
Technical Physics, 2023, Vol. 68, No. 9

02

On the applicability of the universal Lindhard function for describing the

scattering cross sections of atomic particles

© P.Yu. Babenko, A.N. Zinoviev

Ioffe Institute,

194021 St. Petersburg, Russia

e-mail: babenko@npd.ioffe.ru

Received May 22, 2023

Revised July 3, 2023

Accepted July 4, 2023

It is shown that the application of the universal Lindhard function for calculating the scattering cross section of

atomic particles is, as a rule, limited to the region of scattering angles less than 20◦. The results obtained for various

popular interaction potentials are compared with the available experimental data. It is shown that the presence

of inelastic channels in scattering leads to the appearance of additional maxima in the scattering cross section.

Recommendations are given on the use of the universal Lindhard function to describe quasi-elastic scattering in the

region η = ε · sin(θ/2) > 0.01, ε — is the reduced impact energy, θ — is the scattering angle. At high energies, the

scattering is well described by screened Coulomb potentials, and the application of the Lindhard function provides

an accuracy of 10% for calculating the scattering cross sections.
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Introduction

Lindhard, Nielsen, and Scharf [1] showed that the

scattering cross section of atomic particles, which depends

on two variables — scattering angle θ and impact energy E ,
can be described with good accuracy by a function of only

one variable η = ε · sin(θ/2), where

ε =
M2

M1 + M2

a
Z1Z2e2

E, (1)

M1, M2, Z1, Z2 — the masses and charges of the colliding

particles, e — electron charge, a — the screening length in

the potential. In original work, the variable t1/2 = η is used.

In the national literature, the Lindhard function is described

in [2].
The scattering cross section in the center-of-mass system

dσ
d� is related to the function f (η), proposed in [1], by the

relation
dσ
d�

=
a2

8ε

f (η)

sin3( θ
2
)
. (2)

The scattering cross section in this paper refers to

the differential elastic scattering cross section at a certain

angle. It can be calculated accurately if the scattering

potential [3] is known. The experiment measures the

effective scattering cross section, which may include the

contribution of inelastic channels. In collisions of keV-

energy particles, which are discussed in the present work,

the contribution of inelastic channels leads to the appearance

of features in the cross sections of quasielastic scattering

(see Section 3). The calculation of the scattering cross

section for various channels has been carried out in [4–7],
among others.

With the use of the function f (η), it is possible to

describe the dependence of the scattering cross section for

different atoms in the case where the screened Coulomb

potential approximation is applicable:

U(R) =
Z1Z2e2

R
8

(R
a

)

. (3)

Here, 8(R/a) — the screening function. The approach

developed by Lindhard allowed us to describe analytically

the function f (η) [8]:

f (η) = 3η1−2m
[

1 + (23η2(1−m))q
]

−1/q
. (4)

The parameters 3, m, q for various potentials are given

in [9,10]. For large values of η, when the scattering is

described by the Rutherford formula, f = 1/(2η).
With the function f (η) we can calculate the nuclear

stopping cross section S(E):

S(E) = 4πa · Z1Z2e2
M1

M1 + M2

s(ε), (5)

where

s(ε) =
1

ε

ε
∫

0

f (η)dη. (6)

In [11,12] nuclear stopping losses have been calculated for

potentials obtained in the framework of modern calculations

using the density functional approximation, and it has been

shown that in the presence of an attractive well in the

potential an additional maximum appears in the dependence
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of the nuclear stopping loss cross section on the collision

energy at energies of a few electron-volts.

The universal Lindhard curve has been successfully ap-

plied in multiple collision theory [13,14] when scattering at

small angles dominates. Such an approach, in particular, has

been successfully used to describe the angular dependence

of particles that have travelled through thin films.

”
The magic formulas“ to describe scattering using the

Lindhard curve are widely used in programs for modelling

the passage of particles in matter, in calculations of

sputtering and scattering of particles when bombarded by

atomic particle beams in solids. In particular, they are used

in the widely used SRIM [15] program, which allows for

much faster calculations. Below, we will specify cases where

such an approach is not justified.

The objectives of the present work were to determine the

applicability of the universal Lindhard curve for calculating

scattering cross sections and to calculate the functional form

of this curve for the most popular models of interaction

potentials. A comparison of the calculated data with the

experiment will be made. Such a comparison has not been

done before.

The applicability of different potential models to describe

the scattering of atomic particles is still intensively debated.

