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A general approach to the analysis of resonant tunneling and scattering effects is developed within the framework

of the Green’s functions method. The proposed mathematical apparatus is based on the biorthogonal formalism of

quantum theory that allows one to describe systems with non-Hermitian Hamiltonians. Such operators are typical

for problems wherein particle is supposed to leave the physical system and go to infinity. The stationary Schrodinger

equation with a particle source is considered in abstract operator form. The solution of that problem is expressed

in a general form in terms of the corresponding Green’s operator. Transmission coefficients and their dependences

on the particle energy are determined for a single rectangular potential barrier and a double Gaussian barrier.

The result of numerical calculation for a single rectangular barrier is compared with the well-known analytical

solution of this problem. The proposed method makes it possible to analyze the particles tunneling and scattering

in structures with an arbitrary number and shape of potential barriers with high accuracy.
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Introduction

The effects of resonant tunneling and scattering of charge

carriers in semiconductor heterostructures have become

widely used in recent years for the development of various

optical and quantum electronics devices [1–3]. In particular,

new communication devices, detectors, and compact emit-

ters currently being developed, operating in the terahertz

wavelength range are based on them [4–6]. For this

reason there is an urgent need to develop simple numerical

methods that allow analyzing the effects of tunneling of

charge carriers through single and multiple potential barriers

of arbitrary shape within the framework of single-particle

quantum mechanics.

Usually, the analysis of tunneling and scattering processes

is reduced to solving the stationary Schrodinger equation in

a coordinate representation with a Hamiltonian containing

potential barriers in a limited area of space. It is assumed

in this case that there is a source of particles away from the

barriers, to the left or right. The corresponding equation in

the operator form can be generally presented as follows :

(Ĥ − E)|9(E)〉 = |g〉. (1)

Here Ĥ — the Hamiltonian of the system under consid-

eration, |9(E)〉 — a vector describing the stationary state of

a particle with energy E , |g〉 — a vector characterizing the

particle source. In this equation, energy can take any values

and is a parameter of the problem. In the simplest case, the

Hamiltonian of such a system has the form

Ĥ =
p̂2

2m0

+ U(x̂), (2)

where p̂ is the momentum operator, U(x̂) is the potential

energy operator.

Equation (1) is usually solved in the basis of states |x〉
corresponding to a certain value of the particle coordi-

nate x. The wave function in this coordinate representation

9(x;E) = 〈x|9(E)〉 allows calculating the probability flux

density for a particle passing through a region with a

potential localized in space. The transmission coefficient T
defining as the ratio of the flux densities of passing and

falling particles is of interest for one-dimensional systems.

The scattering cross section plays a similar role in two-

dimensional and three-dimensional systems. It is assumed

that the particle goes to infinity as a result of the processes

under consideration. It should be noted that the kinetic

energy operator in the Hamiltonian in these cases is non-

Hermitian. This is due to the fact that the proof of

hermiticity of the momentum operator in the coordinate

representation is based on integration by parts and neglect

of the non-integral summand, which vanishes only for

damped functions. For this reason, when searching for

solutions for particles going to infinity, in principle, it

is necessary to consider non-Hermitian operators with

complex eigenvalues, whose stationary wave functions fade

with time [7–10]. In this case, the imaginary part of the

energy eigenvalues determines the characteristic time of the

particle’s departure from the system.
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A new approach to solving this problem is proposed

in this paper, in which a large but limited volume of V is

considered instead of an infinite space. At the same time, it

is assumed that potential barriers are located near the center

of the region under consideration, and a dissipative purely

imaginary potential smoothly varying in space is additionally

introduced into the system, providing attenuation of wave

functions near the boundaries. The form of the wave

function of the particle in the central region practically

does not differ from the case of unlimited space if the

attenuation is small enough. Thus, it turns out to be possible

to approximate the solution of the problem of the motion of

a particle going to infinity by considering a region of finite

size.

The introduction of a spatial constraint in the

x-representation, taking into account the attenuation of wave

functions 9(x;E) near the boundaries of the region under

consideration, allows introducing a periodic continuation of

the studied quantum system. This technique is similar to the

introduction of cyclic Born-Karman boundary conditions.

