01

Транспортные уравнения Максвелла, их фундаментальные и обобщенные решения при постоянной скорости движения источника излучения

© Л.А. Алексеева, ¹ И.А. Канымгазиева ²

- ¹ Институт математики и математического моделирования, 050010 Алматы, Казахстан
- ² Евразийский национальный университет им. Л. Гумилева, 010000 Астана, Казахстан

e-mail: alexeeva47@mail.ru, Ilmira_69@mail.ru

Поступило в Редакцию 18 августа 2023 г. В окончательной редакции 9 февраля 2024 г. Принято к публикации 12 февраля 2024 г.

Рассмотрены транспортные решения системы уравнений Максвелла при действии подвижных источников электромагнитных волн, движущихся с постоянной скоростью в фиксированном направлении. Построены фундаментальные и обобщенные решения при скоростях движения, меньших скорости света в среде, даны их регулярные представления в аналитической форме. Для этого в пространстве преобразования Фурье по координатам и времени построена трансформанта тензора Грина. Для восстановления оригиналов использованы фундаментальные решения транспортного волнового уравнения и свойства трансформант фурье-функций. Построение решений при произвольных подвижных источниках основано на свойстве свертки фундаментальных решений дифференциальных уравнений с правой частью. Приведены формулы для вычисления напряженности электромагнитных полей для подвижных излучателей разного вида, полезные для радиотехнических приложений.

Ключевые слова: скорость света, скорость движения, число Маха, тензор Грина, обобщенные решения, электромагнитные волны, радиоволны.

DOI: 10.61011/JTF.2024.04.57523.174-23

Введение

Уравнения Максвелла являются основополагающими в современной электродинамике и являются определяющими при изучении электромагнитных полей, порождаемых разнообразными излучателями электромагнитных волн (ЭМ). Построением и исследованием решений этих уравнений и краевых задач для них в областях разной геометрии занимаются многие ученые, начиная со второй половины XIX века. Библиография в этом направлении весьма обширная, начиная с многообразной учебной литературы по электромагнетизму [1–6] и др.

Здесь нас будут интересовать прежде всего обобщенные решения этой системы уравнений, когда действие излучателей описывается сингулярными обобщенными функциями, сосредоточенными импульсными, описываемые дельта-функциями и их производными, либо сингулярными простыми и двойными слоями на линиях и поверхностях различной формы.

Тензор Грина и обобщенные решения нестационарных уравнений Максвелла и их гамильтоновой формы в изотропных и анизотропных средах построен в работах [7–9]. На его основе с использованием метода обобщенных функций, разработан метод граничных интегральных уравнений для решения нестационарных и

стационарных краевых задач электродинамики в областях с произвольной геометрией границ в [10,11].

Среди действующих источников излучения ЭМ волн наиболее распространенными являются подвижные, расположенные на платформах различных транспортных средств. Очевидно, что скорость движения существенно влияет на процессы распространения ЭМ волн в средах с различной электрической проводимостью и магнитной проницаемостью, как и форма самого источника и характер его работы. Исследования в этом направлении не столь многочисленны и связаны с определенным видом источника излучения [12–18].

В любой среде волны распространяются с определенной скоростью. В механике сплошных сред их называют звуковыми — название, которое пришло из акустики. В сплошных средах скорость распространения волн зависит от типа деформации среды, которую они распространяют. Поэтому в сплошной среде может быть несколько звуковых скоростей. А в анизотропных средах они еще зависят от направления. Отношение скорости движения источника возмущения в среде к скорости звука называется числом Маха (M). При M<1 движение дозвуковое, при M>1 — сверхзвуковое.

Хорошо известны особенности акустических волн при движении самолетов при дозвуковых и сверхзвуковых скоростях. При математическом моделировании таких

транспортных задач тип дифференциальных уравнений меняется: эллиптический в дозвуковом режиме и гипер-болический в сверхзвуковом. Что сильно влияет на решение задачи и кардинально меняет картину волнового поля в среде.

В изотропных электромагнитных средах, которые описываются уравнениями Максвелла (УМ), скорость распространения ЭМ волн одна, и ее принято называть скоростью света. Она является критической, точно также как является критической скорость звука в воздухе. Поэтому можно рассматривать досветовой режим движения, световой и сверхсветовой. В настоящей работе авторы рассматривают досветовой диапазон движения источника излучения.

Здесь рассматриваются транспортные решения системы уравнений Максвелла для случая подвижных источников ЭМ волн, движущихся с постоянной скоростью V в фиксированном направлении. Предполагается, что скорость движения меньше скорости распространения света c в данной среде, которая названа досветовой. Отношение скорости движения источника к скорости света M = V/c в среде мы называем числом Маха, по аналогии с его определением в механике сплошных сред.

Построены фундаментальные и обобщенные транспортные решения уравнений Максвелла при M<1. Даны их регулярные интегральные представления в аналитической форме. Приведены формулы для вычисления электрической и магнитной напряженности ЭМ полей для подвижных излучателей разного вида, полезные для радиотехнических приложений.

