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The effect of paired collisions of charge carriers on electrical

conductivity thin conductive layer
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Introduction

Extensive development of new microelectronic technolo-

gies involves deeper theoretical description of the effect

of charge carrier scattering mechanisms on electromagnetic

properties of small conducting bodies [1].

In addition to the volume and surface electron (hole)
scattering, pair collisions of charge carriers contribute a lot

to the conductivity of such bodies [2,3], whereby common

physical considerations suggest that their typical rate is

limited.

It should be noted that average path of charge carriers in

many standard semiconductors and metals at room tempera-

ture considerably exceeds the de Broglie wavelength. Thus,

the situation occurs, when quantum size effects may be

neglected, but classical size effects must be considered [4].

In [1], the problem of static conductivity of thin metal

film in a perpendicular magnetic field has been solved

considering diffuse and mirror-diffuse boundary conditions

of charge carrier reflection.

In [5], a model of dependence of local conductivity of

a thin metal layer on the external electric field frequency

was built for the first time, and in [6–8], kinetic theory of

conductivity and Hall constant of a thin conducting film was

built up considering various reflectances of the film surfaces.

This study for the first time discusses the effect of

pair collisions of charge carriers on conductivity of a thin

conducting layer without considering the skin effect on the

assumption that the layer thickness is low compared with

the typical skin layer depth [9].

1. Problem formulation

A conducting thin layer with thickness b, length L and

cross-section area S, to which AC voltage ω is applied, is

discussed herein. The electric field is parallel to the layer

and is oriented along the Z axis, the X axis is perpendicular

to the layer. Field strength E may be expressed depending

on time t :
E = E0 exp(−iωt). (1)

On the assumption that the non-equilibrium Fermi-Dirac

function or electrons (holes) f (x , v) = f 0(ε) + f 1(x , v)
satisfies the Boltzmann equation [10], we have

vx
∂ f 1

∂x
+ evz E

∂ f 0

∂ε
− iω f 1 = − f 1

τ
, (2)

where e is the electron (hole) charge, vz , vx are the

corresponding electron (hole) velocity vector projections on

the coordinate axes, τ is the electron (hole) relaxation time,

ε = mv2/2 is the kinetic electron (hole) energy, v is the

electron (hole) velocity vector modulus v, m is the effective

electron (hole) mass.

Here,

f 0 =
1

exp[(ε − µ)/kT ] + 1
, (3)

∂ f 0

∂ε
= − exp[(ε − µ)/kT ]

{exp[(ε − µ)/kT ] + 1}2kT
, (4)

where µ is the chemical potential, k is the Boltzmann

constant, T is the absolute temperature.

Note that in thermodynamic equilibrium conditions,

the chemical potential µ depends on the temperature T ,
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effective mass m and equilibrium electron (hole) gas

concentration n, i.e. µ = µ(T, m, n). Depending on the

specified parameters, µ for the electron (hole) gas may

accept values within µ ∈ (−∞,+∞).
High frequency current density j induced by the applied

voltage is calculated as follows:

j = 2e

(

m
h

)3 ∫

v f 1d
3v. (5)

Electron (hole) concentration n calculated using the

Fermi–Dirac distribution:

n = 2

(

m
h

)3 ∫

f 0d3v, (6)

where h is Planck’s constant.

At low temperatures, pair collisions of charge carriers are

considerable, kinetic equation (2) to consider them will be

written as follows [2]:

− iω f 1 + vx
∂ f 1

∂x
+ evz E

∂ f 0

∂ε
=

= − 1

τ

(

f 1 −
g0m

∫

f 0d3v
vz

∂ f 0

∂ε

∫

vz f 1d
3v

)

, (7)

where g0 is the parameter (0 ≤ g0 ≤ 1) that describes the

intensity of pair collisions of charge carriers. Note that at

g0 = 0, collisions are not revealed, and when g0 = 1, such

collisions are fully present.

By applying

f 1(x , v) = g(x , v)
∂ f 0

∂ε
exp(−iωt),

function to equation (7), we get

νg + vx
∂g
∂x

+ evz E0 =
g0m

τ
∫

f 0d3v
vz

∫

vz g
∂ f 0

∂ε
d3v, (8)

where ν = 1/τ − iω.

