05,07

Влияние вариаций содержания кислорода на структурные и магнитные особенности в $La_{0.5}Sr_{0.5}FeO_{3-\delta}$

© А.И. Дмитриев 1 , С.В. Зайцев 2 М.С. Дмитриева 1 , О.Г. Рыбченко 2 В.Д. Седых 2

Черноголовка, Россия

E-mail: aid@icp.ac.ru

Поступила в Редакцию 11 января 2024 г. В окончательной редакции 28 января 2024 г. Принята к публикации 4 февраля 2024 г.

Детально изучены зависимости магнитного момента от температуры M(T) и напряженности магнитного поля M(H) замещенного феррита лантана $\text{La}_{0.5}\text{Sr}_{0.5}\text{FeO}_{3-\delta}$ до и после вакуумного отжига. На кривых M(T) образца до отжига видны четыре критические температуры. Температура $T_1 = T_N \approx 230\,\text{K}$ соответствует температуре Нееля сложного оксида $\text{La}_{0.5}\text{Sr}_{0.5}\text{FeO}_{3-\delta}$, при которой в образце устанавливается слабый "паразитный" ферромагнетизм. Температура $T_2 = T_V \approx 195\,\text{K}$ соответствует температуре Вервея, ниже которой в образце происходит локализация носителей заряда. Интервал температур от $T_3 \approx 170\,\text{K}$ до $T_4 \approx 80\,\text{K}$, по-видимому, отвечает формированию в образце фрустрированного состояния спинового стекла. Вакуумный отжиг приводит к заметному возрастанию температуры Нееля T_N . Данные магнитометрии также подтверждаются данными мёссбауэровской и рамановской спектроскопий.

Ключевые слова: ортоферриты, скошенный антиферромагнетизм, вакуумный отжиг.

DOI: 10.61011/FTT.2024.03.57479.1

1. Введение

В последние два десятилетия перовскиты $La_{1-x}Sr_xFeO_{3-\delta}$ ($0 \le x \le 1$) привлекли значительное внимание благодаря широкому спектру интересных физических свойств [1–4]. Они могут использоваться в технике, например, в качестве материала для хранения кислорода [5] и в качестве мембранного материала в реакторах частичного окисления метана, обеспечивая высокие значения селективности по CO и конверсии CH₄ [6,7].

Соединения с составом АВО3 (А — редкоземельные элементы и В — металлы) имеют перовскитоподобную кристаллическую структуру. Когда в них в качестве металла (B) используются ионы Fe, такие соединения называются ортоферритами АFeO₃. В это семейство ортоферритов входит феррит лантана LaFeO₃, имеющий ромбическую структуру. Ионы Fe в нем находятся в трехвалентном состоянии Fe³⁺. Соединение представляет собой антиферромагнитный изолятор с температурой Нееля $T_{\rm N} = 740\,{\rm K}$ [8]. К антиферромагнетикам также относится феррит стронция SrFeO₃ с $T_N = 134 \,\mathrm{K}$ [8,9], имеющий кубическую симметрию. Ионы Fe в нем находятся в четырехвалентном состоянии Fe⁴⁺. Магнитные свойства обоих соединений обусловлены сверхобменным взаимодействием за счет перекрытия волновых функций 3*d*-орбиталей магнитных ионов и *p*-орбиталей ионов кислорода. Согласно теории Гуденафа, сверхобменное взаимодействие между ионами Fe³⁺ является антиферромагнитным, а между ионами Fe^{4+} и Fe^{3+} , а также ионами Fe⁴⁺ — ферромагнитным [8]. Важно

отметить, что антиферромагнитый сверхобмен сильнее, нежели ферромагнитный [8].

