r i that is

indicated in Fig. 3:

r i =
|v t |

v1
R =

|v t|

(v2r1 + v2t )0.5
R. (13)

Note that absolute value |v t | of the angular component

of the particle velocity (Fig. 3) at the boundary of the

considered cylindrical potential well remains unchanged

owing to the conservation of angular momentum M (5) of

the particle. The following relation between components |v t|
and |vr0| of initial particle velocity v0 at point P1 (Fig. 3) is
used below:

|v t | = p|vr0|, (14)

where factor p may assume any predetermined value.

The maximum possible initial radial velocity component

(vrm ≥ vr0) of trapped particles is determined based on the

following equations derived from relations (10)−(14):

v2rm = v2r1 −
2J0

m
ϕ(t), (15)

v2r1 =
2J0

m
ϕ

(

t +
2R|vr1|

(v2r1 + p2v2rm)

)

. (16)

In what follows, numerical calculations are performed

based on Eqs. (15), (16) with function of time ϕ(t) (8).
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The dependences of the maximum possible radial com-

ponent vrm of the trapped particle on time t are shown in

Figs. 4, a, b. Figures 4, c, d present the corresponding time t
dependences for the following ratio χ between the initial

kinetic energy of the trapped particle and the maximum

possible depth J0 of cylindrical potential well (9):

χ =
0.5m(1 + p2)v2rm

J0

. (17)

It is evident that these dependences vrm(t) and χ(t) are

largely governed by coefficient p, which relates velocity

components (14), and parameter n of function ϕ(t) (8),
which characterizes the rate of light beam intensification.

Crucially, ratio χ (17) may assume a value well above unity

when parameter p ≫ 1 in (14) (see curves 3 in Figs. 4, c, d).
If this is the case, an intensifying cylindrical light beam

may capture particles with a kinetic energy that exceeds

considerably the maximum possible depth J0 of the light-

induced potential well. This electromagnetic trap loses its

ability to capture particles when the beam intensification

ceases at t ≥ T (8), since vrm(t) = 0 and χ(t) = 0 under

these conditions (Fig. 4). However, particles captured prior

to t = T remain localized inside the potential well in finite

motion within the region between beam radius R (Fig. 3)
and radius r i < R (13).
The data obtained in this section based on the illustrative

model (Fig. 3) and relatively simple mathematical relations

are also verified by the results of much more demanding

numerical calculations for the corresponding equations of

motion (5), (6) for a light beam with cylindrical intensity

profile (9).

5. Conclusion

It was established in the present study that an axially

symmetric laser beam intensifying over time may capture

point-like particles in vacuum even if the kinetic energy of

these particles exceeds considerably the maximum possible

depth of the light-induced potential well. Once captured,

these localized and fairly fast particles move within a narrow

peripheral region of the beam (Fig. 1). It is evident that

this particle trapping is more efficient when the radiation

intensity in the mentioned peripheral region is higher. This is

the reason why, e.g., a light beam with a cylindrical intensity

profile examined above has the capacity to capture much

faster particles than a Gaussian beam.

Simple analytical relations were formulated for the lim-

iting initial velocities and kinetic energies of particles that

may be trapped by a laser beam with a cylindrical intensity

profile (see Section 4). They may be used to obtain

numerical estimates at the design and execution stages of

experiments with specific particles and lasers. In order

to produce such estimates, the values of the following

parameters known to experimenters should be inserted into

these relations: mass of the examined particle, possible

components of its initial velocity, characteristic radius of

the used laser beam with predetermined dynamics of its

intensification, and the maximum effective depth of the

potential well induced by this beam. Figure 4 illustrates

the results of numerical calculations of this kind performed

with certain predetermined relations between the mentioned

quantities.

It should be noted that the trapping mechanism consid-

ered above is feasible not only for classical particles, but

also for atoms and molecules in the ground quantum state

irradiated by a travelling laser beam that intensifies over

time and has a significant frequency offset from optical

transitions from the ground level [6,7].
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