Влияние диффузии Те из подложки n-GaSb: Те на свойства твердых растворов GaInAsSb, выращенных в присутствии свинца

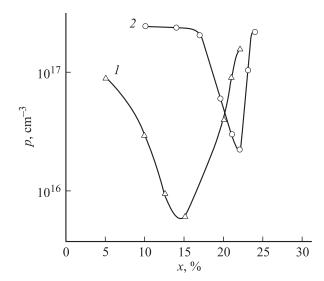
© Т.И. Воронина, Т.С. Лагунова, А.Ф. Липаев, Е.В. Куницына, Я.А. Пархоменко[¶], М.А. Сиповская, Ю.П. Яковлев

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Получена 3 августа 2004 г. Принята к печати 19 августа 2004 г.)

Исследовано влияние диффузии Те из подложки n-GaSb: Те на транспортные и фотоэлектрические свойства твердых растворов GaInAsSb, выращенных из содержащих свинец растворов-расплавов. Показано, что наибольшее влияние диффузии Те из подложки наблюдается в эпитаксиальных слоях твердых растворов толщиной 1-2 мкм. В данных образцах при освещении их светом в области собственного поглощения возникает большой сигнал фотоэдс.

1. Введение


В работах [1,2] было показано, что при выращивании нелегированных эпитаксиальных слоев (толщиной до 5 мкм) твердых растворов $Ga_{1-x}In_xAs_ySb_{1-y}$ (0 < x < 0.22, 0 < y < 0.18) на подложках *n*-GaSb: Te в процессе роста происходит диффузия теллура из подложки. При этом теллур действует двояко: с одной стороны, создает мелкие донорные уровни, а с другой — наряду с присущими твердому раствору GaInAsSb акцепторными уровнями с энергией активации $E_{A1} = 0.035$ эВ и $E_{A2} = 0.07$ эВ, обусловленными природными дефектами, создает новый акцепторный уровень с энергией активации $E_{A3} = 0.1$ эВ, связанный с образованием структурного дефекта $V_{\rm Ga}$ Те. Было также установлено, что примесь Те, диффундирующего из подложки, сильно уменьшает подвижность дырок в твердом растворе, приводит к возрастанию поперечного ($\mathbf{H} \perp \mathbf{j}$, ј — вектор плотности тока в образце) магнитосопротивления $\left(\frac{\Delta \rho}{\rho}\right)^{\perp}$ (при этом коэффициент магнитосопротивления $B_r = \left(\frac{\Delta \rho}{a}\right)^{\perp} / \left(\frac{\mu H}{c}\right)^2 > 1$), возникновению продольного (**H** \parallel **j**) магнитосопротивления $\left(\frac{\Delta \rho}{\rho}\right)^{\parallel}$, к появлению отрицательной фотопроводимости и долговременной релаксации фотопроводимости. Эти явления могут быть объяснены существованием в материале неоднородно распределенных заряженных центров, возникающих в результате диффузии теллура и приводящих к образованию кластерных скоплений. Таким образом, теллур, диффундирующий из подложки, изменяет свойства твердых растворов GaInAsSb.

2. Результаты исследований

Исследование свойств выращенных **без использования свинца** твердых растворов $Ga_{1-x}In_xAs_ySb_{1-y}$ в зависимости от состава показало [1,2], что при содержании индия x=0.15 в таких твердых растворах наблюдается

минимум концентрации дырок (рис. 1, кривая I), обусловленный, по-видимому, возрастанием степени компенсации из-за уменьшения концентрации комплекса дефектов $V_{\rm Ga}{\rm Ga}_{\rm Sb}$ с энергиями активации E_{A1} и E_{A2} . Именно в таких твердых растворах с x=0.15 влияние диффузии Те из подложки наиболее заметно.