Было обнаружено, что замещение La^{3+} на Sr^{2+} в LaFeO₃ увеличивает его электронную проводимость и уменьшает T_N [8]. Другим следствием ионного замещения La^{3+} на Sr^{2+} является появление ионов Fe⁴⁺, т.е. образуется смешанное валентное состояние ионов Fe^{3+} и Fe^{4+} . Поэтому замещенные ортоферриты $La_{1-x}Sr_xFeO_{3-\delta}$ называются оксидами смешанной валентности [10]. Замещение La^{3+} на Sr^{2+} приводит к ослаблению сверхобменного взаимодействия между ионами Fe³⁺, поскольку появляются ионы Fe⁴⁺ и кислородные вакансии. Одно из наиболее интересных свойств серии замещенных ортоферритов $La_{1-x}Sr_xFeO_{3-\delta}$ проявляется при концентрации x = 2/3. Образцы La_{1/3}Sr_{2/3}FeO_{3- δ} претерпевают переход металл-изолятор, о чем свидетельствует скачок удельного сопротивления более чем на порядок с понижением температуры, интерпретируемый как подавление процесса электронного переноса с зарядовым упорядочением при температурах ниже перехода Вервея $T_{\rm V} = 210\,{\rm K}$ [11,12]. Согласно некоторым литературным данным, ионы железа из состояния со средней валентностью $Fe^{(+3.67)}$ в парамагнитной фазе выше 210 K переходят в смесь $2Fe^{3+}$ и $1Fe^{5+}$ в антиферромагнитном состоянии с зарядовым упорядочением ниже $210\, K.~ Fe^{5+}~ в$ свою очередь образуется в результате диспропорционирования Fe^{4+} на Fe^{3+} и Fe^{5+} [2,3,13]. Однако, согласно мёссбауэровским данным, нет никаких доказательств присутствия Fe^{5+} [14,15].

¹ Федеральный исследовательский центр проблем химической физики и медицинской химии РАН, Черноголовка. Россия

² Институт физики твердого тела им. Ю.А. Осипьяна РАН,

Целью настоящей работы являлось: установление типов магнитного упорядочения в $La_{0.5}Sr_{0.5}FeO_{3-\delta}$, и определение температурных диапазонов их существования, разделение вкладов различных магнитных фаз в намагниченность $La_{0.5}Sr_{0.5}FeO_{3-\delta}$, а также подстройка магнитных свойств $La_{0.5}Sr_{0.5}FeO_{3-\delta}$ с помощью термообработки.

2. Методика и образцы

Образец La $_{0.5}$ Sr $_{0.5}$ FeO $_{3-\delta}$ был синтезирован золь-гельметодом с использованием в качестве исходных реагентов нитратов Sr, Fe и La в стехиометрическом соотношении. Затем после синтеза часть порошкообразного образца была подвергнута отжигу в вакууме (10^{-3} Torr) при 650° C в течение 6 h для снижения концентрации кислорода в кристаллической решетке. Подробности приготовления описаны в работах [16,17].

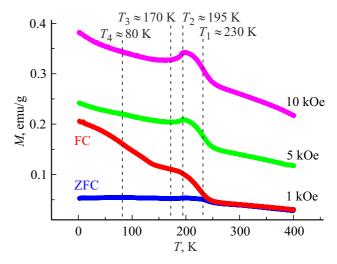
В работе [17] подробно описаны результаты рентгеноструктурного анализа. Линии рентгенограмм исходного неотожженного образца, в отличие от образца, отожженного при 650°C, сильно уширены. Это может быть связано как с очень малым размером кристаллитов, так и с неоднородным распределением кислорода по образцу. Было установлено, что полученный исходно ортоферрит $La_{0.5}Sr_{0.5}FeO_{3-\delta}$ имеет ромбоэдрическую структуру с параметрами решетки $a = 5.511 \,\text{Å}, \, c = 13.437 \,\text{Å}$ в гексагональных осях ($a = 5.494 \,\text{Å}$ и $\alpha = 60.20^{\circ}$ в ромбоэдрических осях). Вакуумный отжиг исходного ортоферрита при температуре 650°C приводит к переходу структуры в кубическую с $a = 3.914 \,\text{Å}$. По данным мёссбауэровской спектроскопии процесс, протекающий при вакуумном отжиге, можно охарактеризовать как изменение локального окружения ионов Fe³⁺ в сторону уменьшения его искажения.

Зависимости магнитного момента от температуры M(T) и напряженности магнитного поля M(H) были измерены с помощью вибрационного магнитометра многофункциональной измерительной криомагнитной установки CFMS фирмы Cryogenic Ltd, UK.

