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Impurity levels of electrons in 2D structures formed
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The bound states at the impurity center arising in a two-dimensional electron gas in a strong transverse magnetic

field, taking into account the influence of the sample boundaries, are theoretically investigated. In the edge states,

one component of the electron momentum is preserved, i. e. the motion becomes effectively one-dimensional.

Using the example of a band of finite width, an equation is obtained that determines the energy of the impurity

state and is a generalization of the known result for a shallow potential well in a one-dimensional system in the

case of an arbitrary law of dispersion. The energies of the impurity levels belonging to the zero magnetic subzone

are numerically found.
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1. Introduction

In a bulk sample a strong magnetic field effectively

”
one-dimensionalizes“ the particle motion along the field

direction. Since in the one-dimensional case any symmetric

potential well has at least one bound level, the magnetic

field creates a bound state even in a shallow and narrow

attractive potential (Bychkov, 1960, see [1]).

In infinite two-dimensional system placed in a magnetic

field normal to it, the electron spectrum is discrete with

a degeneracy multiplicity proportional to the area of the

system, and the wave functions, depending on the choice

of calibration of the vector potential, can describe either

state localized in the plane with a conserved moment

projection onto the normal to the plane, or (Landau
gauge) states delocalized along one axis (plane wave with

momentum p) and localized in the perpendicular direction.

The localization point X(oscillator suspension point) is

determined by the value p: X = pl2, where l — magnetic

length.

The presence of an edge (boundary) of the sample

violates the moment conservation,
”
skipping orbits“ arise,

and only one type of states remains, it is described in

the Landau gauge — magnetic edge states (MES). The
degeneracy of Landau levels is removed, they turn into

subbands En(p) (or En(X), n = 0, 1, 2 . . .), i. e. the

spectrum becomes similar to the spectrum of a quantum

well, there is only free motion along one axis — along the

edge of the sample. Thus, in a strong magnetic field, when

transitions with change n are suppressed, the problem of

the impurity center spectrum becomes similar to that in a

one-dimensional system. Note that, in contrast to Bychkov’s

case, here the infinite motion occurs across the magnetic

field, and the localization point of the wave function of the

motion transverse to the edge depends on the momentum

of this motion. Therefore, the energy of the bound state

on the impurity depends significantly on the distance of the

impurity center to the sample boundary. This paper relates

to finding the energy of the impurity state in 2D system

taking into account the existence of the MES.

2. Equivalent Hamiltonian method

We will apply an approach similar to the Vanier method

in the theory of impurity states of 3D semiconductors.

Let’s consider a strip of 2D electron gas with width L
(−L/2 ≤ x ≤ L/2), the edges of which specify the di-

rection Oy . The boundary conditions correspond to

impenetrable
”
walls“ i. e. the wave function 9(x , y) goes

to zero x = ±L/2. In the Landau gauge 9 has the form

9np =
ei py

√
2π

φn(x − pl2),

where n = 0, 1, 2 . . ., −∞ < p < ∞, φn normalized to

one in the interval [−L/2, L/2], and φ — to δ-function of

momentum p along axis y (hereinafter ~ = 1). The trans-

verse motion function φn is expressed through degenerate

hypergeometric functions F :

φn = ADq

(

x − X

l/
√
2

)

+ BDq

(

−x − X

l/
√
2

)

, (1)
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Dq(Z) =
2q/2Ŵ

(

1
2

)

Ŵ
(

1−q
2

) e−z 2/4F

(

−q
2
,
1

2
,

z 2

2

)

− 2q/2
√
2π

Ŵ
(

− q
2

) z e−z 2/4F

(

1− q
2

,
3

2
,

z 2

2

)

,

q =
E
ω

− 1

2
.

Index n arises when solving the equation to eigen energies

En(p) resulting from the boundary conditions

Dq

(

L/2−X
l/
√
2

)

Dq

(

− L/2+X
l/
√
2

) −
Dq

(

L/2−X
l/
√
2

)

Dq

(

L/2+X
l/
√
2

) = 0. (2)

Let us introduce the Fourier transform 9np with respect to

the variable p:

9np =
1√
2π

∫

ei puϕn(u)du. (3)

Accordingly, we have

ϕn(u; x , y) =
1

2π

∫

e−i pu 9np(x , y)d p.