2. Distribution function

Equation (8) will be solved using the moment

method [10]:

g = a1(x)vz + a2(x)vz sign(vx). (9)

Taking into account (9), equation (8) is written as

ν(a1vz + a2vz sign(vx)) + vxvz
∂a1

∂x

+ vxvz sign(vx )
∂a2

∂x
+ evz E0 =

g0m
τ

∫

f 0d3v
vz

×
∫

vz (a1vz + a2vz sign(vx )
∂ f 0

∂ε
d3v. (10)

Taking into account (3), integral is as follows

∫

f 0d3v = 4π

∫

v2 f 0dv = 4π

∫

v2dv
exp[(ε − µ)/kT ] + 1

.

(11)
Introduce relative variables

u =
ε

kT
, uµ =

µ

kT
, (12)

whence

u =
ε

kT
=

mv2

2kT
⇒ v =

√

2kTu
m

, dv =

√

kT
2m

du√
u
.

Then for (11), we get

∫

f 0d3v = 2π

(

2kT
m

)3/2

I0, (13)

where

I0 =

∞
∫

0

√
udu

exp(u − uµ) + 1
. (14)

Considering (13), expression (6) will be written as

n = 2

(

m
h

)3 ∫

f 0d
3v = 4π

(

m
h

)3(
2kT
m

)3/2

I0. (15)

To calculate the integral in the right side of equation (10),
it is convenient to use the cylindrical coordinate system

(v⊥, ϕ, vz ) in the velocity space:

vx = v⊥ cosϕ, v2
⊥ + v2

z = v2
L, (16)

where vL = γ1/2 · vC is the quasi limit velocity of charge

carriers (γ is the coefficient of proportionality that will

be introduced later), and vC is the typical charge carrier

velocity that is introduced as follows:

nv2
C =

5

3

∫

v2 f 0

2d3(mv)

h3
=

= 16π
5

3

k2T 2

h3

√
2mkT

∫

u3/2du
exp(u − uµ) + 1

.

After applying (15), we have

v2
C =

5

3

2kT
mI0

∫

u3/2du
exp(u − uµ) + 1

or in dimensionless form

ṽC =

√

m
2kT

vC = I−1/2
0

(

5

3

∞
∫

0

u3/2du
exp(u − uµ) + 1

)1/2

.

(17)
For the case of highly degenerate fermionic gas (uµ ≫ 1)

at T → 0, vC → vF, where vF — is the fermionic velocity

calculated using expression (17) for the Fermi function f 0

(T → 0). For the other limit case of non-degenerate
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fermionic gas (uµ < 0) at T → ∞, vC →
√
5kT/m, i.e. an

order of the average thermal velocity of charge carriers takes

place [7].

Note that, for calculation of the effect of only volume and

surface charge carrier scattering on the conductivity of the

conducting body, the upper boundary of the dimensionless

kinetic energy integration may be assumed as formally

equal to u → +∞ [11]. However, in real practice, on the

assumption of physical considerations, such quasi constraint

exists, because, at some charge carrier velocity vL, the

fracture of electrons with dimensionless velocities exceeding

this one and the electron contribution to conductivity are

negligibly low at an arbitrary value of the dimensionless

chemical potential. Therefore, it is reasonable to introduce

such quasi constraint when considering the effect of pair

collisions of the conductivity.

Considering (4) and couplings (16), for the collision

integral in equation (10), we have

∫

vz
(

a1vz + a2vz sign(vx )
) ∂ f 0

∂ε
d3v =

= −
∫

v2
z

(

a1 + a2sign(vx )
)

× exp[(m(v2
⊥ + v2

z ) − 2µ)/2kT ]

{exp[(m(v2
⊥+v2

z ) − 2µ)/2kT ]+1}2kT
v⊥dvz dϕdv⊥.