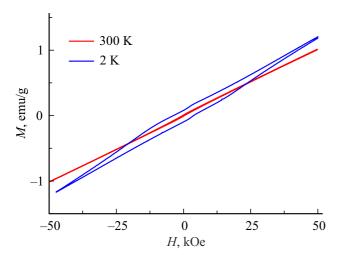
Спектры мёссбауэровского поглощения 57 Fe были получены при температурах 85 и $300\,\mathrm{K}$ в геометрии пропускания с помощью спектрометра CM 1101 (Россия), работающем в режиме постоянного ускорения. В качестве источника γ -квантов использовался 57 Co в матрице Rh. Значения изомерного сдвига взяты по отношению к α -Fe — стандартному мёссбауровскому поглотителю. Источник γ -квантов и стандартный поглотитель имели комнатную температуру. Расшифровка всех мёссбауэровских спектров выполнена в рамках комплексной программы SpectrRelax [18].

Спектры комбинационного рассеяния света измеряли при комнатной температуре в геометрии обратного рассеяния. Для возбуждения применяли лазер с длиной волны $532\,\mathrm{nm}$ с мощностью лазерного излучения $\sim 3\,\mathrm{mW}$.

Диаметр сфокусированного микроскопическим объективом ($\times 50$) лазерного пятна на образце $\sim 2-3\,\mu\mathrm{m}$. Для подавления лазерной линии перед спектрометром применялся ступенчатый фильтр с обрезанием антистоксовой области. Спектральное разрешение в исследованном диапазоне частот не хуже $1\,\mathrm{cm}^{-1}$ при абсолютной точности измерения $\pm 1\,\mathrm{cm}^{-1}$.


3. Результаты и их обсуждение

3.1. Образец исходный не отожженный


На рис. 1 приведены температурные зависимости намагниченности M(T), измеренные в различных магнитных полях, а также зависимости M(T), измеренные в режимах ZFC и FC, образца до вакуумного отжига. На кривых M(T) явно видны четыре критические температуры. Температура $T_1 \approx 230~\mathrm{K}$, соответствующая перегибу кривых M(T), хорошо визуализируемому с помощью производной $\mathrm{d}M/\mathrm{d}T$. Ниже T_1 начинают расходиться кривые FC-ZFC. Температура $T_2 \approx 195~\mathrm{K}$, при которой наблюдается максимум на кривых M(T), измеренных в режиме ZFC в магнитном поле напряженностью 1 kOe, а также при охлаждении в магнитных полях напряженностью 5 и $10~\mathrm{kOe}$.

Интервал температур $T_3 \approx 160-180\,\mathrm{K}$ отвечает температурам минимумов на кривых M(T), измеренных в режиме ZFC в магнитном поле напряженностью 1 kOe, а также при охлаждении в магнитных полях напряженностью 5 и 10 kOe. При этом, чем выше напряженность магнитного поля, тем ниже T_3 . И температура $T_4 \approx 80\,\mathrm{K}$, которая соответствует второму низкотемпературному максимуму на кривой M(T), измеренной в режиме ZFC.

Кривые, подобные изображенным на рис. 1, наблюдались ранее в замещенных ортоферритах $\text{La}_{1-x}\text{Sr}_x\text{FeO}_{3-\delta}$ с антиферромагнитной структурой [1,3,14,19]. Спины в

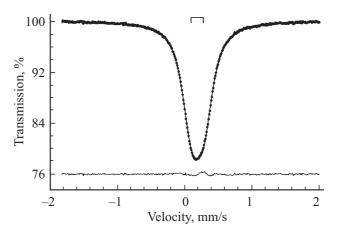
Рис. 1. Температурные зависимости намагниченности M(T) образца до отжига.

Рис. 2. Петли магнитного гистерезиса при температурах $T=2\,\mathrm{K}$ и $300\,\mathrm{K}$ образца до отжига.

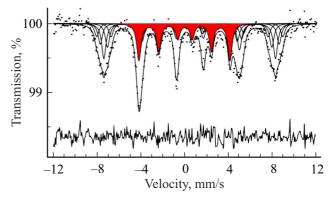
них выстраиваются антипараллельным образом благодаря антиферромагнитной связи между двумя соседними ионами железа через промежуточный ион кислорода. Однако, из-за небольшого отклонения спинов от строгой антипараллельной ориентации, возникающей в результате зигзагообразного расположения октаэдров, содержащих ионы железа, вдоль оси c, образцы проявляют слабый ("паразитный") ферромагнетизм [20]. Действительно, на кривых M(T) наблюдается значительная ферромагнитная составляющая (рис. 1), наличие которой также подтверждается гистерезисом на кривых M(H) (рис. 2). Т.е. температура $T_{\rm N}=T_{\rm 1}\approx 230~{\rm K}$ соответствует температуре Нееля замещенного ортоферрита ${\rm La}_{0.5}{\rm Sr}_{0.5}{\rm FeO}_{3-\delta}$.