В таких образцах при освещении их светом кроме фотопроводимости возникает большой сигнал фотоэдс (ФЭДС). Для увеличения чувствительности при измерении фотосигналов спектральные исследования проводились с использованием модулированного освещения образца. Возникающий при этом переменный сигнал регистрировался селективным усилителем и синхронным детектором на входе. Изучение ФЭДС проводилось для двух типов образцов: твердые растворы p-Ga_{1-x}In_xAs_ySb_{1-y} (x = 0.15), которые выращивались на подложках n-GaSb: Те с дополнительным изолирующим подслоем p-GaSb и без него. Спектральные зависимости ФЭДС, измеренные при T = 80 и 300 K, представлены на рис. 2. Длинноволновая граница кривых соответ-

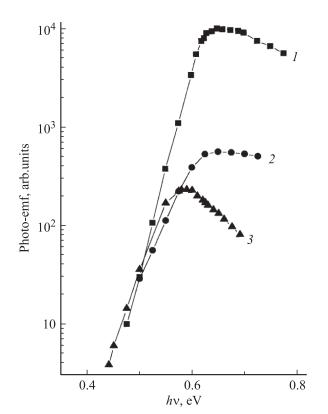
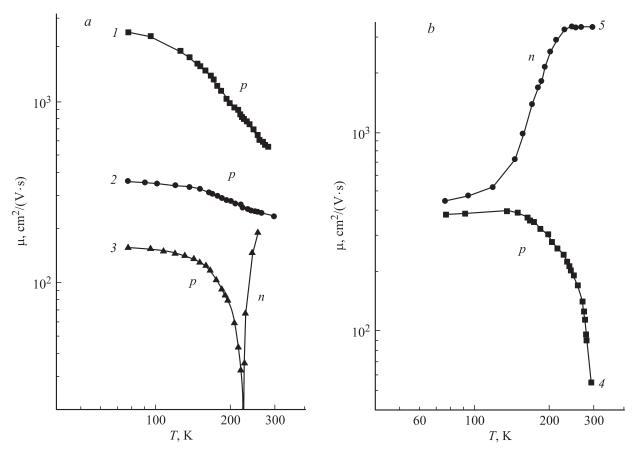


Рис. 1. Зависимости концентрации дырок от содержания индия (x) в твердых растворах $Ga_{1-x}In_xAs_ySb_{1-y}$: I — без нейтрального растворителя Pb, 2 — в присутствии Pb.

[¶] E-mail: parkhomen@mail.ioffe.ru

	Наличие подслоя	r	Тол- щина, мкм	300 K				77 K							ФЭДС,	
				Тип прово- димости	σ , $Om^{-1}cm^{-1}$	<i>R</i> , см ³ /Кл	μ_{300} , $cm^2/(B\cdot c)$	Тип прово- димости	σ , $Om^{-1}cm^{-1}$	<i>R</i> , см ³ /Кл	μ_{77} , $cm^2/(B \cdot c)$	B_r	<i>Е_{Аі}</i> , эВ	$K = \frac{N_D}{N_A}$	усл. 300 K	
1	Есть	0.18	1.7	p	120	4.68	562	p	115	20.8	2400	1.0	0.023 0.07	0.1	3	5
2	Нет	0.18	5.0	p	46	5.6	233	p	14	26	366	5.2	0.02 0.06 0.11	0.61	11	25
3	Нет	0.18	2.0	n	_	_	2940	p	11	14.4	157	11.8	0.023 0.067	0.65	14	307
4	Есть	0.215	1.7	p	51	1.08	55	p	2.8	137.5	385		0.03 0.07	0.84	8	26
5	Нет	0.215	1.7	n	_	_	3330	n	_	_	450	_	_	_	11	360

ствует краю собственного поглощения. Ширина запрещенной зоны материала составляет $E_g=0.606$ эВ при T=80 К. Появление небольшой ФЭДС при T=80 К в образце с изолирующим подслоем ($p_{77}=6\cdot 10^{15}$ см $^{-3}$, $\mu_{77}=1950$ см $^2/({\rm B\cdot c})$ — рис. 2, кривая 2) связано с неоднородным распределением компенсирующих примесей и структурных дефектов в твердом растворе с x=0.15. Выращивание твердых растворов без изолирующего подслоя из-за диффузии Те из подложки


Рис. 2. Спектральные зависимости фотоэдс в твердых растворах $Ga_{1-x}In_xAs_ySb_{1-y}$ (x=0.15), выращенных без использования свинца: I, I, I — без изолирующего подслоя, I — с изолирующим подслоем. I, I — I = 80 K; I — I = 300 K.