Proceed to the dimensionless form of the derived expres-

sion taking into account (12) and introduce the following

variables

uC = ṽ2
C =

mv2
C

2kT
, uL =

mv2
L

2kT
, uz =

mv2
z

2kT
,

u⊥ =
mv2

⊥
2kT

, v⊥ cosϕ = cosϕ

√

2kTu⊥

m
. (18)

Then the charge carrier collision integral

∫

vz
(

a1vz + a2vz sign(vx )
) ∂ f 0

∂ε
d3v =

= −2
√
2

m

(

kT
m

)3/2
uL

∫

0

2π
∫

0

uL−uz
∫

0

[a1 + a2sign(cosϕ)]

× exp(u⊥ + uz − uµ)
√

uz

{exp(u⊥ + uz − uµ) + 1}2 duz dϕdu⊥ =

= −2πa1

m

(

2kT
m

)3/2

×
uL

∫

0

(

uL−uz
∫

0

d{exp(u⊥ + uz − uµ)}
{exp(u⊥ + uz − uµ) + 1}2

)√
uz duz =

= −2πa1

m

(

2kT
m

)3/2

I1, (19)

Parameter value γ

uµ −∞ −10 −5 −3 −1 0 1 5 10 ∞

γ 6 5.6 5.4 5.2 5 4.8 4.4 2.5 1.8 1

where

I1 =

uL
∫

0

uL−uz
∫

0

exp(u⊥ + uz − uµ)
√

uz

{exp(u⊥ + uz − uµ) + 1}2 duz du⊥ =

=

uL
∫

0

√
uz duz

exp(uz − uµ) + 1
− 2u3/2

L

3(exp(uL − uµ) + 1)
. (20)

For further calculations, it is convenient to express the

dimensionless quasi limit charge carrier energy uL in terms

their typical dimensionless energy uC as follows uL = γuC ,

where the coefficient of proportionality γ may be separately

calculated by numerical methods for each dimensionless

chemical potential uµ . γ values are listed in the Table.

Taking into account (13) and (19), equation (10) will be

written as
(

ν +
g0I1
τ I0

)

a1vz + νa2vz sign(vx) + vxvz
∂a1

∂x

+ vxvz sign(vx)
∂a2

∂x
+ evz E0 = 0. (21)

Multiplying equation (21) step-by-step, first, by the

electron velocity projection vz , and then by vz sign(vx), and
integrating over the whole velocity space, we will derive two

equations

{

4
5

(

ν + g0I1
τ I0

)

a1 + vL
4

∂a2

∂x = − 4
5

eE0,

a2 = − 5vL
16ν

∂a1

∂x .
(22)

Whence it follows that

∂2a1

∂x2
− λ2a1 = λ2

eE0

νβ2
, (23)

where

β =
√

1 + g0I1/(ντ I0) = |ντ = 1− iωτ = 1− i�τ vC/b

= 1− i�/1 = χ/1| =
√

1 + g0I11/(I0χ),

λ = 16νβ/5vL, χ = 1− i� — the dimensionless complex

carrier scattering frequency .

Moment coefficient a1(x) will be found by solution of

second order non-homogeneous differential equation (23):

a1(x) = A0 + C1 exp(λx) + C2 exp(−λx), (24)

where A0 = −eE0/νβ
2; C1,C2 are integration constants.

Then from the second equation of system (22), it follows
that

a2(x) = βC2 exp(−λx) − βC1 exp(λx). (25)
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Applying (24) and (25) to (9), we find the general

equation solution view (8), i.e.

g =
(

A0 + C1 exp(λx) + C2 exp(−λx)
)

vz

+
(

βC2 exp(−λx) − βC1 exp(λx)
)

vz sign(vx). (26)

Apply the limit conditions at the upper ans lower

boundaries of the conducting layer to find coefficients C1

and C2:

{

g(vx , x) = q1g(−vx , x), vx < 0, x = b,

g(vx , x) = q2g(−vx , x), vx > 0, x = 0,

where q1 and q2 are reflectance coefficients of the layer

surfaces.

Taking into account (26), the system of boundary

conditions may be written as































A0 + C1 exp(λb) + C2 exp(−λb) + βC1 exp(λb)−
βC2 exp(−λb) = q1

[

A0 + C1 exp(λb) + C2 exp(−λb)+

βC2 exp(−λb) − βC1 exp(λb)
]

,

A0 + C1 + C2 + βC2 − βC1 =

q2[A0 + C1 + C2 + βC1 − βC2

]

.