При комнатной температуре исходный неотожженный образец представляет собой парамагнетик, о чем свидетельствует линейный вид зависимостей M(H) (рис. 2). В парамагнетиках зависимость M(H) описывается функцией Бриллюэна, которая при высоких температурах вырождается в прямую линию.

Парамагнитное состояние синтезированного образца при комнатной температуре подтверждается также данными мёссбауровской спектроскопии. Подробные мёссбауэровские исследования состава $\text{La}_{0.5}\text{Sr}_{0.5}\text{FeO}_{3-\delta}$ приведены в работе [17]. Для данной работы использован необходимый фрагмент результатов.


Парамагнитному состоянию при комнатной температуре соответствует квадрупольный дублет со сверхтонкими параметрами: изомерный сдвиг IS \approx 0.18 mm/s, квадрупольное смещение дублета $\Delta \approx$ 0.09 mm/s (рис. 3). Значение изомерного сдвига указывает на то, что при комнатной температуре ионы Fe находятся в усредненно-валентном состоянии, т.е. имеют дробную степень окисления между 3+ и 4+. Такое усредненновалентное состояние ионов Fe обусловлено быстрым (с характерным временем $< 10^{-8}\,\mathrm{s}$) переносом электронов между ионами Fe³⁺ и Fe⁴⁺ при комнатной темпе-

ратуре, поэтому ионы Fe^{4+} в замещенных ферритах не проявляются в мёссбауэровских спектрах, измеренных при комнатной температуре [21].


Ярко выраженный пик на кривой M(T) наблюдался ранее в работе [1], где было показано, что при этой же температуре происходит скачок на температурной зависимости удельного электрического сопротивления. Поэтому температура $T_{\rm V}=T_2\approx 195\,{\rm K}$ соответствует температуре Вервея, ниже которой в образце ${\rm La_{0.5}Sr_{0.5}FeO_{3-\delta}}$ происходит подавление процесса электронного переноса.

Тот факт, что $T_{\rm V}=T_2\approx 195\,{\rm K}$ отвечает локализации носителей заряда, подтверждается данными мёссбауэровской спектроскопии. Мёссбауэровский спектр синтезированного La_{0.5}Sr_{0.5}FeO_{3-\delta}, измеренный при 85 K, представляет собой совокупность нескольких парциальных спектров в виде зеемановских секстетов, один из которых, с меньшим изомерным сдвигом (IS $\approx -0.06\,{\rm mm/s}$) и сверхтонким магнитным полем (Hhf $\approx 260\,{\rm kOe}$), можно отнести к ионам Fe⁴⁺, а остальные — к ионам Fe³⁺ ($H_{\rm max}\approx 553\,{\rm kOe}$, IS $\approx 0.43\,{\rm mm/s}$) (рис. 4).

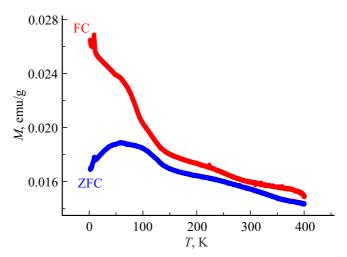
Т.е. усредненно-валентное состояние ионов Fe при низких температурах не наблюдается. Это свидетель-

Рис. 3. Мёссбауэровский спектр синтезированного образца $La_{0.5}Sr_{0.5}FeO_{3-\delta}$, измеренный при 300 K.

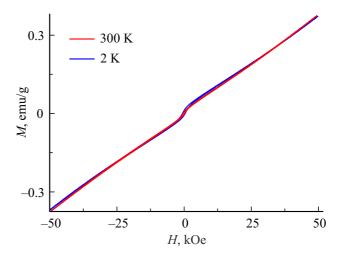
Рис. 4. Мёссбауэровский спектр синтезированного образца $La_{0.5}Sr_{0.5}FeO_{3-\delta}$, измеренный при $85\,\mathrm{K.}$

ствует о замораживании процесса электронного переноса. Отсутствие в спектре замещенного феррита лантана парциального спектра для ионов Fe^{5+} не позволяет нам принять трактовку с диспропорционированием и зарядовым упорядочением [2,3,13].