1. Уравнения Максвелла. Транспортные источники ЭМ волн

Рассмотрим классическую систему уравнений Максвела [1–3], которую запишем в следующем виде:

$$\operatorname{rot}\mathbf{E} + \mu\mu_{0}\frac{\partial\mathbf{H}}{\partial t} = \mathbf{j}^{m}(x_{1}, x_{2}, x_{3}, t),$$

$$\operatorname{rot}\mathbf{H} - \varepsilon\varepsilon_{0}\frac{\partial\mathbf{E}}{\partial t} = \mathbf{j}^{e}(x_{1}, x_{2}, x_{3}, t),$$

$$\operatorname{div}\mathbf{B} = \rho^{m}, \quad \operatorname{div}\mathbf{D} = \rho^{e},$$
(1)

где \mathbf{j}^m — вектор плотности магнитного тока [V/m²], \mathbf{j}^e — вектор плотности электрического тока [A/m²], \mathbf{E} — вектор напряженности электрического поля [V/m], \mathbf{H} — вектор напряженности магнитного поля [A/m], ρ^e — объемная плотность электрического заряда [C/m³].

Здесь в уравнениях (1) введены магнитные токи и заряды \mathbf{j}^m , ρ^m . В уравнениях Максвелла магнитных токов и зарядов нет: $\mathbf{j}^m=0$, $\rho^m=0$. Далее для построения решений этой системы это ограничение снимем.

Материальные соотношения

$$\mathbf{B} = \mu \mu_0 \mathbf{H}, \quad \mathbf{D} = \varepsilon \varepsilon_0 \mathbf{E}, \tag{2}$$

где μ — магнитная проницаемость среды, $\mu_0=4\pi\cdot 10^{-7}\,\mathrm{H/m}$ — магнитная постоянная, ε — диэлектрическая проницаемость среды, $\varepsilon_0=8,\,85\cdot 10^{-12}\,\mathrm{F/m}$ — электрическая постоянная, $\mathbf{B}(x_1,\,x_2,\,x_3,\,t)$ — вектор индукции магнитного поля, $\mathbf{D}(x_1,\,x_2,\,x_3,\,t)$ — вектор индукции электрического поля, \mathbf{C}/m^2 .

Заметим, что два векторных уравнения Максвелла для токов представляют собой замкнутую систему уравнений, достаточную для определения ЭМ поля при заданных токах. После его определения скалярные уравнения позволяют определить электрический и магнитный заряд.

Рассмотрим подвижные транспортные источники электромагнитных волн, которые не меняют свой вид и движутся с постоянной скоростью V в направлении оси X_3 ($\mathbf{e}_3 = (0,0,1)$). Их можно описать токами вида $\mathbf{J}(x_1,x_2,z)$, где $x_3 - Vt = z$. В подвижной системе координат (x_1,x_2,z) производная по времени равна:

$$\frac{\partial}{\partial t} = -V \cdot \frac{\partial}{\partial z} \tag{3}$$

и уравнения Максвелла для токов в этой системе координат примут вид

$$\frac{\partial E_z}{\partial x_2} - \frac{\partial E_2}{\partial z} - V\mu\mu_0 \frac{\partial}{\partial z} H_1 = j_1^m(x_1, x_2, z),$$

$$\frac{\partial E_1}{\partial z} - \frac{\partial E_z}{\partial x_1} - V\mu\mu_0 \frac{\partial}{\partial z} H_2 = j_2^m(x_1, x_2, z),$$

$$\frac{\partial E_2}{\partial x_1} - \frac{\partial E_1}{\partial x_2} - V\mu\mu_0 \frac{\partial}{\partial z} H_z = j_z^m(x_1, x_2, z),$$

$$\frac{\partial H_z}{\partial x_2} - \frac{\partial H_2}{\partial z} + V\varepsilon\varepsilon_0 \frac{\partial}{\partial z} E_1 = j_1^e(x_1, x_2, z),$$

$$\frac{\partial H_1}{\partial z} - \frac{\partial H_z}{\partial x_1} + V\varepsilon\varepsilon_0 \frac{\partial}{\partial z} E_2 = j_2^e(x_1, x_2, z),$$

$$\frac{\partial H_2}{\partial x_1} - \frac{\partial H_1}{\partial x_2} + V\varepsilon\varepsilon_0 \frac{\partial}{\partial z} E_z = j_z^e(x_1, x_2, z).$$
(4)

Назовем эту систему из шести уравнений транспортными уравнениями Максвелла. Представим ее в матричном виле

$$\mathbf{M}(\partial_1, \partial_2, \partial_z)\mathbf{u} = \mathbf{J},\tag{5}$$

$$M(\partial_1, \partial_2, \partial_z) =$$

$$=\begin{pmatrix}0&-\partial_z&\partial_2&-V\mu\mu_0\partial_z&0&0\\\partial_z&0&-\partial_1&0&-V\mu\mu_0\partial_z&0\\-\partial_2&\partial_1&0&0&0&-V\mu\mu_0\partial_z\\V\varepsilon\epsilon_0\partial_z&0&0&0&-\partial_z&\partial_2\\0&V\varepsilon\epsilon_0\partial_z&0&\partial_z&0&-\partial_1\\0&0&V\varepsilon\epsilon_0\partial_z&-\partial_2&\partial_1&0\end{pmatrix}.$$

