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Introduction

The interaction between loosely coupled dynamical sys-

tems is of considerable interest for the analysis of var-

ious natural phenomena. Various approaches related to

the analysis of frequency and phase synchronization of

signals can be used for studying such interaction. For

example, the analytical signal method, including the Hilbert

transform [1,2] and the wavelet transform method [3] are

used to detect synchronization between the rhythms of

the cardiovascular and respiratory systems [4–8], between
rhythmic stimulation and brain responses [9,10].

An important characteristic of such interaction is the

directionality of connections between different physiological

systems [11,12]. The interaction between fluctuations in

blood pressure and the variability of neuronal activity of

the brain at the respiratory rate is considered in this

paper, because the interaction of the cardiovascular and

respiratory systems involves the nervous control of both

systems [13,14]. Pathological conditions can alter these

interactions [14–16]. For example, pain effects on anes-

thetized rats simulating pain in patients with irritable bowel

syndrome [17], accompanied by reactions of neurons of the

visceral nuclei of the brain stem, changes in heart rate and

blood pressure [18]. Such changes suggest the elucidation of

the interaction between fluctuations in blood pressure and

variability in the activity of brain neurons at the respiratory

rate.

It was shown in [4,14,19,20] that breathing fluctuations

are dominant in relation to heart rate fluctuations although

the degree of directionality may vary over time. The

exception should be made for newborns, in whom the

binding of the cardiac and respiratory rhythms is sym-

metrical from the moment of birth to six months, and

after six months the influence of the respiratory rhythm

on the cardiovascular rhythm becomes dominant, as in

adults [21]. It was found in [22] based on the calculation of

the directionality index using phase dynamics, that breathing

controls the phase synchronization between blood pressure

and heart rate fluctuations. However, the relationship

between the variability of respiration, blood pressure and

neuronal activity intervals has not been analyzed.

The directionality of the links can be evaluated based

on various methods of nonlinear dynamics related to

the determination of the causal relationship according

to Granger [23], with the calculation of the directionality

index using phase dynamics [4,19,24,25] or with finding

joint recurrences [20,26,27].

Currently, the reciprocity of the connections of the

cardiovascular and respiratory, as well as the respiratory

and nervous systems is considered not entirely clear [28],
therefore, obtaining additional information about the direc-

tion of the connections in the systems under consideration

is a prerequisite for identifying the role of each connection

in homeostasis and pathophysiology.

The aim of this work is to determine the direction of the

relationship between the variability of blood pressure and

respiration, as well as between the variability of neuronal

activity intervals and blood pressure of anesthetized rats

by modeling the phase dynamics of weakly coupled and

weakly noisy periodic processes.

We used a model of two unidirectionally coupled Van

der Pol oscillators to verify the estimates of the statistical
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significance of the relationship directionality. This method

was then applied to experimental data.

1. Method for estimating the
directionality of the relationship
between time series

The method of detecting directional relationship between

interacting systems 1 and 2, considered in works [19,29–34],
is based on modeling phase dynamics for weakly coupled

and weakly noisy periodic processes x1(t) and x2(t). This

method involves the construction of an experimental model

of the phase dynamics of the analyzed systems based on

discrete signal recordings (time series). To do this, for the

signals represented by the time series x1(t) = {x1(ti )}N
i=1

and x2(t) = {x2(ti )}N
i=1, where N — the length of the series,

ti = i1t, 1t — sampling interval, time series of oscillation

phases ϕ1(t) = {ϕ1(ti)}N
i=1 and ϕ2(t) = {ϕ2(ti )}N

i=1 are

calculated.

In this paper, the instantaneous phases ϕ1(t) and ϕ2(t)
were estimated using the Hilbert transform. Then, using

the calculated phases, a model of phase dynamics was

constructed of the form

1ϕ1(t) = F1

(

ϕ1(t), ϕ2(t), a1

)

+ ε1(t),

1ϕ2(t) = F2

(

ϕ2(t), ϕ1(t), a2

)

+ ε2(t), (1)

where 1ϕ1(t)=ϕ1(t+τ )−ϕ1(t) and 1ϕ2(t)=ϕ2(t+τ )−
− ϕ2(t) — phase increments over the time interval τ , ε1(t)
and ε2(t) — Gaussian noise with zero mean.

The functions F1

(

ϕ1(t), ϕ2(t), a1

)

and

F2

(

ϕ2(t), ϕ1(t), a2

)

are described by polynomials of

the form [19,29]:

Fj(ϕ1, ϕ2, a j) =
∑

m,n

a j,m,n exp
(

i(mϕ1 + nϕ2)
)

, j = 1, 2.