Образцы $La_{1/3}Sr_{2/3}FeO_{3-\delta}$ претерпевают аналогичный переход при $T_{\rm V}=210\,{\rm K}~[11,12].$ Т.е. температура $T_{\rm V}$ чувствительна к содержанию Sr. Известно, что при введении крупных катионов Sr^{2+} длина связи Fe-O уменьшается. Эта особенность усиливает антиферромагнитное сверхобменное взаимодействие $(J_{\rm AF})$. С другой стороны, образование ионов Fe^{4+} в результате замещения La^{3+} на Sr^{2+} приводит к ферромагнитному сверхобменному взаимодействию $(J_{\rm F})$ между ионами Fe^{3+} и ионами Fe^{4+} [12]. Кроме того, как указано выше, небольшие наклоны октаэдров также дают вклад в ферромагнитное взаимодействие. Так как состояние с зарядовым упорядочением стабилизируется с участием магнитных взаимодействий [2], изменение соотношения $J_{\rm F}/J_{\rm AF}$ приводит к изменению $T_{\rm V}$.


В настоящее время нет однозначной интерпретации происхождения минимума при T_3 на кривой M(T), следующем за $T_{\rm V}$ при понижении температуры. Есть гипотеза, что при $T_{\rm N}=T_1\approx 230~{\rm K}$ возникают локальные антиферромагнитные флуктуации, а при T_3 после локализации носителей заряда возникает дальний магнитный порядок [22]. Зависимость величины T_3 от напряженности магнитного поля, в котором происходило измерение кривой M(T), а также наличие низкотемпературного максимума на кривой M(T), измеренной в режиме ZFC, позволяет предположить фрустрированное состоянии спинового стекла, реализующемся при температурах ниже $T_4\approx 80~{\rm K}$ [23,24].

3.2. Образец, отожженный в вакууме при 650°C


На рис. 5 приведены температурные зависимости намагниченности M(T), измеренные в режимах ZFC и FC, образца, отожженного в вакууме при 650°C.

На кривых M(T) фиксируются следующие изменения при отжиге. Температура T_1 , соответствующая точке перегиба и расходимости кривых FC-ZFC, заметно превосходит комнатную. Это означает, что отжиг приводит к заметному возрастанию температуры Нееля $T_{\rm N}$ замещенного ортоферрита ${\rm La_{0.5}Sr_{0.5}FeO_{3-\delta}}$, который при комнатной температуре остается все еще в магнито-упорядоченном состоянии. Этот факт подтверждается наличием петли магнитного гистерезиса при комнатной температуре (рис. 6). На кривых M(T) образца после отжига явно перестают наблюдаться особенности при температурах T_2 и T_3 (рис. 6). Низкотемпературный максимум на кривой M(T), измеренной в режиме ZFC, возможно отвечающий фрустрированному состоянию спинового стекла, сдвигается до $T_4 \approx 60$ К.

Для образца после отжига петли магнитного гистерезиса имеют характерный изгиб в малых полях, соответ-

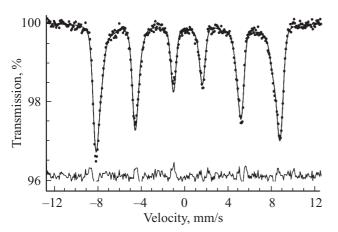

Рис. 5. Температурные зависимости намагниченности M(T) образца после отжига.

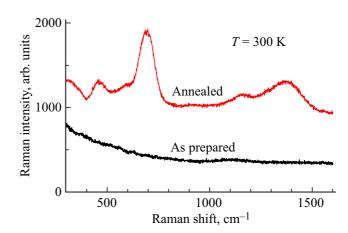
Рис. 6. Петли магнитного гистерезиса при температурах $T=2\,\mathrm{K}$ и $300\,\mathrm{K}$ образца после отжига.

ствующий быстрому магнитному насыщению ферромагнитной составляющей, и меньшую намагниченность при одном значении H (рис. 6). Отличный ход кривых M(H) можно объяснить следующим образом. При вакуумном отжиге в кристаллической решетке происходит два взаимозависимых процесса: ион кислорода удаляется с образованием вакансии, валентное состояние ионов железа изменяется с 4+ на 3+.