где ${\bf u}, {\bf J}$ — вектора размерности 6, составленные из компонент указанных последовательно величин:

$$\mathbf{u} = \begin{pmatrix} \mathbf{E}(x_1, x_2, z) \\ \mathbf{H}(x_1, x_2, z) \end{pmatrix}, \quad \mathbf{J} = \begin{pmatrix} \mathbf{j}^m(x_1, x_2, z) \\ \mathbf{j}^e(x_1, x_2, z) \end{pmatrix}.$$

Далее используем обозначения: $c = \sqrt{1/\mu\mu_0\varepsilon\varepsilon_0}$ — скорость света, V/c = M — число Маха, $m^2 = 1 - M^2$.

2. Тензор Грина транспортных уравнений Максвелла

Определение. Тензором Грина уравнений Максвелла называется матрица фундаментальных решений уравнений (5) при

$$\mathbf{J} = \delta(x_1)\delta(x_2)\delta(z)\{\delta_{i,i}\}_{6\times 6},$$

удовлетворяющая условиям излучения, которые описывают расходящиеся от подвижного источника волны, затухающие на бесконечности.

Он удовлетворяет уравнению

$$\mathbf{M}(\partial_1, \partial_2, \partial_z)\mathbf{U}(x_1, x_2, z) = \delta(x_1, x_2, z)\{\delta_{ij}\}_{6 \times 6}, \tag{6}$$

где $\delta(x_1,x_2,z)=\delta(x_1)\delta(x_2)\delta(z)$ — сингулярная дельтафункция, δ_{ij} — символ Кронекера.

Для его построения используем преобразование Фурье в пространстве обобщенных функций медленного роста [19]. В пространстве преобразований Фурье связь с исходными координатами $x_1, x_2, z \leftrightarrow k_1, k_2, k_3$ для регулярных функций имеет вид

$$F[f(x_1, x_2, z)] = \bar{f}(k_1, k_2, k_3)$$

$$= \int_{R^3} f(x_1, x_2, z) e^{i(x_1 k_1 + x_2 k_2 + z k_3)} dx_1 dx_2 dz,$$

$$F^{-1}[\bar{f}(k_1, k_2, k_3)] = \bar{f}(k_1, k_2, k_3)$$

$$= \frac{1}{(2\pi)^3} \int_{R^3} \bar{f}(k_1, k_2, k_3) e^{-i(x_1k_1 + x_2k_2 + zk_3)} dk_1 dk_2 dk_3.$$
 (7)

Используя свойство преобразования Фурье производной

$$\partial_i \Leftrightarrow -ik_i$$

из уравнений (5) получим систему линейных алгебраических уравнений вида

$$\mathbf{M}(-ik_1, -ik_2, -ik_z)\bar{\mathbf{U}}(k_1, k_2, k_3) = \{\delta_{ij}\}_{6\times 6},\tag{8}$$

где

$$\mathbf{M}(-ik_1 - ik_2 - ik_3) =$$

$$= \begin{pmatrix} 0 & ik_3 & -ik_2 & ik_3V\mu\mu_0 & 0 & 0 \\ -ik_3 & 0 & ik_1 & 0 & ik_3V\mu\mu_0 & 0 \\ ik_2 & -ik_1 & 0 & 0 & 0 & ik_3V\mu\mu_0 \\ -ik_3V\varepsilon\varepsilon_0 & 0 & 0 & 0 & ik_3 & -ik_2 \\ 0 & -ik_3V\varepsilon\varepsilon_0 & 0 & -ik_3 & 0 & ik_1 \\ 0 & 0 & -ik_3V\varepsilon\varepsilon_0 & ik_2 & -ik_1 & 0 \end{pmatrix}.$$

Из (8) следует

$$\bar{\mathbf{U}}(k_1, k_2, k_3) = (\mathbf{M}(-ik_1, -ik_2, -ik_2))^{-1}.$$
 (9)

Компоненты обратной матрицы получены путем решения символьных уравнений в MatCad-15. Они имеют