In [16], a potential that best describes the experimental

data was proposed based on the analysis of experimental

scattering data for multiple systems. Comparison of the

potentials obtained from the experiment with calculations

within the density functional model showed good agreement

between the results [17]. A further improvement [11,18] of
the potential data was the use of experimental data on the

parameters of the potential well. In work [19,20], based

on analyses of experimental data on the energy and angular

spectra in the reflection of the hydrogen atom from the

gold Au surface and the angular dependence of particles that

have passed through thin films of gold, it was shown that

the scattering potential with a screening length correction

of 10−15% best describes the scattering. In paper [21],
approximation formulae that take into account the screening

of hydrogen particles in the metal were proposed, which

allowed a good description of the experimental data. From

modern papers, it is possible to note works on calculation

of multi-particle potentials [22–25] for the description of

experiment by methods of molecular dynamics. The model

of interaction of charged particles in a non-ideal quasi-

classical plasma was considered in paper [26]. Information

on multi-particle potentials is also necessary for calculations

of electron exchange in the interaction of ions with metal

surfaces [27].

1. Limiting the applicability of the
universal Lindhard curve to describe
scattering

Already in the original work of Lindhard it was shown

that the calculation for different impact energies at large
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Figure 1. Comparison of calculations of the function f (η) for

different impact energies and potentials: a — ZBL potential [28],
b — Zinoviev potential [16].

scattering angles diverges from the universal curve. Fig. 1

shows our calculations for the ZBL (Ziegler-Biersack-
Littmark) [28] and Zinoviev [16] potentials.
For low energies, a 10% discrepancy appears at angles

15−20◦ . With growth of energy, the curves begin to

approach the universal curve, cross it, and there is a sharper

decline in cross section than the universal curve predicts. At

further growth of the collision energy we pass to the case

of weakly screened Coulomb potential and the difference

decreases. The coordinates of the Lindhard curve are

chosen so that in the case of the Coulomb potential a single

curve gives an exact result in accordance with Rutherford’s

formula.

Thus, the application of universal dependences and the

corresponding
”
magic formulae“ can lead to large errors

when the contribution of scattering at large angles is

important. For example, the SRIM program gives incorrect

results when modelling the backscattering of light atoms

from a surface. In this case one should use the TRBS [29]
program or calculate the elastic scattering exactly as it is

done in our [30,31] programs. Another important case is the

calculation of sputtering of materials by light atoms [32,33].
In this case, near-surface sputtering by backscattered particle
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Figure 2. Universal Lindhard curve calculated for different

potentials

flux dominates, and it is better to use the TrimSP [9] version
instead of SRIM.

It should be noted that the universal Lindhard curve is

inapplicable for potentials with an attracting potential well.

An example of a cross-sectional calculation for the H-C

system is shown in Fig. 1. At low energies, the cross section

increases dramatically due to rainbow scattering [34]. As

can be seen from Fig. 1, the applicability of the universal

curve for systems is possible only at ε > 10−2, i.e., at

sufficiently large collision energies.

2. Universal Lindhard curve for different
potentials

Fig. 2 shows the Lindhard curves we calculated for var-

ious popular potentials. The curves for the Thomas-Fermi-

Firsov [35], Bohr [36], and Lenz-Jensen [37,38] potentials

agree with the results obtained earlier in [1]. Curves for KrC
(krypton-carbon) [39], ZBL [28], Moliere [40], Zinoviev [16]
potentials were calculated by us. The previously obtained

curve for the ZBL potential given in [41] is incorrect.

As can be seen from Fig. 2, the Thomas-Fermi-Firsov

potentials and the Bohr potential differ considerably from

more modern potential models. It is known, that the

Thomas-Fermi-Firsov potential falls off too weakly with

increasing internuclear distance, while the Bohr potential

uses the wrong value of the screening constant. The

difference in results for different potentials is partly due to

the use of different screening lengths. Lindhard [1] proposed
the screening length in the form of

aL = 0.88534 aB

(

Z
2
3

1 + Z
2
3

2

)−
1
2

, (7)

where aB = 0.529 Å. The Lindhard length is used in the

Lenz-Jensen and Moliere potentials. Firsov [36] showed

that it’s better to use the screening length.

aF = 0.88534 aB

(

Z
1
2

1 + Z
1
2

2

)−
2
3

. (8)

The Firsov screening length is used in the KrC and

Zinoviev potentials. In potential ZBL, the screening length

is used

aU = 0.88534 aB(Z0.23
1 + Z0.23

2 )−1. (9)

The calculation of the Lindhard function normalizes the

scattering cross section by the value a , and there is a small

shift of the cross sections on the energy scale because the

value a is included in the parameter ε.