Присутствие иона Fe^{4+} в ближайшем катионном окружении иона Fe^{3+} ослабляет сверхобменное взаимодействие, в то время как появление кислородной вакансии в ближайшем анионном окружении иона Fe^{3+} приводит к разрыву обменной связи. Таким образом, вакуумный отжиг приводит к перераспределению вкладов ферро- (J_{F}) и антиферромагнитного (J_{AF}) каналов в результирующий обмен и смещает баланс в сторону усиления антиферромагнетизма. Что, в свою очередь, приводит к заметному возрастанию температуры Нееля T_{N} , умень-

Рис. 7. Мёссбауэровский спектр отожженного в вакууме при 650° С образца $La_{0.5}$ Sr_{0.5}FeO_{3- δ}, измеренный при 300 K.

шению петли магнитного гистерезиса и появлению характерного изгиба на ней, а также снижению величины намагниченности. Так как состояния спинового стекла и зарядового упорядочения и стабилизируются с участием магнитных взаимодействий, изменение соотношения $J_{\rm F}/J_{\rm AF}$ приводит к подавлению последнего и понижению температуры замерзания спинового стекла $T_{\rm f}$.


Магнитоупорядоченное состояние при комнатной температуре образца $La_{0.5}Sr_{0.5}FeO_{3-\delta}$, отожженного в вакууме при 650°С, подтверждается магнитной структурой мёссбауэровского спектра (рис. 7).

Согласно полученным данным, в образце практически нет ионов Fe в усредненно-валентном состоянии. Уширение линий спектра обусловлено локальной неоднородностью в окружении мёссбауэровских атомов железа наличием в структуре кислородных вакансий. Согласно максимальному значению $IS_{max} \approx 0.34 \, \text{mm/s}$ для магнитоупорядоченных парциальных спектров, ионы Fe отожженного образца находятся в трехвалентном состоянии ${
m Fe}^{3+}$. Значения $H_{
m max} \approx 525\,{
m kOe}$ и ${
m IS}_{
m max}$ приближаются к значениям для незамещенного феррита лантана LaFeO3 $(H_{hf} \approx 530 \, kOe, \, \, IS \approx 0.36 \, mm/s) \, \, \, [17]. \, \, \, E$ сли предположить, что вероятности эффекта Мессбауэра для ядер 57 Fe в ионах Fe^{3+} и Fe^{4+} практически одинаковые, то при фиксированном содержании ионов $Sr^{2+}(x)$ из относительных площадей парциальных спектров можно оценить число ионов Fe⁴⁺, кислородных вакансий и анионов О2 на формульную единицу. Оценки для исходного и отожженного образцов дают составы La_{0.5}Sr_{0.5}FeO_{2.88} и La_{0.5}Sr_{0.5}FeO_{2.76} соответственно. Относительная площадь мёссбауэровского парциального спектра, связанного с Fe⁴⁺, максимальна для исходного неотожженного образца [17]. Его площадь уменьшается с увеличением температуры отжига и приближается к нулю при 650°C. Вклады парциальных спектров для различных состояний Fe³⁺ перераспределяются с увеличением температуры отжига. Относительная площадь парциального спектра для ионов Fe³⁺ со всеми шестью обменными связями

 ${
m Fe^{3+}-O^{2-}-Fe^{3+}}$ значительно увеличивается с минимального значения в 12% для исходного образца до $\sim 60\%$ для образца, отожженного при $650^{\circ}{
m C}$ в вакууме.

Об антиферромагнитном типе упорядочения при комнатной температуре в отожженном после синтеза образце $\text{La}_{0.5}\text{Sr}_{0.5}\text{FeO}_{3-\delta}$ свидетельствует наличие сильного рамановского пика двухмагнонного рассеяния при $\sim 1350-1400\,\text{cm}^{-1}$ в спектрах комбинационного рассеяния света на рис. 8 [25]. Аналогичная сильная линия двухмагнонного рассеяния наблюдается в спектрах комбинационного рассеяния света при комнатной температуре в антиферромагнитном феррите лантана LaFeO_3 [26], который имеет высокую температуру Нееля $T_{\text{N}}=740\,\text{K}$ [8].