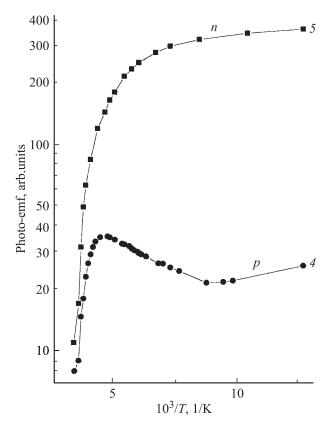
в слой приводит к образованию структурного дефекта V_{Ga} Те. Данный дефект представляет собой неоднородно распределенные заряженные центры, образующие кластерные скопления, что и создает значительные потенциальные барьеры в объеме полупроводника. В образце без дополнительного изолирующего подслоя $(p_{77} = 3.3 \cdot 10^{16} \,\mathrm{cm}^{-3}, \ \mu_{77} = 377 \,\mathrm{cm}^2/(\mathrm{B} \cdot \mathrm{c})$ — puc. 2, кривая 1) — там, где была возможна диффузия Те сигнал ФЭДС возрастал более чем на порядок. Это можно объяснить существованием в материале значительных энергетических барьеров, разделяющих избыточные носители заряда полем. Следует отметить, что сигнал ФЭДС с ростом температуры падает на порядок (рис. 2, кривые 1 и 3) в результате уменьшения объема и высоты потенциальных барьеров, а также усиления термической ионизации центров.

Далее рассмотрим результаты исследований влияния Те, продиффундировавшего из подложки *n*-GaSb: Те, на транспортные и фотоэлектрические свойства эпитаксиальных слоев твердых растворов GaInAsSb, выращенных из **содержащих свинец** растворов-расплавов, и приведем сравнение со свойствами твердых растворов, выращенных на подложке *n*-GaSb: Те без использования свинца.

Свинец играет важную роль в получении твердых растворов $Ga_{1-x}In_xAs_ySb_{1-y}$ в области составов с x>0.22, так как позволяет получать твердые растворы с высоким содержанием индия в твердой фазе x=0.22-0.27 [3]. Такие твердые растворы имеют ширину запрещенной зоны $E_g=0.49-0.52$ эВ $(T=300~{\rm K})$ и могут быть использованы для создания оптоэлектронных приборов в области длин волн $\lambda=2.3-2.7~{\rm MKM}$.

В работе [3] нами было показано, что в твердых растворах $Ga_{1-x}In_xAs_ySb_{1-y}$, выращенных из свинцовых растворов-расплавов на подложках n-GaSb: Те с дополнительным изолирующим подслоем p-GaSb (подслой с параметрами $p=6\cdot 10^{14}~{\rm cm}^{-3}$ при $T=77~{\rm K}$, $\rho\gtrsim 400~{\rm CM}\cdot{\rm CM}$ был получен из свинцового растворарасплава), минимум концентрации дырок наблюдается

Рис. 3. Температурные зависимости подвижности носителей тока для твердых растворов $Ga_{1-x}In_xAs_ySb_{1-y}$, полученных в присутствии свинца: a-x=0.18, b-x=0.215. Номера кривых соответствуют номерам образцов в таблице.


при содержании In x=0.22 (рис. 1, кривая 2). Принимая во внимание подобие зависимостей I и 2 на этом рисунке, мы ожидаем, что при выращивании твердых растворов $\mathrm{Ga}_{1-x}\mathrm{In}_x\mathrm{As}_y\mathrm{Sb}_{1-y}$ из свинцовых раствороврасплавов Те, диффундирующий из подложки, будет оказывать наибольшее влияние на свойства материала в области составов с $x\approx0.22$.

Рассмотрим, как влияет Те из подложки на свойства твердых растворов $\mathrm{Ga}_{1-x}\mathrm{In}_x\mathrm{As}_y\mathrm{Sb}_{1-y}$ с x=0.18 и 0.215, выращенных с использованием свинца. Были исследованы две группы образцов: эпитаксиальные слои твердых растворов, выращенные на дополнительном изолирующем подслое (образцы 1 и 4, см. таблицу), и слои, выращенные непосредственно на подложке n-GaSb: Те (образцы 2, 3, 5). Измерялись электропроводность (σ) , коэффициент Холла (R), подвижность (μ) , поперечное магнитосопротивление $\left(\frac{\Delta\rho}{\rho}\right)^{\perp}$ и Φ ЭДС при температурах T=77-300 К. Результаты измерений приведены в таблице и на рис. 3 и 4.

