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Quantum transport in fractal lattices with Coulomb interaction
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In this paper, we study quantum transport, namely, the dynamics of the electron density in a fractal lattice during

the propagation of electrons in it. The fractal lattice is composed of nanowires and has the form of a Sierpinski

triangle in the direction perpendicular to the direction of electron propagation. The fundamental point is to take

into account the Coulomb repulsion of electrons at one lattice site.
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1. Introduction

A fractal is understood as a complex structure with

fractional dimensionality that has the property of self-

similarity. Fractals are used to describe many phenomena

in science and engineering and allow the creation of new

devices with improved characteristics.

The influence of fractional dimensionality has been

widely studied in terms of diffusion processes by in-

vestigating classical random walks in fractal lattices [1].
In distinction from structures with integer dimensionality

in fractal objects anomalous diffusion is observed, models

of which are described in many works [2–4].

Experimental studies of quantum transport of single

photons in a photonic lattice with fractal geometry [5] have
been carried out. New materials with fractal structure,

in which electron transport [6–8], including tunneling [9],
is possible, are being developed and investigated. The

quantum conductivity of a two-dimensional electron gas

wandering on a Sierpinski [10] carpet is determined.

Note that in the above-mentioned works the one-electron

approximation was used. In this work, we will investigate

the process of electron transfer in fractal structures in

the multielectron approximation, which will allow us to

identify features of the properties of materials with such

a structure, which can make a significant contribution to the

development of new devices.

2. Model and solution methods

We consider the propagation of electron density waves

in a system consisting of several nanowires, whose cross

section is a lattice in the form of a Sierpinski triangle (plane
YOZ), which has a fractal structure (Figure 1). Let us

assume that electrons are launched into our system with a

fractal structure and enter the first node (the vertex of the

Sierpinski triangle).

Let us write the Hamiltonian of the system using the

Hubbard model [11]:

H = −
∑

m jσ

γm ja
+
mσ a jσ +

∑

m

Ua+
mσ amσ a+

m−σam−σ . (1)

Here, γm j(≈ 0.5 eV) — the jump integral between nodes m
and j in the fractal lattice (between nearest neigh-

bors), determined by the distance between nanowires,

U(≈ 10 eV) — the value of Coulomb repulsion of electrons

at one node, a+
mσ amσ — electron birth/annihilation operators

at m om node with spin σ .

Let us further write down the Heisenberg equation of

motion:

i~
∂

∂t
amσ = [amσ , H]. (2)

For simplicity, we consider that the probability of en-

countering an electron with spin +σ and spin −σ is the

same. By computing the commutator in the right-hand side

of equation (2) and going to the continuum limit along

the nanowire axis, we obtain an equation describing the

dynamics of electron density wave propagation in a fractal

lattice:

i~
∂

∂t
am = −

∑

j

γm j a j + U |am|
2am −

~
2

2me f

∂2am

∂x2
. (3)

Here i — imaginary unit, ~ — Planck’s constant,

|am(x , t)|2 — the probability of finding an electron in a

node m, me f (≈ −10−25 g) — the effective mass of an

electron in the nanowire. We consider that the probability

of transition along the wire is 5 times higher than in the

transverse direction. The transition to the continuum limit

along the axis OX is possible when the characteristic size

(in this case, the half-width of the Gaussian packet) is much

larger than the distance between nodes.

Note that in this work we consider a simple model,

taking into account only the short-range interaction between

electrons.
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Figure 1. Problem geometry: nodes are numbered from top to bottom, left to right.
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Figure 2. a — the dependence of the electron density

distribution, summed over all nodes, on the coordinates x ; b —
the electron density partial distribution as a function of the node

number m, integrated over x : the curve 1 corresponds to t = 2,

2 — t = 10, 3 — t = 20.

Equation (3) was solved numerically (see work [12])
using a graphics processor with initial conditions for the

wave function in the form:

a1(x i , 0) = Q · exp

(

−
(x i − b)2

g2

)

, i = 1, . . . , N, (4)

ak(x , 0) = 0, k = 2, . . . , 162,

ak(x1, t) = ak(x2, t), ak(xN, t) = ak(xN−1, t),

where Q — the amplitude of the wave packet normalization

(Q = 1), g — the width of the wave packet of incoming

electrons (10 nm), b — the place of maximum of the wave

packet (5 nm), N — the number of coordinate steps. The

modelling was carried out on nanowires with a length of

200 nm.

The integral characteristics of the electron wave function

for different time moments are shown in Figure 2.

From Figure 2, a, it can be seen that with the passage

of time, the electron density wave propagates along the

nanowires with a gradual damping of the amplitude — for

the first node and with an increasing — for the node farther

away from the apex. At the same time, some electrons

transfer to the neighbouring nanowires (Figure 2, b). The

resulting structure is actually a domain structure. By

domains we mean bands with different electron densities.

The presence of such a structure may be useful for

detecting memory effects in the electronic subsystem of

fractal waveguides.

Note that taking into account the Coulomb repulsion of

electrons does not change the nature of the evolution of the

wave function, manifesting itself only in a change in the

value of the electron density within 1−2%.

The dependence of the results on the amplitude of Q was

also investigated. It is found to have a non-trivial character,

which is manifested by the near-zero interaction at small

values of the amplitude of (Q ≤ 0.05).
Figure 3 shows the Fourier spectra of the wave function.

From the above dependences we can conclude that the
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Figure 3. Fourier modulus for different nodes of the fractal lattice:

solid curve — upper node of Sierpinski triangle, dotted curve —
5th node.

Fourier spectra for different nodes agree, and as a result,

frequency-coordinated oscillations are formed in the fractal

structure. This, first of all, owes its appearance to the

nonlinear summand in (1), which is responsible both for the

appearance of higher harmonics and for the synchronization

of the spectrum. We note, that such spectra synchronization

can be useful in electron density wave splitter devices.

3. Conclusion

As a result of this study, it has been revealed that

the electron wave functions in fractal structures have the

form of localized states and when taking into account the

nonlinearity caused by Coulomb repulsion of electrons at

one node. It is shown that in a fractal lattice of nanowires

there are spectrum-coordinated oscillations of electrons.
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