As can be seen from Fig. 2, the Moliere potential over-

estimates the function f (η) in the area of η = 10−2
−10−1.

The ZBL, KrC, Zinoviev, and Lenz-Jensen potentials group

together well: at η = 10−2 the difference from the mean

curve is ±15%. At η > 2 · 10−1, the results obtained for

different potentials almost coincide, and at higher energies

tend to the f (η) = 1/(2η) limit for the Coulomb potential.

The formula proposed by Winterbone (4) does not

describe well enough the curves obtained at small η.

The obtained universal curves for different potentials are

more accurately described by an analytical expression:

f (η) = 10P(η),

P(η) = A + x1Y + x2Y
2 + · · · + x9Y

9,

Y (η) = log(η) + 6. (10)

The expansion coefficients are given in the table. Correct

values of the function f (η) are obtained only when all

significant digits of the given coefficients are used.

3. Comparison with experimental data

Fig. 3 shows a comparison of theoretical calculations for

different potentials with experiment [42–46]. As expected,
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Figure 3. Comparison of the universal Lindhard curve for differ-

ent potentials with measured scattering cross sections. Lindhard

screening length was used in the processing of experimental data
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Expansion coefficients to describe universal scattering functions f (η) for Moliere, KrC, ZBL, Zinoviev, Lenz-Jensen potentials

Moliere KrC ZBL Zinoviev Lenz-Jensen.

A -5.98684412936672 -5.82053720043053 -7.17703412724219 -6.15226072871262 -5.68875529012748

x1 7.50063125499793 7.83854186686537 12.0456657417575 8.93339660667167 7.30693956472539

x2 -7.61657292952509 -8.94922982675932 -13.8410830596577 -10.2423305341738 -8.2807933120795

x3 4.6591815428247 6.14898878942264 9.14999917832785 6.93298958572263 5.66766296378632

x4 -1.68747609909724 -2.50957535741541 -3.62096019992075 -2.80346797942105 -2.31913380758875

x5 0.378198705980615 0.632333666374937 0.8932170942933 0.704343990840811 0.589141337053455

x6 -0.0530843539993369 -0.0991082183225724 -0.13812068292567 -0.110565208894203 -0.0933395862970872

x7 0.00452147747872214 0.00937027624986408 0.0129671012835045 0.0105013220905788 0.00892494382361298

x8 -2.12712010948463·10−4 -4.88016343584863·10−4 -6.74180942844774·10−4 -5.50581075532266·10−4 -4.69881972632683·10−4

x9 4.22413852801172·10−6 1.0739834062033·10−5 1.48748655175537·10−5 1.22161192174072·10−5 1.04457767665109·10−5
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Figure 4. Comparison of the universal curve for different

potentials with experimental data for the system Kr+−Kr [4,46].

the curves obtained for the Thomas-Fermi-Firsov and Bohr

potentials differ markedly from the experimental data. The

scatter of experimental data near the maximum (ε = 0.2)
does not exceed ±10%. At high energies, the universal

curve describes the experiment quite well. At ε = 0.01, the

scatter of experimental data is ±15%, which is comparable

to the scatter of data predicted by different potential models.

When the impact energy is further reduced, the scatter can

be up to a factor of three.

Let us consider some cases of collisions of atoms of noble

gases.

Figure 4 shows in universal coordinates the measurement

data of Afrosimov et al. [4] for the impact energy range

of 10−50 keV (dark circles) and for energies of 100 and

180 keV (blue squares), as well as the Loftager [46] data

for impact energies of 18 and 300 keV (open symbols). As
can be seen from Fig. 4, the data from the two independent

groups agree quite well. It is noteworthy that the data

for the energy range 10 − 50 keV are described by a

single curve, with a sharp peak in the cross section at

η = 1.1 · 10−2. This peak is associated with the formation

of a vacancy in the 3d-shell Kr. The general course of the

substrate curve lies between the predictions for the Lenz-

Jensen and Zinoviev potentials and ZBL. At η = 7.8 · 10−2,

another peak is observed, associated with the excitation of a

vacancy in the deeper 3p-shell. The difference between the

two data sets (10−50 keV and 100−300 keV) characterizes

the change in potential with a significant increase in impact

velocity.