Как видно из таблицы, для твердого раствора с x=0.18 в образце 1 имеет место высокая подвижность дырок $\mu_{77}=2400\,\mathrm{cm^2/(B\cdot c)}$, обусловленная рассеянием на ионах примеси и колебаниях решетки. Температурная зависимость коэффициента Холла позволяет определить в данном материале уровни с энергиями активации

 $E_{A1}=0.023$ эВ и $E_{A2}=0.07$ эВ. Магнитосопротивление в образце 1 невелико: $B_r=\left(\frac{\Delta\rho}{\rho}\right)^\perp/\left(\frac{\mu H}{c}\right)^2=1$; продольное магнитосопротивление отсутствует; ФЭДС практически отсутствует.

Совсем другая картина наблюдается для того же твердого раствора с содержанием индия x = 0.18, но выращенного без дополнительного подслоя, когда теллур диффундирует из подложки в твердый раствор. Если толщина образца 5 мкм (образец 2), то диффузия теллура происходит не на всю толщину слоя. При этом образец сохраняет р-тип проводимости, но значения подвижности меньше, чем в образце 1 как при 77, так и при 300 K (рис. 3, a, ср. кривые 2 и 1). Поперечное магнитосопротивление $\left(\frac{\Delta \rho}{\rho}\right)^{\perp}$ возрастает, при этом $B_r = \left(\frac{\Delta \rho}{\rho}\right)^{\perp}/\left(\frac{\mu H}{c}\right)^2$ достигает 5 и появляется ФЭДС. Все эти эффекты указывают на существование крупных неоднородностей, возникших из-за проникновения теллура из подложки в эпитаксиальный слой. Самые существенные изменения свойств твердого раствора $Ga_{1-x}In_xAs_ySb_{1-y}$ (x = 0.18, дополнительный подслой отсутствует) наблюдаются, когда толщина слоя составляет ~ 2 мкм (образец 3). В данном случае Те проникает на всю глубину слоя, создавая крупные кластерные скопления. Из-за высокой степени компенсации тип проводимости

Рис. 4. Температурные зависимости фотоэдс для твердого раствора $Ga_{1-x}In_xAs_ySb_{1-y}$ (x=0.215): 4 — с изолирующим подслоем; 5 — без изолирующего подслоя. Номера кривых соответствуют номерам образцов в таблице.

изменяется с дырочного на электронный при $T > 200 \,\mathrm{K}$. В таких образцах наблюдается очень большая ФЭДС, достигающая 307 усл.ед. при $T = 77 \,\mathrm{K}$ (см. таблицу). Данная величина намного больше, чем в таких же образцах, выращенных с дополнительным подслоем.

Рассмотрим твердые растворы $Ga_{1-x}In_xAs_ySb_{1-y}$ с содержанием индия x = 0.215 (толщина слоев ~ 1.7 мкм), выращенные из свинцовых растворов-расплавов как на дополнительном изолирующем подслое (образец 4), так и непосредственно на подложке n-GaSb:Те (образец 5). В образце 4 (рис. 3, b, кривая 4) тип проводимости – дырочный, однако подвижность значительно ниже, чем в образце 1 с x = 0.18, выращенном на дополнительном подслое (рис. 3, a, кривая 1). Это связано с тем, что при $x \approx 0.22$ наблюдается максимум степени компенсации, что приводит к сильной неоднородности материала (рис. 1, кривая 2). Из температурной зависимости коэффициента Холла можно определить энергии активации $E_{A1} = 0.03$ эВ и $E_{A2} = 0.07$ эВ. ФЭДС в образце 4 составляла при $T = 77 \,\mathrm{K} \, 26 \,\mathrm{усл.ед.}$, а при $T = 300 \,\mathrm{K} \,$ — 8 усл.ед.