следующий вид по столбцам матрицы:

$$\{\bar{\boldsymbol{U}}_{m1}\} = \begin{bmatrix} 0 \\ \frac{ik_3}{k_1^2 + k_2^2 + k_3^2 m^2} \\ \frac{-ik_2}{k_1^2 + k_2^2 + k_3^2 m^2} \\ \frac{ik_1^2 - ik_3^2 M^2}{\alpha k_3 (k_1^2 + k_2^2 + k_3^2 m^2)} \\ \frac{ik_1k_2}{\alpha k_3 (k_1^2 + k_2^2 + k_3^2 m^2)} \\ \frac{ik_1k_2}{\alpha k_3 (k_1^2 + k_2^2 + k_3^2 m^2)} \end{bmatrix}, \quad \{\bar{\boldsymbol{U}}_{m2}\} = \begin{bmatrix} \frac{-ik_3}{k_1^2 + k_2^2 + k_3^2 m^2} \\ 0 \\ \frac{ik_1}{k_1^2 + k_2^2 + k_3^2 m^2} \\ \frac{ik_1k_2}{\alpha k_3 (k_1^2 + k_2^2 + k_3^2 m^2)} \\ \frac{ik_2}{\alpha k_3 (k_1^2 + k_2^2 + k_3^2 m^2)} \\ \frac{ik_2}{\alpha (k_1^2 + k_2^2 + k_3^2 m^2)} \end{bmatrix}$$

$$\{\bar{\boldsymbol{U}}_{m3}\} = \begin{bmatrix} \frac{-ik_2}{k_1^2 + k_2^2 + k_3^2 m^2} \\ \frac{-ik_1}{k_1^2 + k_2^2 + k_3^2 m^2} \\ \mathbf{0} \\ \frac{ik_1}{\alpha(k_1^2 + k_2^2 + k_3^2 m^2)} \\ \frac{ik_2}{\alpha(k_1^2 + k_2^2 + k_3^2 m^2)} \\ \frac{ik_2}{\alpha(k_1^2 + k_2^2 + k_3^2 m^2)} \\ \frac{ik_3}{\alpha(k_1^2 + k_2^2 + k_3^2 m^2)} \end{bmatrix}, \ \{\bar{\boldsymbol{U}}_{m4}\} = \begin{bmatrix} -\frac{ik_1^2 - ik_3^2 M^2}{\beta k_3(k_1^2 + k_2^2 + k_3^2 m^2)} \\ -\frac{ik_2 k_1}{\beta k_3(k_1^2 + k_2^2 + k_3^2 m^2)} \\ -\frac{ik_1}{\beta (k_1^2 + k_2^2 + k_3^2 m^2)} \\ 0 \\ \frac{ik_3}{k_1^2 + k_2^2 + k_3^2 m^2} \\ \frac{ik_3}{\alpha(k_1^2 + k_2^2 + k_3^2 m^2)} \end{bmatrix}$$

$$\{\bar{\boldsymbol{U}}_{m5}\} = \begin{bmatrix} \frac{ik_2k_1}{\beta k_3(k_1^2 + k_2^2 + k_3^2 m^2)} \\ -\frac{ik_2^2 - ik_3^2 M^2}{\beta k_3(k_1^2 + k_2^2 + k_3^2 m^2)} \\ -\frac{ik_2}{\beta (k_1^2 + k_2^2 + k_3^2 m^2)} \\ -\frac{ik_3}{k_1^2 + k_2^2 + k_3^2 m^2} \\ 0 \\ \frac{ik_1}{k_1^2 + k_2^2 + k_3^2 m^2} \end{bmatrix}, \ \{\bar{\boldsymbol{U}}_{m6}\} = \begin{bmatrix} -\frac{ik_1}{\beta (k_1^2 + k_2^2 + k_3^2 m^2)} \\ -\frac{ik_2}{\beta (k_1^2 + k_2^2 + k_3^2 m^2)} \\ \frac{ik_2}{\beta (k_1^2 + k_2^2 + k_3^2 m^2)} \\ \frac{ik_2}{k_1^2 + k_2^2 + k_3^2 m^2} \\ \frac{-ik_1}{k_1^2 + k_2^2 + k_3^2 m^2} \\ 0 \end{bmatrix},$$

$$(10)$$

где $\alpha = \varepsilon \varepsilon_0 V$, $\beta = \mu \mu_0 V$.

Рассмотрим следующие базисные функции и их оригиналы:

$$\bar{f}_0(k_1, k_2, k_3) = \frac{1}{k_1^2 + k_2^2 + m^2 k_3^2} \Leftrightarrow f_0(x_1, x_2, z), \quad (11)$$

$$\bar{f}_1(k_1, k_2, k_3) = -\frac{1}{ik_3} \bar{f}_0(k_1, k_2, k_3)$$

$$\Leftrightarrow f_0(x_1, x_2, z) = \partial_z f_1(x_1, x_2, z), \quad (12)$$

$$\bar{f}_{2}(k_{1}, k_{2}, k_{3}) = -\frac{1}{ik_{3}}\bar{f}_{1}(k_{1}, k_{2}, k_{3}) = -\frac{1}{k_{3}^{2}}\bar{f}_{0}(k_{1}, k_{2}, k_{3})$$

$$\Leftrightarrow f_{1}(x_{1}, x_{2}, z) = \partial_{z}f_{2}(x_{1}, x_{2}, z).$$
(13)