(2)
The values of τ equal to the smaller of the characteristic

oscillation periods for the two analyzed signals and values

m ≤ 3, n ≤ 3 were used in this work following [19,29].
The least squares method was used to estimate the values

of the coefficients a j,m,n, i.e., finding the minimum of the

objective function of the form

S2
j =

N−τ
∑

i=1

(

1ϕ j(ti ) − Fj
(

ϕ1(ti), ϕ2(ti ), a j
)

)2

, j = 1, 2,

(3)
where a j = {a j,m,n} — vector of coefficients.

After substituting the found coefficient estimates a j

into formulas (2) function estimates were calculated

Fj
(

ϕ1(t), ϕ2(t), a j
)

, j = 1, 2.

Then these functions were used to calculate the coeffi-

cients c1 and c2, which determine the mutual dependencies

of the phase dynamics of the two systems. The impact

(impact force) of the second system on the first (the square

of the coefficient c1) is defined as the steepness of the

dependence of the function F1 on ϕ2, and the impact

force of the first system on the second (the square of the

coefficient c2) is defined as the steepness of the dependence

of the function F2 on ϕ1 [19]:

c2
1 =

1

2π2

2π
∫

0

2π
∫

0

(

∂F1

(

ϕ1(t), ϕ2(t), a1

)

∂ϕ2

)2

dϕ1dϕ2,

c2
2 =

1

2π2

2π
∫

0

2π
∫

0

(

∂F2

(

ϕ2(t), ϕ1(t), a2

)

∂ϕ1

)2

dϕ1dϕ2. (4)

After substituting the functions F1

(

ϕ1(t), ϕ2(t), a j
)

and F2

(

ϕ1(t), ϕ2(t), a j
)

into expressions (4) according

to work [29] there were estimates of the coefficients

c2
1 and c2

2 expressed in terms of the coefficients of the

polynomials (2) in form

γ1 = c̄2
1 =

∑

m,n

n2a2
1,m,n, γ2 = c̄2

2 =
∑

m,n

m2a2
2,m,n. (5)

The condition γ j − 1.6σ j < 0 was taken as a criterion of

statistical significance, where the estimates of variances σ j

of values γ j , j = 1, 2 are calculated for the same analyzed

series according to the formulas proposed in work [30]:

σ 2
1 =

3
∑

j=1

n4
jσ

4
1, j , σ 2

2 =
3

∑

j=1

m4
jσ

4
2, j , (6)

where

σ 2
k, j =

2σ 2
εk

N

[

1+2

τ /1t−1
∑

i=1

(1−i1t/τ ) cos
(

(mi ak,1,1,+niak,2,1)

× i1t/τ
)

exp
(

−(m2
jσ

2
ε1 + n2

jσ
2
ε2)i1t/2τ

)

]

, k = 1, 2;

(7)
the noise variance estimates σ 2

ε1 and σ 2
ε2 are calculated

by formulas

σ 2
ε1 =

1

N − 1

N
∑

i=1

[

(

ϕ1(ti + τ ) − ϕ1(ti )
)

− 1

N

N
∑

i=1

(

ϕ1(ti + τ ) − ϕ1(ti )
)

]2

,

σ 2
ε2 =

1

N − 1

N
∑

i=1

[

(

ϕ2(ti + τ ) − ϕ2(ti )
)

− 1

N

N
∑

i=1

(

ϕ2(ti + τ ) − ϕ2(ti )
)

]2

. (8)

Such a criterion corresponds to a confidence interval

of 95%, when the condition γ1 − 1.6σ1 > 0 is met, it is

concluded that there is an impact of the second system
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Figure 1. a — relationship asymmetry for a model of two unidirectionally coupled Van der Pol oscillators; b — relationship functions

F1(ϕ1, ϕ2) and F2(ϕ2, ϕ1).

on the first one with an error probability not more

than 0.05, and when the condition γ2 − 1.6σ2 > 0 is met,

the predominant influence of the first system on the second

one with the same error probability is taken into account.

If both conditions are met simultaneously, it is concluded

that there is a bidirectional or mutual influence of the two

systems on each other [35].
The relationship directionality index is calculated accord-

ing to the formula proposed in [19]:

d(1,2) =

√
γ2 −

√
γ1√

γ2 +
√
γ1

. (9)

The directionality index d(1,2) ranges from −1 to +1.

The value d(1,2), close to +1, corresponds to unidirectional

relationship, in which system 1 controls system 2. The value

d(1,2), close to −1, corresponds to unidirectional relationship

in the opposite direction, in which system 2 controls

system 1. The value d(1,2), close to zero, corresponds to

a symmetric bidirectional relationship.