Для твердых растворов GaInAsSb с содержанием индия x = 0.215, выращенных непосредственно на подложке n-GaSb:Те (образец 5), тип проводимости — электронный при 77 < T < 300 К. Подвижность при

 $T=77\,\mathrm{K}$ равна $\mu_{77}=450\,\mathrm{cm}^2/(\mathrm{B\cdot c})$, а при температурах выше 150 K наблюдался резкий рост холловской подвижности из-за перехода к собственной проводимости (рис. 3, b, кривая 5). ФЭДС при $T<150\,\mathrm{K}$ составляла 360 усл.ед. (рис. 4, кривая 5). При повышении температуры ФЭДС медленно уменьшалась, а затем резко падала и при $T=300\,\mathrm{K}$ составляла 11 усл.ед. Такой ход температурной зависимости объясняется наличием в образце потенциальных барьеров, которые понижаются с повышением температуры, а также из-за усиления термической ионизации центров.

Важно отметить, что такие большие значения Φ ЭДС наблюдались только в образцах, выращенных без дополнительного подслоя (рис. 4, кривая 5). В образцах, выращенных с дополнительным подслоем, Φ ЭДС была на порядок ниже (рис. 4, кривая 4).

3. Заключение

Исследовано влияние диффузии теллура из подложки n-GaSb:Те на электрические и фотоэлектрические свойства твердых растворов $Ga_{1-x}In_xAs_ySb_{1-y}$, выращенных как без использования свинца (x=0.15), так и из растворов-расплавов, содержащих свинец (x=0.18) и (x=0.18) и (x=0.18)

Получены следующие результаты.

- 1. Наибольшее влияние диффузии теллура из подложки наблюдается в твердых растворах $Ga_{1-x}In_xAs_ySb_{1-y}$ с содержанием индия x=0.15, изготовленных без использования свинца, и с x=0.215, полученных в присутствии свинца, обладающих низкими концентрацией и подвижностью дырок.
- 2. Диффузия теллура из подложки n-GaSb: Те в твердые растворы $\mathrm{Ga}_{1-x}\mathrm{In}_x\mathrm{As}_y\mathrm{Sb}_{1-y}$, выращенные без дополнительного подслоя, приводит к возникновению большой Φ ЭДС при освещении образцов светом в области собственного поглощения. Наибольший сигнал Φ ЭДС наблюдался при $T=77\,\mathrm{K}$ в тонких образцах с x=0.15, выращенных без использования свинца, и с x=0.215 в присутствии свинца.

Наблюдаемый эффект возникновения ФЭДС требует подробного исследования, так как может представлять интерес для изготовления высокочувствительных фотоэлементов.

Список литературы

- [1] А.Н. Баранов, А.Н. Дахно, Б.Е. Джуртанов, Т.С. Лагунова, М.А. Сиповская, Ю.П. Яковлев. ФТП, **24**, 98 (1990).
- [2] А.Н. Баранов, Т.И. Воронина, А.Н. Дахно, Б.Е. Джуртанов, Т.С. Лагунова, М.А. Сиповская, Ю.П. Яковлев. ФТП, 24, 1072 (1990).
- [3] Т.И. Воронина, Т.С. Лагунова, Е.В. Куницына, Я.А. Пархоменко, Д.А. Васюков, Ю.П. Яковлев. ФТП, 35, 941 (2001).

Редактор Т.А. Полянская

Influence of the tellurium diffusion from a n-GaSb: Te substrate on properties of GaInAsSb solid solutions grown from lead-containing melts

T.I. Voronina, T.S. Lagunova, A.F. Lipaev, E.V. Kunitsyna, Ya.A. Parkhomenko, M.A. Sipovskaya, Yu.P. Yakovlev

Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia

Abstract The influence of tellurium diffusion from a n-GaSb:Te substrate on transport and photoelectric properties of GaInAsSb solid solutions grown from lead-containing melts has been investigated for the first time. It is shown, that the strongest influence of the tellurium diffusion from the substrate is observed in epitaxial layers of $1-2\mu m$ of thickness solid solutions having both low hole concentration and low hole mobility. In these samples a high photo-emf signal has been observed under light illumination in the region of the bandgap absorption.