Используя их, оригинал тензора Грина $U(x_1, x_2, z)$ представим в виде (по столбцам):

$$\{\bar{U}_{m1}\} = \begin{cases} 0 \\ ik_3\bar{f}_0(k_1,k_2,k_3) \\ -ik_2f_0(k_1,k_2,k_3) \\ -ik_2f_0(k_1,k_2,k_3) \\ -\frac{ik_1ik_2}{a}f_1(k_1,k_2,k_3) \\ \frac{ik_1}{a}f_0(k_1,k_2,k_3) \\ \frac{ik_1}{a}f_0(k_1,k_2,k_3) \\ -\frac{ik_1ik_2}{a}f_1(k_1,k_2,k_3) \\ \frac{ik_1}{a}f_0(k_1,k_2,k_3) \\ -\frac{ik_1ik_2}{a}f_1(k_1,k_2,k_3) \\ 0 \\ ik_1f_0(k_1,k_2,k_3) \\ -\frac{ik_1ik_2}{a}f_1(k_1,k_2,k_3) \\ -\frac{ik_1ik_2}{a}f_1(k_1,k_2,k_3) \\ -\frac{ik_1ik_2}{a}f_1(k_1,k_2,k_3) \\ -\frac{ik_1ik_2}{a}f_1(k_1,k_2,k_3) \\ -\frac{ik_1ik_2}{a}f_1(k_1,k_2,k_3) \\ -\frac{ik_1ik_2}{a}f_0(k_1,k_2,k_3) \\ -\frac{ik_1ik_2}{a}f_0(k_1,k_2,k_3) \\ -\frac{ik_1ik_2}{a}f_0(k_1,k_2,k_3) \\ 0 \\ \frac{ik_1}{a}f_0(k_1,k_2,k_3) \\ -\frac{ik_1ik_2}{a}f_0(k_1,k_2,k_3) \\$$

$$\{\bar{U}_{m6}\} = \begin{bmatrix} -\frac{ik_{1}}{\beta}\bar{f}_{0}(k_{1},k_{2},k_{3}) \\ -\frac{ik_{2}}{\beta}\bar{f}_{0}(k_{1},k_{2},k_{3}) \\ \frac{ik_{3}M^{2}-ik_{3}}{\beta}\bar{f}_{0}(k_{1},k_{2},k_{3}) \\ ik_{2}\bar{f}_{0}(k_{1},k_{2},k_{3}) \\ -ik_{1}\bar{f}_{0}(k_{1},k_{2},k_{3}) \\ 0 \end{bmatrix} \Rightarrow \{U_{m6}\} = \begin{bmatrix} \frac{1}{\beta}\partial_{1}f_{0}(x_{1},x_{2},z) \\ \frac{1}{\beta}\partial_{2}f_{0}(x_{1},x_{2},z) \\ \frac{m^{2}}{\beta}\partial_{3}f_{0}(x_{1},x_{2},z) \\ -\partial_{2}f_{0}(x_{1},x_{2},z) \\ \partial_{1}f_{0}(x_{1},x_{2},z) \\ 0 \end{bmatrix}.$$

$$(14)$$

Отсюда следует, что компоненты тензора Грина определяются через оригиналы базовых функций. Построим их.

3. Построение оригиналов базовых функций при M < 1

3.1. Построение оригинала $\bar{f}_0(k_1, k_2, k_3)$

Рассмотрим функцию

$$\bar{f}_0(k_1, k_2, k_3) = \frac{1}{k_1^2 + k_2^2 + m^2 k_3^2},$$
 (15)

которая является трансформантой Фурье фундаментального решения уравнения

$$\frac{\partial^2 f_0}{\partial x_1^2} + \frac{\partial^2 f_0}{\partial x_2^2} + m^2 \frac{\partial^2 f_0}{\partial x_3^2} + \delta(x) = 0.$$
 (16)

Чтобы найти его решение, нужно рассмотреть отдельно три случая:

досветовой: $V < c \Rightarrow M < 1, m^2 = 1 - M^2 > 0$; сверхсветовой: $V > c \Leftrightarrow M > 1, m^2 < 0$; световой: $V = c \Leftrightarrow M = 1, m^2 = 0$.

Здесь рассмотрим досветовой. При $m^2 > 0$ транспортные уравнения Лапласа являются эллиптическими. Для построения решения уравнения (16) используем фундаментальное решение уравнения Лапласа:

$$\frac{\partial^2 \Psi}{\partial x_1^2} + \frac{\partial^2 \Psi}{\partial x_2^2} + \frac{\partial^2 \Psi}{\partial x_3^2} + \delta(x) = 0, \tag{17}$$

$$\Psi(x_1, x_2, x_3) = \frac{1}{4\pi ||x||},\tag{18}$$

которое удовлетворяет условиям затухания на бесконечности [19]. Используя свойство преобразования Фурье

$$f(z) \leftrightarrow \bar{f}(k_3), \quad f(z/m) \leftrightarrow m\bar{f}(mk_3),$$