Whence



















D1 = (1−q1)(q2−βq2−β−1)−exp(−λb)(1−q2)(βq1+q1+β−1)
exp(−λb)(βq1+q1+β−1)(1−β−q2−βq2)−
exp(λb)(1+β−q1+βq1)(q2−βq2−β−1)

,

D2 = (1−q1)(1−β−q2−βq2)−exp(λb)(1−q2)(1+β−q1+βq1)
exp(−λb)(βq1+q1+β−1)(1−β−q2−βq2)−
exp(λb)(1+β−q1+βq1)(q2−βq2−β−1)

,

(27)
where new notations D1 = C1/A0, D2 = C2/A0 are intro-

duced.

Then write expressions (24) and (26) as follows:

a1(x) = A0

(

1 + D1 exp(λx) + D2 exp(−λx)
)

, (28)

g = A0

[(

1 + D1 exp(λx) + D2 exp(−λx)
)

vz

+
(

βD2 exp(−λx) − βD1 exp(λx)
)

vz sign(vx )
]

. (29)

Relations (29), (27) and (4) fully define deviation

f 1(x , v) of the distribution function from the equilibrium

one in case of mirror-diffuse reflection of carriers at the

upper and lower boundaries of the conducting layer taking

into account their pair collisions.

3. Conductivity calculation

Refining the form of f 1(x , v) using (29) and (4), find the

current density projection j inside the layer on the axis Z.
Applying equation (5) and considering (1), (12), (18), we

have

j z = 2e

(

m
h

)3 ∫

vz f 1d3v = −2eA0

(

m
h

)3

exp(−iωt)

×
∫

v2
z exp[(ε − µ)/kT ]

{exp[(ε − µ)/kT ] + 1}2kT

×
[

1 + D1 exp(λx) + D2 exp(−λx) +
(

βD2 exp(−λx)

− βD1 exp(λx)
)

sign(vx )
]

d3v =

=
4πe2E
mνβ2

(

m
h

√

2kT
m

)3

[1 + D1 exp(λx) + D2 exp(−λx)]

×
uL

∫

0

uL−uz
∫

0

√
uz exp(u⊥ + uz − uµ)

{exp(u⊥ + uz − uµ) + 1}2 duz du⊥ =

= − neI1
mI0

exp(−iωt)a1(x). (30)

Here, the integrals I0, I1 are defined by equations (14)
and (20).
Expression for the local layer conductivity σ is derived as

a result of Ohm’s law in a differential form

σ =
j z

E
= −neI1a1(x)

mI0E0

.

Taking into account (15), (17) and (28), we have

σ =
σ0I1
χβ2ṽC

(

1 + D1 exp(λx) + D2 exp(−λx)
)

, (31)

where λ = 16νβ/5vL = 16ντβ/5τ vL = 16βχ/51τ vL =
= 16βχ/(5bγ1/2), σ0 = 8πe2bmkT/h3 — static specific

conductivity of substance.

On introducing the dimensionless coordinate inside the

layer ξ = x/b, write expressions for local conductiv-

ity (31) and coefficients D1, D2 in the dimensionless form

σ ∗ = σ/σ0, where

σ ∗=
I1

χβ2ṽC

(

1 + D∗
1 exp

(

16χβ

5
√
γ
ξ

)

+ D∗
2 exp

(

−16χβ

5
√
γ
ξ

))

,

(32)

D∗
1 =

(1−q1)(q2−βq2−β−1)−
exp(−16χβ/5

√
γ)(1−q2)(βq1+q1+β−1)

exp(−16χβ/5
√
γ)(βq1+q1+β−1)(1−β−q2−βq2)−

exp(16χβ/5
√
γ)(1+β−q1+βq1)(q2−βq2−β−1)

,

D∗
2 =

(1−q1)(1−β−q2−βq2)−
exp(16χβ/5

√
γ)(1−q2)(1+β−q1+βq1)

exp(−16χβ/5
√
γ)(βq1+q1+β−1)(1−β−q2−βq2)−

exp(16χβ/5
√
γ)(1+β−q1+βq1)(q2−βq2−β−1)

.