It is shown in [29] that the method of estimating the

relationship directionality between interacting systems based

on modeling the phase dynamics of the analyzed systems

can be applied to data for which the value of the phase

synchronization index ρ does not exceed the value 0.6.

In this regard, we have previously calculated the phase

synchronization index using the following formula [4]:

ρ =

∣

∣

∣

∣

1

N

N
∑

i=1

exp
(

j
(

ϕ2(ti) − ϕ1(ti )
))

∣

∣

∣

∣

. (10)

2. Model of two coupled Van der Pol
oscillator

As a model, consider two unidirectionally coupled sys-

tems of Van der Pol oscillators with frequencies ω1 and ω2

and relationship parameter µ [36]. This model is described

by the equations

d2x1

dt2
− 0.5(1− x2

1)
dx1

dt
+ ω2

1x1 = µ

(

dx2

dt
− dx1

dt

)

,

d2x2

dt2
− 0.5(1 − x2

2)
dx2

dt
+ ω2

2x2 = 0. (11)

The equations (11) were solved numerically using the

fourth-order Runge−Kutta with a step of 0.03 s, the in-

tegration time duration was 600 s, which corresponded to

20 000 data values.

Figure 1 illustrates the asymmetry of the relationship for

the model parameters ω1 = 1.11, ω2 = 0.89 and µ = 0.1.

As can be seen from Fig. 1, the graph of the relationship

function F2(ϕ2, ϕ1) has a flat form (Fig. 1, b), in contrast to

the graph of the sinusoidal relationship function F1(ϕ1, ϕ2)
(Fig. 1, a). This indicates a weak influence of the first sys-

tem on the second and a significant influence of the second

system on the first. The value of the phase synchronization

index is ρ = 0.12, i.e. less than the threshold value 0.6 [29].
The value of γ1 = 0.036, the variance estimate σ1 = 0.005,

γ1 − 1.6σ1 > 0, i.e. the assessment of the influence of the

second system on the first one can be considered statistically

significant with a probability of error not more than 0.05.

The value of the relationship directionality index

d(1,2) = −0.98, which corresponds to unidirectional rela-

tionship, in which the second Van der Pol oscillator is the

master, and first is the slave.

3. Analysis of experimental data

As experimental data, simultaneously recorded fluctua-

tions in blood pressure, respiration and neuronal activity

of rats were considered, provided by the Laboratory of

Technical Physics, 2023, Vol. 68, No. 10
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Cortico-Visceral Physiology of the Pavlov Institute of Phys-

iology of the Russian Academy of Sciences, and registered

in accordance with the Directive of the Council of the Euro-

pean Community (86/609/EEC), as well as the requirements

of the Commission for the Control of the Keeping and Using

of Laboratory Animals at the Pavlov Institute of Physiology

of RAS (conclusion �02/24 of February 24, 2020). These
data were obtained for 10 rats intraperitoneally anesthetized

with urethane (1.5mg/kg, ICN Biomedical Inc., USA). A
series of recordings for each rat was repeated 6 times.

Blood pressure was recorded using a semiconductor

pressure sensor located in a catheter installed in the femoral

artery (MLT0670, ADInstruments Ltd., UK). Respiratory
fluctuations were defined as concentration fluctuations CO2,

measured on inhalation and exhalation using a sensor

located in the endotracheal tube (CapnoScan End-Tidal CO2

Monitoring Modular System, USA).
Extracellular neuronal activity was recorded with a tung-

sten electrode (WPI, USA) with a tip with a diameter

of 1µm and a resistance of about 1−2M� immersed in

the brain tissue in the area corresponding to the caudal

ventrolateral reticular formation of the medulla oblongata.

This is due to the fact that it is in this area of the medulla

oblongata that groups of neurons have been found that

respond to painful colorectal stretching [37,38].
The duration of recording of one series of records

was 65 s, sampling rate — 10 000 Hz.

From the provided data of neuronal activity and fluctu-

ations in blood pressure, we identified the curves of vari-

ability of neuronal activity intervals (NAV) and variability

of systolic blood pressure intervals (BPV). These curves

contained sequences of time intervals between local maxima

of the initial data of neuronal activity and blood pressure.

Due to the irregularity of these intervals, the resulting

sequences were not equidistant in time. In order to convert

non-equidistant sequences into equidistant ones, we used

interpolation of the obtained sequences by cubic splines

with oversampling to frequency 1000 Hz.