получим оригинал

$$f_0(x_1, x_2, z) = \frac{1}{4\pi\sqrt{(x_1^2 + x_2^2)m^2 + z^2}}$$
$$= \frac{1}{4\pi\sqrt{m^2r^2 + z^2}} = \Phi_0(r, z), \qquad (19)$$

где $r = \sqrt{x_1^2 + x_2^2}$, $r_{,j} = \frac{x_j}{r}$. Ее производные, которые входят в представление оригинала тензора Грина U, равны

$$\begin{split} \partial_{j}f_{0} &= -\frac{1}{4\pi} \frac{m^{2}x_{j}}{(m^{2}r^{2} + z^{2})\sqrt{m^{2}r^{2} + z^{2}}} = -(4\pi m)^{2}x_{j}\Phi_{0}^{3}(r, z), \\ \partial_{j}\partial_{k}f_{0} &= -\frac{m^{2}}{4\pi(m^{2}r^{2} + z^{2})^{3/2}} \left\{ \delta_{jk} - \frac{3m^{2}x_{j}x_{k}}{m^{2}r^{2} + z^{2}} \right\} \\ &= -(4\pi m)^{2}\Phi_{0}^{3}(r, z) \left\{ \delta_{jk} - \frac{3m^{2}x_{j}x_{k}}{m^{2}r^{2} + z^{2}} \right\}, \quad j, k = 1, 2, \\ \partial_{z}f_{0} &= -\frac{1}{4\pi} \frac{z}{(m^{2}r^{2} + z^{2})\sqrt{m^{2}r^{2} + z^{2}}} = -(4\pi)^{2}z\Phi_{0}^{3}(r, z), \\ \partial_{z}\partial_{z}f_{0} &= \frac{2z^{2} - m^{2}r^{2}}{4\pi(m^{2}r^{2} + z^{2})^{2}\sqrt{m^{2}r^{2} + z^{2}}} \\ &= (4\pi)^{4}\Phi_{0}^{5}(r, z)(2z^{2} - m^{2}r^{2}). \end{split}$$

3.2. Построение оригинала $\bar{f}_1(k_1, k_2, k_3)$

Рассмотрим вторую базовую функцию

$$\bar{f}_1(k_1, k_2, k_3) = \frac{1}{-ik_3^2(k_1^2 + k_2^2 + m^2k_3^2)}.$$
 (20)

Этой функции соответствует класс регуляризаций вида

$$\frac{1-a}{-i(k_3+i0)(k_1^2+k_2^2+m^2k_3^2)} + \frac{a}{-i(k_3-i0)(k_1^2+k_2^2+m^2k_3^2)},$$
(21)

где a — произвольная константа. Здесь используем симметричную регуляризацию (a=0,5):

$$\bar{f}_1(k_1, k_2, k_3) = \frac{1}{2(k_1^2 + k_2^2 + m^2 k_3^2)} \times \left(\frac{1}{-i(k_3 + i0)} + \frac{1}{-i(k_3 - i0)}\right). \tag{22}$$

Нетрудно видеть, что, используя свойство преобразования Фурье первообразных, эта функция является преобразованием Фурье функции

$$f_1(x_1, x_2, z) = 0, 5(f_0(x_1, x_2, z)H(z)_z^* H(z) - f_0(x_1, x_2, z)H(-z)_z^* H(-z)).$$
(23)

Здесь свертка по z содержит функцию Хевисайда H(z), преобразвание Фурье, который имеет вид

$$\bar{H}(k_3) = \frac{1}{-i(k_3 + i0)}.$$

Вычисляя свертки

$$f_0(x_1, x_2, z)H(z)^*_zH(z) = H(z)\int_0^z f_0(x_1, x_2, z - \tau)d\tau,$$

$$f_0(x_1, x_2, z)H(-z) *_{z} H(-z) = H(-z) \int_{z}^{0} f_0(x_1, x_2, z - \tau) d\tau.$$
(24)

Получим оригинал функции

$$f_1(x_1, x_2, z) = \frac{sgn(z)}{4\pi} ln\left(\frac{|z| + \sqrt{m^2r^2 + z^2}}{mr}\right) = \Phi(r, z).$$
(25)

Ее производные

$$\begin{split} \partial_j \Phi_1 &= \frac{x_j z}{r^2} \Phi_0(r,z), \quad \partial_z \Phi_1 = \Phi_0(r,z), \\ \partial_z \partial_z \Phi_1 &= z (4\pi)^2 \Phi_0^3(r,z), \\ \partial_k \partial_j \Phi_1 &= \partial_k \left(\frac{x_j z}{r^2} \Phi_0(r,z) \right) \\ &= \frac{z}{r^2} \{ \Phi_0(\delta_{jk} - 2r_{,j} r_{,k}) + x_j \partial_k \Phi_0 \}, \\ \partial_j \partial_z \Phi_1 &= (4\pi m)^2 x_j \Phi_0^3(r,z), \quad r_{,j} &= \frac{x_j}{r}. \end{split}$$

Таким образом, все входящие в определение тензора базовые функции найдены, тензор Грина построен.