In this case, it is convenient to solve the problem in the

basis of states |k〉 corresponding to certain values of the

momentum p = ~k or, what is the same, the wave vector

of the particle k. This representation is related to the x-

representation by the Fourier transform. It is essential that

we get the opportunity to describe the system with discrete

variables instead of continuous ones in the k-representation,

and the operator equation (1) has the form of a system

of linear algebraic equations. The proposed approach is

significantly more convenient from the point of view of

numerical calculation. It allows studying the effects of

tunneling in quantum systems with any number of potential

barriers having an arbitrary shape, as well as an arbitrary

distribution in space. As an example, this method is used

to calculate the transmission coefficient and its dependence

on the energy of an incident particle in two one-dimensional

systems containing, respectively, a single rectangular barrier

and two closely spaced Gaussian barriers.

1. Solving the problem using the method
of Green’s functions in a biorthogonal
formulation

The solution of the problem with a non-Hermitian Hamil-

tonian is most naturally studied within the framework of

biorthogonal formalism in quantum theory [11]. In general

case, for non-Hermitian operators, it is necessary to consider

two eigenvalue problems, which will be written as follows

Ĥ|ψn〉 = En|ψn〉,

Ĥ†|ϕn〉 = E∗
n |ϕn〉. (3)

Index n establishes a correspondence between the eigenval-

ues En , E∗
n and the eigenvectors |ψn〉, |ϕn〉 here. According

to (3), the conjugate vectors 〈ψn|, 〈ϕn| are the solution of

conjugate equations

〈ψn|Ĥ† = E∗
n 〈ψn|,

〈ϕn|Ĥ = En〈ϕn|.
In this notation, the vectors 〈ϕn| and |ψn〉 acquire the

meaning of the
”
left“ and the

”
right“ eigenvectors of the

non-Hermitian operator Ĥ corresponding to one complex

eigenvalue En. The eigenstates of the operators Ĥ and Ĥ†

defined in this way are bound by the following conditions

of biorthonormality and completeness

〈ϕn|ψn′〉 = δnn′,

∑

n

|ψn〉〈ϕn| = 1. (4)

Using two sets |ψn〉 and 〈ϕn| allows bringing both non-

Hermitian operators in the equations (3) to a diagonal form:

〈ϕn|Ĥ|ψn′〉 = Enδnn′ ,

〈ψn|Ĥ†|ϕn′〉 = E∗
n δnn′ .

Thus, the operators Ĥ and Ĥ† can be represented by the

following expansions in biorthogonal eigenstates

Ĥ =
∑

n

|ψn〉En〈ϕn|,

Ĥ† =
∑

n

|ϕn〉E∗
n 〈ψn|. (5)

The classical one-dimensional problem of a particle

falling on a rectangular potential barrier of finite width is

considered as an example. We introduce the linear size of

the bounded area D. The corresponding potential is defined

as follows:

Ub(x) = Ub0 f b(x), f b(x) =

{

1, |x | ≤ d/2,

0, |x | > d/2
,

where f b(x) — the characteristic function that determines

the width of the barrier, Ub0 — the amplitude of the barrier,

d — the width of the barrier.

We introduce into the system a second, purely imaginary

dissipative potential Ud(x), equal to zero in the region near

the initial potential Ub(x), and gradually increasing as we

approach the boundaries of the considered region on the

left and right

Ud(x) = iUd0 f d(x),

f d(x) =

[

1− 1

exp[−σ (x + µ)] + exp[σ (x − µ)] + 1

]

.

Here f d(x) — the characteristic function defining the

dissipative potential, Ud0 — the amplitude of this potential,

µ — the parameter specifying the position of the two

dissipation regions, the parameter σ determines the growth

rate of the imaginary potential. Figure 1 shows the
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Figure 1. Characteristic functions f b(x) and f d(x) defining the

real and imaginary parts of the potential, respectively.

functions f b(x) and f d(x), which are used to determine the

distribution of real and imaginary potentials in the system.