Then, in the case of non-linear trends and low- and high-

frequency oscillations in the obtained equidistant NAV and

BPV sequences, these sequences were confirmed by trend

removal and bandpass filtering in the range from 1 to 3Hz

for further analysis of the components of these curves with

fundamental frequencies close to the respiratory rhythm

frequency (RES).
Previously, these data were used by us in the study [31],

in which, using the method of synchro-compressed wavelet

transform, we showed the presence of phase synchro-

nization between the time series NAV and BPV at the

respiratory rate or between BPV and RES with painful

colorectal stretching.

We analyzed in this paper the directionality of the rela-

tionship between the NAV, BPV and RES time series before

the pain and the phase synchronization caused by this effect,

since the method of determining the directionality of the

relationship between time series based on phase dynamics

modeling is not applicable for the phase synchronization

mode, since in this case the phases of two interacting

systems are not independent variables for the construction

of phase models [19].

Fig. 2 shows examples of short fragments with 2 s

experimental recordings of neuronal activity (Fig. 2, a) and

rat blood pressure fluctuations (Fig. 2, b), fragments with

a duration of 25 s of respiratory oscillations (Fig. 2, c),
and also fragments of calculated curves of time series of

the neuronal activity interval variability (NAV) (Fig. 2, d)
and the blood pressure interval variability (fig. 2, e).

The narrow-band Fourier spectra of these NAV and

BPV time series with fundamental frequencies close to

the respiratory rhythm frequency, shown in Fig. 2, f, g,

demonstrate the possibility of finding instantaneous phases

based on modeling the phase dynamics of loosely coupled

periodic processes.

Figure 3 shows a variant of the relationship between

the time series of the neuronal activity interval variabil-

ity and the blood pressure interval variability. These

plots indicate the asymmetry of relationship and the

significant influence of the variability of blood pressure

intervals on the variability of neuronal activity intervals,

since the relationship function FBPV(ϕNAV, ϕBPV) has a

smaller range of fluctuations around the circular frequency

ω ∼ 2π f BPV ∼ 11.2 (Fig. 3, c) compared to the function

FNAV(ϕNAV, ϕBPV) (Fig. 3, b). The value of the phase

synchronization index ρ = 0.11 < 0.6. Score γ1 = 0.15,

estimated variance σ1 = 0.06, γ1 − 1.6σ1 > 0, i.e. for this

example, the evaluation of the impact of the second

(cardiovascular) system on the first (nervous) is statistically

significant with an error probability of more than 0.05. Value

the relationship directionality index d(NAV,BPV) = −0.61,

which corresponds to unidirectional relationship, in which

the system generating the BPV time series is a master

system, and the system generating the NAV series is a slave

system.

Fig. 4 illustrates a variant of the relationship between

the time series of variability of blood pressure intervals

and the breathing rhythm. The function FBPV(ϕBPV,RES)
is characterized by a large range of changes in values

(Fig. 4, b) compared with the function FRES(ϕBPV,RES)
fluctuating around the cycle frequency ω ∼ 2π f BPV ∼ 11.5

(Fig. 4, c). This allows concluding that the breathing

rhythm has a significant effect on the variability of blood

pressure intervals in this example. The value of the

phase synchronization index ρ = 0.27 < 0.6. The estimate

γ1 = 0.34, the variance estimate σ1 = 0.09, γ1 − 1.6σ > 0,

i.e. the estimation of the impact of the second (res-
piratory) system on the first (cardiovascular) is statisti-

cally significant with a probability of error not greater

than 0.05. The value of the relationship directionality

index is d(BPV,RES) = −0.73, this corresponds to unidirec-

tional relationship, in which the system generating the

respiratory rhythm RES turns out to be a master system,

and the system generating the BPV series is a slave

system.

Technical Physics, 2023, Vol. 68, No. 10
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Figure 2. Fragments of neuronal activity (a), blood pressure (b) and respiratory fluctuations (c). The intervals between local maxima are
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f, g — Fourier spectra for NAV and BPV.

Values of phase synchronization ρNAV–BPV, ρBPV–RES and relationship directionality indices d(NAV, BPV), d(BPV, RES), and also estimates

γNAV − 1.6σγNAV and γBPV − 1.6σγBPV

� ρNAV–BPV d(NAV, BPV) γNAV − 1.6σγNAV ρBPV–RES d(BPV, RES) γBPV − 1.6σγBPV

1 0.12 −0.71 0.018 0.25 −0.81 0.045

2 0.27 −0.73 0.008 0.17 −0.87 0.036

3 0.17 −0.75 0.004 0.28 −0.85 0.015

4 0.13 −0.80 0.006 0.23 −0.82 0.026

5 0.25 −0.62 0.039 0.16 −0.77 0.019

6 0.23 −0.77 0.007 0.34 0.07 0.067

7 0.17 0.05 0.045 0.37 0.05 0.055

8 0.27 0.09 0.037 0.15 0.09 0.048

The relationships between time series of NAV and BPV

and between BPV and RES were found based on the

results of the estimation of the relationship orientation.