4. Обобщенные решения транспортных уравнений Максвелла при разных излучателях

4.1. ЭМ поля подвижных объемных излучателей

Решение транспортных уравнений Максвелла при произвольных объемных излучателях представим в виде тензорно-функциональной свертки токов с тензором Грина:

$$\mathbf{u}(x,z) = \mathbf{U}(x,z) * \mathbf{J}(x,z),$$

$$u_i(x,z) = \sum_{j=1}^{6} U_{ij}(x,z) * j_j(x,z), \quad j = 1, \dots, 6,$$

которую для регулярных токов можно представить в следующем виде:

$$u_{i}(x,z) = \sum_{k=1}^{6} U_{ik}(x,z) * j_{k}(x,z)$$

$$= \sum_{k=1}^{6} \int \int_{\mathbb{R}^{3}} \int U_{ik}(x-y,z-\xi) j_{k}(y,\xi) dy_{1} dy_{2} d\xi.$$

Для сингулярных токов следует пользоваться определением свертки [19].

4.2. ЭМ поля подвижных поверхностных излучателей

Для излучателя с интенсивностью ${f I}^D(x,z)$, сосредоточенного на поверхности D, решение имеет вид поверхностной свертки

$$\mathbf{u}(x,z) = \mathbf{U}(x,z) * \mathbf{I}^{D}(x,z) \delta_{D}(x,z),$$

$$u_i(x,z) = \sum_{j=1}^6 U_{ij}(x,z) * \mathbf{I}_j^D(x,z) \delta_D(x,z), j = 1,\ldots,6.$$

Здесь $\delta_D(x,z)$ — простой слой на цилиндрической поверхности $D=\{(x,z)\in L\times Z\}\subset R^3$, где контур L — поперечное сечение этой поверхности. Это сингулярная обобщенная функция, свертку с которой для регулярных токов на D можно представить в интегральном виде

$$u_i(x,z) = \sum_{j=1}^6 \int_D U_{ij}(x-y,z-\xi) I_j^D(y,\xi) dD(y,\xi),$$

где $dD(y, \xi)$ — дифференциал площади поверхности D.

4.3. ЭМ поля подвижных линейных излучателей

Для излучателей, сосредоточенных на кривых $L \subset R^3$, с интенсивностью $\mathbf{l}^L(x,z)$ решение имеет вид

$$\mathbf{u}(x,z) = \mathbf{U}(x,z) * \mathbf{I}^{L}(x,z) \delta_{L}(x,z),$$

$$u_i(x,z) = \sum_{i=1}^6 U_{ij}(x,z) * I_j^L(x,z) \delta_L(x,z), \quad j=1,\ldots,6.$$

Здесь $\delta_L(x,z)$ — простой слой на L. Это сингулярная обобщенная функция, свертку с которой можно тоже представить в интегральном виде

$$u_i(x,z) = \sum_{k=1}^{6} \int_{L} U_{ik}(x-y,z-\xi) I_k(y,\xi) dL(y,\xi),$$

где $dL(y,\xi)$ — дифференциал длины дуги на L.

В частности, для излучателей с интенсивностью $\mathbf{f}(z)$, сосредоточенных на оси X_3 :

$$u_i = \sum_{j=1}^6 U_{ij}(x, z)\delta(x)f_j(z)$$

$$=\sum_{j=1}^{6}U_{ij}(x,z)^{*}_{z}f_{j}(z)=\sum_{j=1}^{6}\int_{-\infty}^{\infty}U_{ij}(x,z-y)f_{j}(y)dy,$$

или на X_2 :

$$u_{i} = \sum_{j=1}^{6} U_{ij}(x, z) * \delta(x_{1})\delta(z)f_{j}(x_{2})$$

$$= \sum_{j=1}^{6} U_{ij}(x,z) *_{x_2}^* f(x_2) = \sum_{j=1}^{6} \int_{-\infty}^{\infty} U_{ij}(x_1, x_2 - \xi, z) f_j(\xi) d\xi.$$

Здесь переменная под знаком свертки показывает по какой координате проводится неполная свертка.

ПРИМЕР 1. Подвижный линейный излучатель на отрезке оси Z длины 2L:

$$\mathbf{j}^e(x_1, x_2, z) = \delta(x_1, x_2)H(L - |z|)(0, 0, 1), \quad \mathbf{j}^m = 0.$$

В матричной форме

$$\mathbf{u}(x_1, x_2, z) = \mathbf{U}(x_1, x_2, z) * \mathbf{j}(x_1, x_2, z),$$

$$j(x_1, x_2, z) = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}.$$

Покомпонентно

$$u_{i} = \sum_{j=1}^{6} U_{ij} * j_{j} = U_{i6} * \delta(x_{1}, x_{2}) H(L - |z|)$$

$$= U_{i6} * H(L - |z|) = \int_{-\infty}^{\infty} U_{i6}(x_{1}, x_{2}, y) H(L - |z - y|) dy$$

$$= \int_{-L+z}^{L+z} U_{i6}(x_{1}, x_{2}, y) dy = \int_{-L+z}^{L+z} U_{i6}(x_{1}, x_{2}, y) dy.$$