On integrating expression (30), considering (15), (17)
and (28), we define the total current through the layer cross-

section

I =

b
∫

0

j z dS = −neSI1
mbI0

exp(−iωt)

b
∫

0

a1(x)dx =

= σ0
ESI1
χβ2ṽC

(

1+
D1

λb

(

exp(λb)− 1
)

+
D2

λb

(

1− exp(−λb)
)

)

.

(33)
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Formally from (33), using Ohm’s law in the form of

I = GU , where U is the voltage at the layer ends, we derive

the equation for integral conductivity of the conducting

layer G (electric field inside the layer is homogeneous,

therefore U = EL, L is the layer length):

G =
G0I1
χβ2ṽC

(

1+
D1

λb

(

exp(λb) − 1
)

+
D2

λb

(

1− exp(−λb)
)

)

,

(34)

where G0 = σ0S/L.

Note that in a special case equations (31) and (34) define
contribution to the specific and integral conductivities of

electron-electron collisions in metal [10], and, when there is

no amendment to the Wiedemann-Franz law, when g0 = 0,

coincide with findings of [5], where another mathematical

approach to the problem was used.

Write expression (34) in the dimensionless form

G∗ = G/G0, where

G∗ =
I1

χβ2ṽC

(

1 +
5
√
γD∗

1

16χβ

(

exp(16χβ/5
√
γ) − 1

)

+
5
√
γD∗

2

16χβ

(

1− exp(−16χβ/5
√
γ)

)

)

(35)

(dimensionless coefficients D∗
1 and D∗

2 were defined above).

4. Limit cases

4.1. Degenerate electron gas

Consider the degenerate electron gas case, when

exp(Uµ) ≫ 1 (metal layer (vL = vC → vF , since γ → 1)).

Then from (14) it follows that

I0 =

∞
∫

0

√
u du

exp(u − uµ) + 1
≈

∞
∫

0

√
u θ(uµ − u)du =

2

3
u3/2
µ ,

where θ(uµ − u) is the Heaviside function. Thus, electron

gas concentration (15) considering (12)

n ≈ 4π

(

m
h

)3(
2kT
m

)3/2
2

3
u3/2
µ

= 4π

(

m
h

)3(
2kT
m

)3/2
2

3

(

µ

kT

)3/2

.

Since µ = mv2
F/2, we get

n = 4π

(

m
h

)3(
2kT
m

)3/2
2

3

(

mv2
F

2kT

)3/2

=
8π

3

(

m
h

)3

v3
F .

Change the integration order in (20) considering (12)

I1 =

uC
∫

0

uC−u⊥
∫

0

exp(u⊥ + uz − uµ)
√

uz

{exp(u⊥ + uz − uµ) + 1}2 du⊥duz

≈
uµ

∫

0

uµ−u⊥
∫

0

δ(uz − (uµ − u⊥)
√

uz )du⊥duz

=

uµ
∫

0

√

uµ − u⊥du⊥ =
2

3
u3/2
µ =

2µ3/2

3(kT )3/2
.

Then local conductivity (32)

σ ≈ 8πe2bmkT
h3χβ2ṽC

2µ3/2

3(kT )3/2

×
(

1 + D∗
1 exp

(16χβ

5
ξ
)

+ D∗
2 exp

(

−16χβ

5
ξ
)

)

.

Considering (17), we have

σ =
8πm2v2

Fe2b
3h3χβ2

(

1 + D∗
1 exp

(16χβ

5
ξ
)

+ D∗
2 exp

(

−16χβ

5
ξ
)

)

=
ne2τ

m
1

χβ2

×
(

1 + D∗
1 exp

(16χβ

5
ξ
)

+ D∗
2 exp

(

−16χβ

5
ξ
)

)

. (36)

Within this limit, integral layer conductivity (35) is

defined using expression

G =
ne2τ S

mL
1

χβ2

(

1 +
5D∗

1

16χβ

(

exp(16χβ/5) − 1
)

+
5D∗

2

16χβ

(

1− exp(−16χβ/5)
)

)

.

4.2. Non-degenerate electron gas

Now, consider the non-degenerate electron gas case,

when exp(−Uµ) ≫ 1 (µ < 0, vC → √
5kT/m, γ → 6).