As can be seen from Fig. 4, the curves show maxima

in the scattering cross sections. This phenomenon was first

discovered in the papers [47,48]. This phenomenon was

further confirmed in the works of Loftager [45,46]. In pa-

per [5], the appearance of a feature in the scattering cross

sections was explained by rainbow effects at the crossing of

several quasi-molecular terms. When the derivative in the

potential changes abruptly at crossing terms, a minimum

appears in the dependence of the scattering angle θ on

the impact parameter b, and interference of scattering

amplitudes associated with rainbow scattering occurs in a

narrow range of angles. In [4] it was shown that rainbow

effects contribute 50% to the observed feature. For inelastic

channel scattering, the scattering angle is smaller than for

elastic channel scattering. In a determined range of angles,

these contributions add up, giving an additional contribution

to the appearance of the feature in the scattering cross

section.

Fig. 5 compares the theoretical curves with experiment for

the case of Ar+−Ar. The mean course of the curve is better

described by the Zinoviev potential. At η = 8.3 · 10−3, a

peak associated with excitation of the outer shells in Ar

is observed, and at η = 7.6 · 10−2 vacancy formation in the

inner 2p-shell of argon occurs. The nature of the appearance

Technical Physics, 2023, Vol. 68, No. 9
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of peaks is related to the presence of quasi-crossing of elastic

and inelastic terms.

Fig. 6 shows that the experimental data lie between

the calculated curves for KrC and Lenz-Jensen potentials.

Weakly pronounced peaks in the cross section associated

with inelastic transitions are observed.

As can be seen from Fig. 7, the functional dependence

for the Ne − Ne system in the η = 0.01−0.2 range differs

markedly from the dependence predicted by the theoretical

potential. The difference is 25% from the calculation using

the Zinoviev potential at η = 2.5 · 10−2 and 15% near the

maximum (η = 0.15). At η > 0.2, the experiment lies on

the calculated curves.

The case of collision of a light particle with a heavy

atom is shown in Fig. 8. And in these cases, the data for

different impact energies are described by a single curve for

each system. For the He+
−Xe system, a peak in the cross

section is observed at η = 0.1. The curve for the He+
−Kr

system behaves more smoothly. It is noteworthy that at high

η ∼ 1 energies the experimental data are 8% lower than
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Figure 5. Comparison of the universal curve for different

potentials with experimental data for the system Ar+−Ar [42].
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Figure 7. Comparison of the universal curve for different

potentials with experimental data for the system +
−Ne [43].
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Figure 8. Comparison of the universal curve for different

potentials with experimental data for the system He+
−Xe and

He+
−Kr [44].

the theoretical curves, which is apparently due to errors in

measuring the absolute values of the cross sections.

As shown in the work [5], the appearance of maxima

in the cross section appears at internuclear distances cor-

responding to the situation when the overlap of interacting

shells of atoms by 15% is reached.

Conclusion

The analysis has shown that the application of the

universal Lindhard function is justified for the calculation of

scattering cross sections in the range of angles less than 20◦ .

The discrepancy with the exact calculation is less than 10%.

In cases where the scattering cross section at large angles

is important, for example, to describe the reflection of

particles from a surface, and when calculating the sputtering

of materials by light atoms, an accurate calculation of the

scattering cross section must be used.

Technical Physics, 2023, Vol. 68, No. 9
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The application of the universal curve for systems with

an attracting well in the potential is restricted to the area

η > 0.01.

In general, it should be said that in the energy range

η > 0.01, the calculation using the universal Lindhard curve

for the ZBL, Zinoviev, and Lenz-Jensen potentials allows us

to estimate the scattering cross section with an accuracy

of 20%. Attention should be paid to the appearance of

features (peaks) in the scattering cross sections associated

with the intersection of the elastic and inelastic channels.

This correction can be up to 100%, as in the case of Kr−Kr.

The criterion [44] can be used to evaluate the prediction

of the appearance of features in the cross section related to

inelastic transitions: the appearance of maxima in the cross

section appears when the inter-nuclear distances reach 15%

overlap of the interacting shells of atoms.

The analysis of experimental data has shown that even

in the case of inelastic scattering, the cross sections for

different energies for a particular pair are described by one

universal curve. The ZBL, Zinoviev, KrC, and Lenz-Jensen

potentials in the η > 0.01 area give results with an accuracy

of 20%. With η > 0.2, the accuracy of the experiment

description increases to 10%. To improve the accuracy

of the description of the experiment, it is recommended

to use individual potentials calculated in the framework of

the density functional approximation with correction of the

potential well parameters to the spectroscopic data, as was

done in [11].
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