Кроме того, при $\sim 1130\,{\rm cm}^{-1}$ наблюдается интенсивная линия двухфононного рассеяния, проявляющаяся благодаря сильной связи фононной и спиновой систем в этих соединениях [27]. При частотах ниже $1000 \, \mathrm{cm}^{-1}$ рамановские линии в спектрах комбинационного рассеяния света ортоферритов $La_{1-r}Sr_rFeO_{3-\delta}$ обусловлены фононными колебаниями [28]. Так, наиболее мощная фононная мода при частоте $\sim 690\,\mathrm{cm}^{-1}$ описывает синфазные колебания связей Fe-O в октаэдре FeO6 ("дышащая" мода октаэдра FeO_6) [28]. Существенное уширение всех линий комбинационного рассеяния света в La_{0.5}Sr_{0.5}FeO_{3- δ} по сравнению с ферритом лантана LaFeO₃ [26] естественно связать с локальным беспорядком, возникающим при замещении лантана стронцием. Дополнительным фактором, вносящим вклад в беспорядок, является сильная неоднородность на микроскопическом уровне зарядового состояния ионов Fe⁴⁺/Fe³⁺ и связанных с ними кислородных вакансий в ближайшем окружении железа, возникающих при вакуумном отжиге. На рис. 8 представлен также спектр комбинационного рассеяния света исходного неотожженного образца $La_{0.5}Sr_{0.5}FeO_{3-\delta}$, в котором магнонные и фононные рамановские пики отсутствуют. Отметим, что полное

Рис. 8. Спектры комбинационного рассеяния света при $T=300^{\circ}\mathrm{C}$ в исходном неотожженном образце $\mathrm{La_{0.5}Sr_{0.5}FeO_{3-\delta}}$ (черные символы) и образце, отожженном в вакууме при $650^{\circ}\mathrm{C}$ (красные символы).

подавление в этом образце фононных мод, относящихся к колебаниям в октаэдре ${\rm FeO_6}$ свидетельствует о существенном содержании ионов ${\rm Fe^{4+}}$. В то же время отсутствие линии двухмагнонного рассеяния свидетельствует об отсутствии антиферромагнитного упорядочения при комнатной температуре.

4. Заключение

Установлено, что при комнатной температуре исходный неотожженный образец $La_{0.5}Sr_{0.5}FeO_{3-\delta}$ находится в парамагнитном состоянии. Понижение температуры до точки Нееля $T_{\rm N} \approx 230\,{\rm K}$ приводит к установлению слабого "паразитного" ферромагнетизма. Дальнейшее понижение температуры до точки Вервея $T_{\rm V} \approx 195\,{\rm K}$ приводит к подавлению процесса электронного переноса. Обнаружены экспериментальные свидетельства в пользу того, что в интервале температур от 170 до 80 К происходит фрустрация спинового состояния с замерзанием спинового стекла. Отожженный в вакууме образец $La_{0.5}Sr_{0.5}FeO_{3-\delta}$ при комнатной температуре находится в магнитоупорядоченном состоянии, и при понижении температуры перестает проявляться эффект локализации носителей заряда. Кроме того, вакуумный отжиг приводит к заметному возрастанию температуры Нееля.

Благодарности

Авторы выражают благодарность М.В. Жидкову за помощь в проведении магнитометрических исследований.

Финансирование работы

Работа выполнена при поддержке Министерства науки и высшего образования РФ в рамках Государственных заданий Федерального исследовательского центра проблем химической физики и медицинской химии РАН (рег. номер 124013100858-3) и Института физики твердого тела им. Ю.А. Осипьяна РАН.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] J. Blasco, B. Aznar, J. Garcia, G. Subias, J. Herrero-Martin, J. Stankiewicz. Phys. Rev. B 77, 5, 054107 (2008).
- [2] R.J. McQueeney, J. Ma, S. Chang, J.-Q. Yan, M. Hehlen, F. Trouw. Phys. Rev. Lett. 98, 12, 126402 (2007).
- [3] F. Gao, P.L. Li, Y.Y. Weng, S. Dong, L.F. Wang, L.Y. Lv, K.F. Wang, J.-M. Liu. Appl. Phys. Lett. **91**, 7, 072504 (2007).
- [4] T. Ishikawa, S.K. Park, T. Katsufuji, T. Arima, Y. Tokura. Phys. Rev. B 58, 20, R13326 (1998).
- [5] D.D. Taylor, N.J. Schreiber, B.D. Levitas, X. Wenqian, P.S. Whitfield, E.E. Rodriguez. Chem. Mater. 28, 11, 3951 (2016).