Then the functions ϕ are normalized by the condition

〈

ϕ∗
m(ν)ϕ∗

n (u)
〉

= δnmδ(u − ν).

The action of the undisturbed, i. e. without impurity,

Hamiltonian Ĥ0 to the function ϕn(u) leads to the result

Ĥ0ϕn(u) =

∫

En(u − ν)ϕn(ν)dν, (4)

where En(w) is the Fourier image of the energy En(p):

En(w) =
1

2π

∫

e−i pwEn(p)d p. (5)

In the presence of the impurity center, the solution is sought

in the form of a series in n and an integral in u of the

functions ϕn(u) with coefficients f n(u):

8(x , y) =
∑

∫

f n(u)ϕn(u; x , y)du, (6)

and the problem comes down to obtaining and solving

the equation for the envelope f n(u). The sought-for

eigenfunction of the total Hamiltonian Ĥ0 + U(x , y), where

U — potential of the impurity center, satisfies the equation

(Ĥ0 + U)8n = εn8n, (7)

where εn — the energy of the state localized on the

impurity.

After substituting expansion (6) into equation (7), multi-

plying both sides by ϕ∗
m(w) and integrating over dxdy we

obtain

〈ϕ∗
m(w)Ĥ08〉 =

∫

f m(u)Em(u − w)du,

which after introducing the shift operator on u′ in the form

exp(u′∂/∂w) gives

〈ϕ∗
m(w)Ĥ08〉 = Em(−i∂/∂w) f m(w) (8)

Thus, for the envelope f m(w) we obtain the equation

Em(−i∂/∂w) f m(w)

+
∑

n

∫

ϕ∗
m(w) f n(u)ϕn(u)U(x , y)dxdy = ε f m(w).

3. Impurity states

Next, we introduce the assumptions usual in the Vanier

technique, they relate the nature of the impurity potential.

The function U(x , y) will be assumed smooth, and the

magnetic field is strong enough, so the characteristic size

of the potential a (in the case of a Coulomb center the

effective Bohr radius a∗
B) is much larger than the magnetic

length: a ≪ l . The strong field also means that the potential

amplitude U0 (Rydberg energy in the Coulomb case) is

much less than the Landau quantum: U0 = ωc . Recall that

the characteristic size 9np(x) by x , as well as the size ϕn(u)
by u is about l, t.e. the functions under the integral in the

second term in (9) have narrow maxima compared to the

size U(x , y). For example, for an infinite plane at the zero

Landau level we have

90p : exp
[

i py − (x − X)2/2l2
]

,

ϕ0(u) : exp
[

(y − u)2/2l2 + ix(y − u)/l2
]

.

Therefore, the maximum contribution from the matrix

element Umn occurs at n = m, y ≈ u ≈ w, x ≈ 0 (more

precisely, we are talking about the areas |y − w| : l,
|x(y − w)| : l2; outside these areas the exponentials decay

quickly or oscillate rapidly).
It follows that in (9) we shall substitute U(x = 0, y = w)

and remove this value from the integral. The point x = 0 is

determined by writing the wave function in the problem

without admixture. For a band with identical (zero)
boundary conditions at the edges this point is the middle

of the band. If the maximum (minimum) of the impurity

potential is located at x = s , y = 0 (y can always be

counted from the impurity), then the value removed from

the integral is U(x = s, y = w). Thus, the problem was

reduced to a one-dimensional one, but with an arbitrary law

of electron dispersion

En(−i∂/∂w) f n(w) + U(s, w) f n(w) = εn f n(w). (9)

Localized (decreasing at w → ±∞) solutions of equa-

tion (9) determine the energy values of the impurity state

εn associated with the n-th Landau subband. If the impurity

potential is axially symmetric, i. e. U = U(ρ), ρ2 = x2 + y2,

then in (9):