From (14) , it follows that

I0 =

∞
∫

0

√
u du

exp(u − uµ) + 1

≈
∞
∫

0

√
u exp(uµ − u)du =

√
π

2
exp(uµ).

Then electron gas concentration (15) considering (12)

n ≈ 4π
(m

h

)3(2kT
m

)3/2
√
π

2
exp

( µ

kT

)

.
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Using (20), the following can be written

I1 =

uL
∫

0

√
uz duz

exp(uz − uµ) + 1
− 2u3/2

L

3(exp(uL − uµ) + 1)

≈ exp(uµ)

(

uL
∫

0

√
uz exp(−uz )duz −

2

3
u3/2

L exp(−uL)

)

=

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

uL
∫

0

√
uz exp(−uz )duz =

−√
uz exp(−uz )

∣

∣

uL

0
+

√
π
2

erf(
√

uz )
∣

∣

uL

0
=

−√
uL exp(−uL) +

√
π

2
eft(

√
uL)

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

=

√
π

2
exp(uµ)

(

erf(
√

uL) −
2√
π

√
uL exp(−uL)

− 2√
π

2

3
u3/2

L exp(−uL)
)

,

where erf(
√

uL) is the error function.

Considering (18), for

uC = ṽ2
C = mv2

C/2kT = |vC →
√

5kT/m| = 5/2,

uL = ṽ2
L =

mv2
L

2kT
= |vL =

√
γvC | =

γmv2
C

2kT
=

5γ

2
= 15,

we have

I1 ≈
√
π

2
exp(uµ)

(

erf(
√
15) − 2√

π

√
15 exp(−15)

− 2√
π

2

3
(15)3/2 exp(−15)

)

≈
√
π

2
exp(uµ).

Then according to (31), considering (12) and (18), we
have

σ ≈ 8πe2bmkT
h3χβ2

√

2

5

√
π

2
exp

( µ

kT

)

×
(

1 + D∗
1 exp

(16χβ

5
√
6
ξ
)

+ D∗
2 exp

(

−16χβ

5
√
6
ξ
)

)

=
ne2b

χβ2
√
5mkT

(

1 + D∗
1 exp

(16χβ

5
√
6
ξ
)

+ D∗
2 exp

(

−16χβ

5
√
6
ξ
)

)

=
ne2τ 1
mχβ2

(

1 + D∗
1 exp

(16χβ

5
√
6
ξ
)

+ D∗
2 exp

(

−16χβ

5
√
6
ξ
)

)

.

In this limit, integral layer conductivity (35) is defined using

expression

G =
ne2τ S

mL
1

χβ2

(

1 +
5
√
6D∗

1

16χβ

(

exp(16χβ/5
√
6) − 1

)

+
5
√
6D∗

2

16χβ

(

1− exp(−16χβ/5
√
6)

)

)

.

5. Comparison with the experiment and
discussion of findings

Study of thin conducting layers is of interest from the

experimental point of view. This is supported by numerous

research publications on the topic [12–15].
Figure 1 shows the comparison of the analytical calcu-

lation of the thin metal layer conductivity modulus (36),
considering the pair collisions of electrons (curve 1) and

without considering such collisions (curve 2), with the

experimental data for gold in case of a stationary electric

field (� = 0) at absolute temperature 4K [13].
Experimental data does not contain the volume collision

frequency (free path length) of electrons in the metal layer.

However, comparing the theoretical result for the specific

conductivity (curve 1) with the experimental data, we
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Figure 1. Comparison of the specific conductivity of a thin metal

layer with experimental data.
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Figure 2. Dependence of the dimensionless specific conductivity

modulus of a thin conducting layer on the numeric variable g0

(1 = 1; � = 0.1; q1 = q2 = 0.1; ξ = 0.5), Uµ : 1 — −3, 2 — −1,

3 — 0.
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Figure 3. Dependence of the dimensionless specific conductivity

modulus of the thin conducting layer on dimensionless inverse

length of free electron path 1 (ξ = 1; � = 0.1; q1 = q2 = 0.1;

g0 = 0.5), Uµ : 1 — −3, 2 — −1, 3 — 0.

can define this value with the given value of reflectance

coefficients of metal q1 and q2. Assuming for gold

q1 = q2 = 0.35, we get for the free electron path length

3 = 1450 nm, and the numeric variable characterizing the

pair collision intensity of carriers, g0 = 0.3.

