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Monte Carlo simulation of the photon drag effect

in black phosphorene
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Using Monte Carlo simulation, the photon drag effect in black phosphorene is numerically investigated in the

approximation of a constant relaxation time. The influence of the anisotropy of the energy spectrum on the

manifestation of the effect is shown. According to the calculation data, inelastic electron scattering plays a decisive

role in the occurrence of the drag current.
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Black phosphorene, experimentally obtained in 2014 has

an anisotropic energy spectrum [1]:

ε =
√

ν2
F p2

x + (1 + up2
y)

2. (1)

Here 1 — half-width of the band gap; depending on the

method of preparing the phosphorene sample this parameter

takes the values 1 = 0.15−1.0 eV [2]. The parameters νF

and u are associated with the components of the effective

mass tensor: νF =
√

1/mx , u = 1/(2my ). According to

calculations [2], for black phosphorene the effective mass

tensor is

m =

(

1.2854 0

0 0.1255

)

mc ,

me — free electron mass. Black phosphorene is a semicon-

ductorwith direct band and belongs to the so-called Dirac-

like materials: along one direction (axis OX) the movement

of charge carriers is similar to the movement in graphene,

the dependence of energy on the corresponding momentum

component is linear, and the dependence of energy on the

perpendicular component of the quasi-momentum (in the

direction of the axis OY ) is quadratic. It is interesting to

study the manifestations of the anisotropy of the energy

spectrum of the material under consideration in kinetic

effects, one of which is the effect of dragging current carriers

by photons [3,4]. This effect, caused by the transfer of

photon momentum to the electronic subsystem, is explained

within the framework of the semiclassical approach as a

result of action of the Lorentz force that occurs when

an electron moves in the alternating electric and magnetic

fields of the wave. In the paper [5] the infrared and

terahertz spectra of photocurrents in topological insulators

are experimentally studied, and it is shown that the cause

of photocurrents is the linear photogalvanic effect. The

paper [6] relates to the experimental study of the circular

and linear photovoltaic effect in the so-called vertically

grown graphene based on the data analysis of terahertz

emission spectroscopy. The paper [7] relates to the study

of the mechanical stress influence on the amplitude of

the photovoltaic effect in two-dimensional photodetector

nickel−phosphorene−nickel; a strong dependence of the

photocurrent value on the asymmetry of the sample is

reported. The paper [8] reports the creation of a polarimeter

built on the basis of stacked several samples of two-

dimensional materials, one of which is black phospho-

rene. The polarimeter demonstrates reliable detection of

light with linear and elliptical polarization due to the

manifestation of the linear and circular photovoltaic effect

in the phosphorene layer. In this paper an attempt is

made to study the linear photovoltaic effect in the quasi-

classical approximation based on direct modeling using the

Monte Carlo method. In comparison with the quantum

mechanical consideration used, for example, in [7], the

quasi-classical approach will allow, in principle, to con-

sider large amplitudes of radiation incident on sample,

as well as to study the influence of various mechanisms

of charge carrier scattering on inhomogeneities of the

crystal lattice.

Let us consider a situation where an electromagnetic

wave propagates along the surface of black phosphorene,

so that the magnetic field strength vector H = H0 cosωt is

perpendicular to the sample plane, and the electric field

strength vector E = E0 cosωt is directed arbitrarily in the

sample plane (Figure 1).

The classical equations of electron motion take the form

d px

dt
= eE0 sinα cos t +

e
c
νy H0 cosωt,

d py

dt
= eE0 cosα cos t −

e
c
νx H0 cosωt. (2)
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Here α — the angle between the positive direction of the

axis OY and the vector E,

νx = ν2
F px

/(
√

ν2
F p2

x + (1 + up2
y)

2

)

,

νy = 2upy(1 + up2
y)
/
√

ν2
F p2

x + (1 + up2
y)

2

— components of the electron velocity vector.

The quasi-classical kinetic Boltzmann equation in the

general case has the form

∂ f
∂t

+ F
∂ f
∂p

+ v
∂ f
∂r

= I( f ), (3)

where f (p) — distribution function, F — resultant force,

v — speed, I( f ) — collision integral. In the case of a

non-degenerate electron gas, the collision integral takes the

form

I( f ) = −

∫

[

W (p, p′) f (p, t) −W (p′, p) f (p′, t)
]

dp′, (4)

where W (p, p′) — the probability of electron scattering per

unit time from a state with momentum p to state with

momentum p′, f (p) — distribution function.

The numerical solution of the integro-differential Boltz-

mann equation (3) is associated with great mathematical

difficulties and is difficult for paralleling. One of the

frequently used approximations is the use of the simplest

model collision integrals, for example, in Bhatnagar–Gross–
Krook form [9]:

I( f ) = −

(

f (p, t) − f 0(p)
)

/τ , (5)

where f 0(p) — equilibrium distribution function, τ —
relaxation time. However, even in this case it is necessary

to solve the partial differential equation numerically using

various grid methods.

Due to the nonlinearity of the equations of motion (2),
it is convenient to use the Monte Carlo method to solve

the kinetic equation (see, for example, [10–12]). The

idea of the Monte Carlo method is to assume that in the

intervals between collisions the electron moves according to

the equations of motion (3), and the moment of collision

is determined based on the probabilities of charge carrier

scattering on acoustic and optical phonons, charged and

uncharged impurities [11]. The Monte Carlo method in the

specified formulation is successfully used to calculate kinetic

coefficients, and when considering the integral term of

collisions in the kinetic equation, but often for a qualitative

consideration of transfer phenomena it is sufficient to use

the constant relaxation time approximation. In this case, it is

necessary to determine such a form of the function W (p, p′)
that expression (4) turns into the Bhatnagar–Gross–Krook
collision integral (5). By direct calculation it is easy to make

sure that the required form is given by the expression

W (p, p′) = f 0(p
′)/τ . (6)
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Figure 1. Configuration of electromagnetic fields applied to the

sample.
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Figure 2. Current density along the axis OY vs. angle α between

the wave polarization plane and the axis OY .

Indeed, after substituting (6) into (4), taking into account

the normalization

∫

f (p, t)dp = 1,

∫

f 0(p)dp = 1 (7)

the collision integral (4) takes the form (5).

Simulation showed that a necessary condition for the drag

current occurrence is the inelasticity of electron scattering

on inhomogeneities of the crystal lattice. Generally speak-

ing, the approximation of the constant relaxation time is

derived for elastic scattering; however, with some stipula-

tions, the average relaxation time can also be introduced

for the processes of inelastic electron scattering on optical

phonons (see, for example, [13]). In the paper [11] devoted

to the study of the direct current occurrence in graphene

perpendicular to the pulling field under conditions of normal

incidence of elliptically polarized wave on the sample, the

need to take into account the inelasticity of current carrier

scattering for effect occurrence was also noted. Figure 2

shows the dependence of the drag current density along

the axis OY on the angle α (Figure 1) in relative units.

In the case of a material with parabolic energy spectrum,

this dependence shall be sinusoidal, and in the case under

study it is clear that the drag current weakly depends on

the angle between the wave polarization plane and the axis

OY , which is due to the large difference in components of

the effective masses tensor and non-additivity of the energy

spectrum (1).
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