- [6] V.L. Kozhevnikov, I.A. Leonidov, M.V. Patrakeev, A.A. Markov, Y.N. Blinovskov. J. Solid State Electrochem. 13, 3, 391 (2009).
- [7] C. Batiot-Dupeyrat, F. Martinez-Ortega, M. Ganneb, J.M. Tatibouët. Appl. Catal. A 206, 2, 205 (2001).
- [8] J.B. Goodenough. Magnetism and The Chemical Bond. Interscience Publishers. N. Y. (1963). 393 p.
- [9] M. Eibschütz, S. Shtrikman, D. Treves. Phys. Rev. 156, 2, 562 (1967).
- [10] M. Takano, T. Okita, N. Nakayama, Y. Bando, Y. Takeda, O. Yamamoto, J.B. Goodenough. J. Solid State Chem. 73, 1, 140 (1988).
- [11] T. Mizokawa, A. Fujimori. Phys. Rev. Lett. 80, 6, 1320 (1998).
- [12] M. Takano, J. Kawachi, N. NAkanishi, Y. Taked. J. Solid State Chem. 39, 1, 75 (1981).
- [13] J. Matsuno, T. Mizokawa, A. Fujimore, Y. Takeda, S. Kawasaki, M. Takano. Phys. Rev. B 66, 19, 193103 (2002).
- [14] J.B. Yang, W.B. Yelon, W.J. James. Phys. Rev. B 66, 18, 184415 (2002).
- [15] В.Д. Седых, О.Г. Рыбченко, Н.В. Барковский, А.И. Иванов, В.И. Кулаков. ФТТ **63**, *10*, 1648 (2021).
- [16] K.A. Gavrilicheva, O.I. Barkalov, V.D. Sedykh. Bull. Russ. Acad. Sci. Phys. 87, Suppl. 1, S36 (2023).
- [17] V. Sedykh, V. Rusakov, O. Rybchenko, A. Gapochka, K. Gavrilicheva, O. Barkalov, S. Zaitsev, V. Kulakov. Ceram. Int. 49, 15, 25640 (2023).
- [18] M.E. Matsnev, V.S. Rusakov. AIP Conf. Proc. 1489, 1, 178 (2012).
- [19] J.B. Yang, X.D. Zhou, Z. Chu, W.M. Hikal, Q. Cai, J.C. Ho, D.C. Kundaliya, W.B. Yelon, W.J. James, H.U. Anderson, H.H. Hamdeh, S.K. Malik. J. Phys: Condens. Matter. 15, 29, 5093 (2003).
- [20] J. Li, X. Kou, Y. Qin, H. He. Phys. Status Solidi A 191, 1, 255 (2002).
- [21] G. Li, L. Li, M. Zhao. Phys. Status Solidi B 197, 1, 165 (1996).
- [22] F. Millange, S. de Brion, G. Chouteau. Phys. Rev. B 62, 9, 5619 (2000).
- [23] J.T. Phong, D.H. Manh, L.H. Nguyen, D.K. Tung, N.X. Phuc, I.-J. Lee. J. Magn. Magn. Mater. 368, 240 (2014).
- [24] X.N. Ying, L. Zhang. Solid State Commun. 152, 14, 1252 (2012).
- [25] G.B. Wright. Light Scattering Spectra of Solids. Springer Berlin, Heidelberg (1969). 763 p.
- [26] O.I. Barkalov, S.V. Zaitsev, V.D. Sedykh. Solid State Commun. 354, 1, 114912 (2022).
- [27] M.O. Ramirez, M. Krishnamurthi, S. Denev, A. Kumar, S.-Y. Yang, Y.-H. Chu, E. Saiz, J. Seidel, A.P. Pyatakov, A. Bush, D. Viehland, J. Orenstein, R. Ramesh, V. Gopalan. Appl. Phys. Lett. 92, 2, 022511 (2008).
- [28] M.C. Weber, M. Guennou, H.J. Zhao, J. Iniguez, R. Vilarinho, A. Almeida, J.A. Moreira, J. Kreisel. Phys. Rev. B 94, 21, 214103 (2016).

Редактор К.В. Емцев