U(s, w) = U(
√

s2 + w2).
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Next, we carry out the same calculations as in [1], §45.
Inside the potential well U(ρ)we neglect ε, considering the

level ε shallow compared to the depth of the well (ε = |U |)
and assume f n = 1, and outside the potential radius, when

|w| ≪ a , we look for the solution in the form f n(w):
e−γn|w|. Inside the well we integrate over w :

∫

Ên(−i∂/∂w) f n(w)dw = −
∞
∫

−∞

U(w)dw ≡ −λ (10)

The operator Ên(−i∂/∂w), acting on e−γnw gives En(iγ).
Expanding Ên(−i∂/∂w) into a power series (−i∂/∂w), we
see that integration over w reduces the power of each term

in the series by one. Summing the series again after this,

we get

∫

Ên(−i∂/∂w)e−γwdw = −E(iγ)/γ.

Due to the parity of e−γn|w|, the equation for εn takes the

form ε = E(iγn), where γn is the root of the equation

2En(iγn)

γn
=

∞
∫

−∞

U(w)dw, (11)

i. e. εn = λγn/2.

Equation (11), together with the definition εn = E(iγn)
generalizes the well-known formula for the shallow level in

one-dimensional potential well ([1], §45) to the case of an

arbitrary electron dispersion law.

For the standard dispersion law E = p2/2m from (11)
we obtain the well-known result [1]: εn = −mλ2/2, i. e. the

binding energy of the particle on the impurity is quadrati-

cally small compared to the depth of the potential well.

4. Numerical modeling of the magnetic
subband case

Landau’s subband dispersion law En(p) cannot be ex-

pressed in elementary or known special functions. It is

specified as an implicit parameter function X/l = pl, which

is the subscript q in equation (2). Graphs En(p) for the

two lower subbands are shown in Figure 1, a. Their form

is quite understandable and was repeatedly cited in the

literature (e. g. [2,3,4]). The form of these functions for

a purely imaginary argument, appearing in equation (11)
for the energy of the impurity state, turned out to be quite

unexpected — see Figure 1, b. It can be seen that for γl
over a certain threshold value, there are no real roots of the

dispersion equation (2). We checked that the left side of

equation (2) as a function q crosses the absciss axis many

times. The minimum lying between adjacent intersection

points rises with parameter γl increasing, two intersection

points merge into one tangent point, which corresponds to

the merger of the solid and dotted curves in Figure 1, b.

With further γl increasing the minimum becomes a positive
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Figure 1. a) Two lower Landau levels (solid line for n = 0,

dots for n = 1) in band L = 4l wide. Energy is counted from

E0(X = 0). b) The same functions with an imaginary argument.

value, and this pair of real roots of eq. (2) disappears.

The following roots lie at significantly higher values q and

correspond to higher subbands.

The minimum for positive gamma on the solid curve in

Figure 1, b means that equation (11) has two roots. The

results of their numerical calculation are shown in Figure 2.

At some value of the dimensionless parameter mlλ the roots

merge in accordance with what was said above about the

behavior of the laws of subband dispersion for imaginary

argument. Consequently, there are two localized states on a

short-range impurity associated with the zero subband.

In the case of Coulomb center at the point x = s , y = 0,

the potential U is equal to −e2/
√

s2 + w2. The integral
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Figure 2. Solid lines show the bond energies of two localized

states. The dotted line corresponds to the quadratic dispersion

law: ε = −mλ2/2.

in (10) diverges and is
”
cut off“ at the top at w : aB , and

at the bottom at w exceeding the larger of the quantities s
and l . Then with logarithmic precision

λ = 2 ln

[

aB +
√

a2
B + s2

max(s, l)

]

,

and at s = lλ depends on the magnetic field.

So, the paper shows that the energy of impurity levels

associated with magnetic edge states in 2D electron gas

is determined by the behavior of the dispersion law of

magnetic subbands at imaginary values of momentum. The

energies of impurity states belonging to the zero subband

were found numerically.
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