The basis with a certain value of the wave vector |k〉
is used to represent the operator equation (1) in matrix

form. The orthonormality and completeness relations for

vectors |k〉 have the form

〈k|k ′〉 = δkk′ ,

∑

k

|k〉〈k| = 1.

Equation (1) in the selected basis, we represent as

∑

k′

〈k|Ĥ − E|k ′〉〈k ′|9(E)〉 = 〈k|g〉. (6)

The states |k〉 are the eigenstates of the operator p̂, so in

this basis it is diagonal

〈k|p̂|k ′〉 = ~kδkk′ .

The potential energy operator is represented as the sum

of two operators

U(x̂) = Ub(x̂) + Ud(x̂).

Its matrix elements in the basis |k〉 are defined as follows:

Ukk′ =

∫

dx dx ′〈k|x〉〈x |U(x̂ )|x ′〉〈x ′|k ′〉

=
1

D

∫

dx U(x) exp[−i(k − k ′)x ],

where we took into account that

〈x |U(x̂)|x ′〉 = U(x)δ(x − x ′),

〈x |k〉 =
1√
D

exp(ikx).

As a result, the matrix Hamiltonian takes the following

final form:

Hkk′ =
~
2k2

2m0

δkk′ + Ukk′ .

By placing the local particle source at the point x0, we

will have

g(x) = 〈x |g〉 = Aδ(x − x0),

where A — some dimensional constant. In this case, the

point x0 is selected based on the condition Ud(x0) ∼= 0.

Going to k-representation, we get

gk = 〈k|g〉
∫

dx〈k|x〉〈x |g〉 =
A√
D

exp(−ikx0).

Substitution of the eigenvectors of the Hamiltonian

into (6) in accordance with the completeness condition (4)
and expansion of (5) will result in

∑

k′,n,n′

〈k|ψn〉〈ϕn|Ĥ − E|ψn′〉〈ϕn′ |k ′〉〈k ′|9(E)〉 = 〈k|g〉,

∑

k′,n

〈k|ψn〉(En − E)〈ϕn|k ′〉〈k ′|9(E)〉 = 〈k|g〉. (7)

The solution of equation (7), parametrically dependent

on E , is written in the form

9k(E) = 〈k|9(E)〉 =
∑

n,k′

〈k|ψn〉
1

(En − E)
〈ϕn|k ′〉〈k ′|g〉

or

9k(E) =
∑

k′

〈k|Ĝ(E)|k ′〉〈k ′|g〉 =
∑

k′

Gkk′(E)gk′, (8)

where the matrix elements Gkk′(E) represent the Green

function of the equation (7) in k-representation. The

corresponding Green operator can be expressed as a

biorthogonal expansion

Ĝ(E) =
∑

n

|ψn〉
1

En − E
〈ϕn|.

Here En — is a complex quantity, and Ĝ(E) — is the inverse

operator of the original equation (1):

Ĝ(E) = (Ĥ − E)−1.

After calculation of the components of the wave function at

a given energy value according to the formula (8) it remains

to use its coordinate representation

9(x ;E) =
∑

k

〈x |k〉〈k|9(E)〉 =
1√
D

∑

k

exp(ikx)9k(E).

The obtained functions 9(x ;E) allow determining the

flux density of the probability j(x ;E) corresponding to the
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passing particle, and thus calculate the dependence of the

transmission coefficient T on its energy. It is assumed that

the particle moves from left to right. In the case of the

considered one-dimensional problem, the ratio of the flow

densities is reduced to the ratio of the squares of the wave

amplitudes, which is written as follows

T (E) =
j1(E)

j0(E)
=

|91(E)|2
|90(E)|2 .

Here |91(E)|2 = |9(x1;E)|2 , and the coordinate x1 > d/2
is located in the area where Ud(x) ∼= 0. Note that the

square of the amplitude |9(x ;E)|2, calculated at x < −d/2,
corresponds to the superposition of incident and reflected

waves. If the amplitude of the incident wave is unknown,

then it is easiest to determine it by solving an auxil-

iary problem in which there is no real potential barrier

Ub(x) = 0. The solution 9(x ;E) in this case will have the

form of a wave whose amplitude is almost constant near

the center of the region under consideration and gradually

fades as it approaches its boundaries. Thus, it is possible to

approximate |90(E)| ∼= |90(0;E)| = const.