С учетом введенных обозначений и значений компонент тензора Грина эта формула имеет следующий вид:

$$\begin{pmatrix} E(x,z) \\ H(x,z) \end{pmatrix} = \int_{-L+z}^{L+z} \begin{bmatrix} \beta^{-1}\partial_1 \Phi_0 \\ \beta^{-1}\partial_2 \Phi_0 \\ m^2 \beta^{-1}\partial_3 \Phi_0 \\ -\partial_2 \Phi_0 \\ \partial_1 \Phi_0 \\ 0 \end{bmatrix} dy.$$

Вычисляя эти интегралы, получим напряженности ЭМ поля

$$E_1=-rac{x_1}{4\pi reta}g(r,z), \quad E_2=-rac{x_2}{4\pi reta}g(r,z), \ E_3=-rac{m^2z}{4\pi reta}g(r,z),$$

$$H_1 = \frac{x_2}{4\pi r}g(r,z), \quad H_2 = -\frac{x_1}{4\pi r}g(r,z), \quad H_3 = 0.$$

Здесь

$$g(r,z) = \sqrt{m^2 + \frac{(L+z)^2}{r^2}} - \sqrt{m^2 + \frac{(z-L)^2}{r^2}}.$$

Заключение

Полученные результаты можно использовать для исследования ЭМ полей различных световых излучателей и излучателей радиоволн, расположенных на подвижных объектах (поездах, машинах, кораблях и т.п.).

Отметим также, что построенный здесь тензор фундаментальных решений необходим для решения транспортных краевых задач электродинамики в ограниченных областях на основе метода граничных интегральных уравнений, что авторы планируют сделать в скором будущем.

Финансирование работы

Работа выполнена при финансовой поддержке Комитета Науки Министерства науки и высшего образования республики Казахстан (грант AP19674789 2023-2025 гг.).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] Дж.К. Максвелл. *Трактат об электричестве и магнетизме* (Наука, М., 1989), т. 1,2.
- [2] Дж. Джексон. *Классическая электродинамика* пер. с англ. Г.В. Воскресенского, Л.С. Соловьева, под ред. Э.Л. Бурштейна (Мир, М., 1965), 703 с. https://djvu.online/file/AsEuNqMRTseeZ
- [3] Р. Фейнман, Р. Лейтон, М. Сэндс. Фейнмановские лекции по физике Электричество и магнетизм (Мир, М., 1965), т. 5.
- [4] Р. Фейнман, Р. Лейтон, М. Сэндс. Фейнмановские лекции по физике Электродинамика (Мир, М., 1966), т. б.
- [5] Л.Д. Ландау, Е.М. Лифшиц. *Теория поля. Теоретическая* физика (Физматлит, М., 2003), т. 2.
- [6] И.В. Савельев. *Курс общей физики. Электричество* (Наука, М., 1970), т. 2.
- [7] Л.А. Алексеева, С.С. Саутбеков. Дифференциальные уравнения, **35** (1), 125 (1999).
- [8] Л.А. Алексеева. Дифференциальные уравнения, 39 (6), 769, (2003).
- [9] L.A. Alexeyeva, I.A. Kanymgaziyeva, S.S. Sautbekov. J. Electromagnetic Waves and Applications, 1–14 (2014). http://dx.doi.org/10.1080/09205071.2014.951077
- [10] L.A. Alexeyeva, S.S. Sautbekov. Comp. Mathem. Mathem. Phys., 40 (4), 619 (2000).
- [11] L.A Alexeyeva. Comp. Mathem. Mathem. Phys., **42** (1), 75 (2002).
- [12] S. Sautbekov. J. Magn. Magn. Mater., 484 (15), 403 (2019). https://doi.org/10.1016/j.jmmm.2019.04.012
- [13] S.S. Sautbekov, K.N. Baysalova, Y.K. Sirenko. AIP Advances, 11, 105012 (2021).
- [14] J. Heras. Phys. Lett., A, 237 (6), 343 (1998). https://doi.org/10.1016/s0375-9601(98)00734-8
- [15] J.A. Heras. Am. J. Phys., 62 (12), 1109 (1994). https://doi.org/10.1119/1.17759

- [16] J.A. Heras. Phys. Lett. A, **249** (1), 1 (1998). https://doi.org/10.1016/S0375-9601(98)00712-9
- [17] O. Dushek, S.V. Kuzmin. Eur. J. Phys., **25** (3), (2004). DOI: 10.1088/0143-0807/25/3/001
- [18] V. Hnizdo. Eur. J. Phys., **25**, 351 (2004). DOI: 10.1088/0143-0807/25/3/002
- [19] В.С. Владимиров. Уравнения математической физики (Наука, М., 1981)