The data are listed in the following table. The value of

the phase synchronization index is less than the threshold

ρ < 0.6 for all data, which indicates the absence of phase

synchronization between the analyzed time series NAV and

BPV and between BPV and RES.

None of the conditions γNAV − 1.6σNAV > 0, γBPV −
−1.6σBPV > 0, or γRE − 1.6σRES > 0 were met in two

Technical Physics, 2023, Vol. 68, No. 10
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out of ten rats, so it was not possible to determine the

relationship direction for them. For this reason the table

contains data for eight rats.

The table data show that unidirectionality of the rela-

tionship (BPV→NAV) between NAV and BPV time series

is found in 6 out of 8 rats. This is evidenced by the

fulfillment of the condition γNAV − 1.6σNAV > 0 and the

negative value of the directionality index d(NAV,BPV) close

to −1. The average value of the directionality index for

these series is d(NAV, BPV) = −0.71± 0.06. This negative

value indicates that the cardiovascular system is a master

system for these data, and the nervous system is a slave

system. The relationship between the NAV and BPV time

series is defined as bidirectional for the remaining 2 out

of 8 rats. In this case, both conditions γNAV − 1.6σNAV > 0

and γBPV − 1.6σBPV > 0 and the directionality index value

close to zero (the average value of the directionality

index d(NAV,BPV) = 0.07± 0.02) are met. The nervous

and cardiovascular systems turn out to be interdependent

in these cases.

When analyzing the relationship between BPV and

RES time series, statistically significant unidirectionality

was determined for 5 out of 8 rats. In this case, the

condition γBPV − 1.6σBPV > 0 is met, and the value of the

directionality index d(BPV,RES) is close to −1. The average

value of the directionality index d(BPV,RES) = −0.82± 0.04.

The respiratory system in these series of recordings is a

master system, and the cardiovascular system is a slave

system.

In the remaining data (for 3 out of 8 rats), the

relationship between the BPV and RES time series was

determined to be bidirectional because the directionality

index value d(BPV,RES) is close to zero and both con-

ditions γBPV − 1.6σBPV > 0 and γRES − 1.6σRES > 0 are

met. The average value of the directionality index

d(BPV,RES) = 0.07± 0.02.

Thus, the unidirectionality of relationship between inter-

acting systems is characteristic for most of the analyzed

experimental data. At the same time, the breathing rhythm

controls fluctuations of blood pressure, and fluctuations of

blood pressure control the dynamics of the intervals of

neuronal activity of neurons of the reticular formation of

the medulla oblongata of anesthetized rats.

The controlling role of the respiratory system was

determined in [4,21,22] based on the calculation of the

directionality index using phase dynamics. In these studies,

it was shown that the human breathing rhythm can control

the rhythm of the cardiovascular system, namely, the

Technical Physics, 2023, Vol. 68, No. 10
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variability of the allocated RR intervals. Both unidirectional

and bidirectional nature of the relationship between the

variability of RR intervals and blood pressure in pregnant

women was found using the method of finding joint

recurrences in [39], however, there was no clear direction of

the relationship between blood pressure and respiration.

The statistically significant nature of the relationship be-

tween the analyzed signals of the respiratory, cardiovascular

and nervous systems in a small group of anesthetized ani-

mals was identified based on modeling the phase dynamics

of loosely coupled and weakly noisy periodic processes.

The absence of a pronounced orientation on the part of

the rat nervous system may be due to anesthesia, which,

as is known, increases the duration of synchronization

between the signals of the respiratory and cardiovascular

systems and reduces the effect of pain sensitivity on these

systems [13,14].

Conclusion

The method of detecting directional relationship between

interacting systems based on phase dynamics modeling and

the evaluation of the statistical significance of the obtained

directional indices for the first time allowed determining

the directional relationship options (unidirectional and bidi-

rectional) between the analyzed time series isolated from

biological data recorded in the form of neuronal activity,

fluctuations in blood pressure and respiratory rhythm of

anesthetized rats. A further processing of signals from a

larger number of animals in various experiments is required

for a reliable physiological interpretation of the directionality

of relationships in the subject systems, which can serve as

the subject of further studies.
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