Comparison of experimental and theoretical

data (curve 1) shows that the calculation of specific

conductivity of thin metal layer performed by the kinetic

method agrees with the experimental data with accuracy

at least 89%, when the pair collisions of charge carriers

and the effect of metal layer surface reflectance on electron

reflection.

Without considering such collision (curve 2), when

g0 = 0, the derived theoretical dependence is in worse

agreement with the experimental data.

Figure 2 shows the curves of the dimensionless specific

conductivity modulus of the thin conduction layer (32) vs.

numeric variable g0 for the case when all curves are built

with the same dimensionless coordinate values inside the

layer ξ , dimensionless inverse free electron path length 1,

dimensionless electric field frequency � and reflectance

coefficients q1 and q2. In this case, the dimensionless

chemical potential Uµ takes various values.

The course of curves in the Figure shows that the di-

mensionless specific conductivity modulus of the layer (32)
depends to a considerable extent on the numeric vari-

able g0, that characterizes the pair collision intensity of

charge carriers. For any values of g0, the dimensionless

specific conductivity dominates at layers with high chemical

potential.

Figure 3 shows the curve of the dimensionless specific

conductivity modulus (32) on the dimensionless inverse

length of free charge carrier path 1. Whereby the

dimensionless chemical potential Uµ still varies for each

curve.

Analysis of the course of curves suggests that achieve-

ment of asymptotic values by these dependences at particu-

lar values of 1 depends on the value of Uµ .

Figure 4 shows the curve of the dimensionless specific

conductivity modulus (32) vs. dimensionless coordinate

inside the layer ξ . The dimensionless chemical potential Uµ

takes the same values as in Figure 3.

The course of curves in Figure 4 shows that, at

various reflectance coefficients of the layer surfaces, the

dimensionless specific conductivity modulus has oscillations

whose amplitude depends on the values of the chemical

potential Uµ . Such nontrivial behavior of the curves
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Figure 4. Curve of the dimensionless specific conductivity

modulus of the thin conducting layer vs. dimensionless coordinate

inside the layer ξ . (1 = 1; � = 10; q1 = 0.1; q2 = 0.7; g0 = 0.5),
Uµ : 1 — −3, 2 — −1, 3 — 0.
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Figure 5. Curve of the dimensionless integral conductivity

modulus of the thin conducting layer vs.dimensionless electric field

frequency � (Uµ = 1; 1 = 1; q1 = q2 = 0.1), g0 : 1 — 0.1, 2 —
0.5, 3 — 1.
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Figure 6. Curve of the argument of dimensionless integral

conductivity of the thin conducting layer vs.dimensionless electric

field frequency � (Uµ = 1; 1 = 1; q1 = q2 = 0.1), g0 : 1 — 0.1,

2 — 0.5, 3 — 1.

with increasing dimensionless electric field frequency �

is probably associated with the manifestation of resonance

effects observed in charge carrier reflection from the top and

bottom surfaces of the conducting layer.

When plotting the dimensionless integral layer conduc-

tivity curves (35), a special focus shall be made on

the dependence of its modulus and argument on the

dimensionless electric field frequency �, that are shown

in Figures 5 and 6. Whereby the numeric variable g0 takes

various values.

The course of curves in Figure 5 shows that the maximum

difference of the integral layer conductivity moduli with

growing intensity of the charge carrier pair collisions is

observed in the static case, while further increase in the

dimensionless electric field frequency results in merging of

these curves.

As shown in Figure 6, all curves of the dimensionless

integral conductivity argument defined in similar condi-

tions come from the origin of coordinates and grow

monotonously with increasing dimensionless electric field

frequency.

Conclusion

Since the findings of the study show that the pair

collisions of charge carriers have a considerable effect on

layer conductivity, it is necessary to apply this theory to the

direct calculation of conductivity of such bodies in practical

and technical applications, e.g. in commercial manufacture

of integrated circuits.
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