2. Numerical calculation results

The rectangular potential barrier transmission coefficient,

calculated numerically using the above method is compared

as an illustration, with the known result of the analytical

solution of this problem [12]:

Ta(E) =
4k2

0k2
1

(k2
0 − k2

1) sin
2(dk1) + 4k2

0k2
1

,

where k0 =
√
2m0E/~, k1 =

√

2m0(E −Ub0)/~.
It is assumed for implementation of the numerical

calculation that the coordinate x changes discretely as

xn = −D/2 + n1x , where 1x = D/N — step, N — number

of points, n = 0, 1 · · · , N − 1. The corresponding values

of the wave vector are also discrete and are defined

as kn = −π/1x + n1k with a step of 1k = 2π/D. The

coordinate x changes continuously in the limit N → ∞, and

the values k are in the range −∞· · ·∞. N is selected

as the finite for the numerical calculation and determines

the accuracy of calculations. Next, the number of points

was assumed to be N = 200, and the dimension of the

matrices of the Hamiltonian and the Green operator was

N × N = 200× 200. This approach of discretization of x -
and k-spaces arises naturally when calculating the energy

spectrum and wave functions of charge carriers in semicon-

ductor superlattices by the effective mass method [13,14].
The role of discrete variables xn in this case is played by

the Bravais lattice sites of the crystal, and kn represent the

vectors of the reciprocal superlattice.

Figure 2 shows the energy dependences of the rectangular

barrier transmission coefficient calculated analytically Ta(E)
and numerically T (E). As can be seen from the graph, the

developed approach ensures high accuracy of compliance.
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Figure 2. Dependence of the transmission coefficient of the

rectangular barrier on energy.

–1.0 1.0–0.5 0 0.5

f
x(
)

.
, 
a.

 u

– .50

0.5

1.0

1.5

0

2 / , a. u.x D

fb
fd

Figure 3. Characteristic functions defining the potential in a

system with two Gaussian barriers.

As a second example, consider the dependence of the

transmission coefficient T (E) on the energy for a system

with two barriers. Figure 3 shows the characteristic

functions defining the real and imaginary parts of the

potential. The real part of the potential is chosen in the

form of two overlapping Gaussian functions. The amplitude

of the barrier Ub0 in this case will determine the value of the

real potential at the points of maxima. Figure 4 shows the

corresponding graph of the dependence T (E). As follows

from the figure, in this case, narrow peaks are present in

the transmission spectrum at energies E/Ub0 < 1, which

correspond to the quasi-resonant states of the particle in a

potential well formed by two Gaussian barriers.

Thus, the mathematical apparatus developed in this work

makes it possible to obtain information about all quasi-
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Figure 4. Dependence of the transmission coefficient on energy

for a system with two Gaussian barriers.

resonant levels in the system, including those that are

characterized by a long lifetime, i.e. a small broadening

(the first maximum in Fig. 4). This theory makes it possible

to investigate the effects of particle tunneling in the most

general case, regardless of the specifics of a particular

system and its parameters. It can be successfully used in the

calculation of resonant tunneling effects in semiconductor

heterostructures within the framework of the effective mass

method.

Conclusion

A general approach to solving problems of resonant

tunneling and scattering of particles using the method

of Green’s functions is proposed in the paper. The

developed theoretical apparatus is based on the biorthogonal

formalism of quantum theory, within which systems with

non-Hermitian Hamiltonians are described. In particular,

such operators naturally arise in the problems of tunneling

and scattering of particles. An essential aspect of the

described method is the spatial limitation and periodic

continuation of the quantum system under consideration.

This makes it possible to make the transition from contin-

uous variables to discrete ones. The stationary Schrodinger

equation with a particle source is reduced to a system of

linear inhomogeneous algebraic equations as a result. The

developed approach makes it possible to numerically and

with high accuracy analyze the processes of tunneling and

scattering of particles in structures with any number of

potential barriers having an arbitrary shape.
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