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The heat equation, based on Fourier’s law, is commonly used for description of heat conduction. However,

Fourier’s law is valid under the assumption of local thermodynamic equilibrium, which is violated in very small

dimensions and short timescales, and at low temperatures. As a replacement for Fourier’s law, many models have

been proposed within the framework of various theories. In this paper we study the behavior of solutions to an

initial value problem in 3D in the framework of the linearized ballistic-conductive (BC) model. As a result, an

unphysical effect is detected when the temperature in the heat wave takes negative values.
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Introduction

The heat equation, based on Fourier’s law, is commonly

used for description of heat conduction. However, Fourier’s

law is valid under the assumption of local thermody-

namic equilibrium, which is violated at the micro- and

nanoscale, in ultrafast processes, and also at very low

temperatures [1–5]. As a substitute for Fourier’s law, many

models have been proposed in the framework of various

theories [1–13]. However, none of these models can serve

as a complete substitute for Fourier’s law.

In dielectrics, heat transfer is carried out by phonons,

inasmuch as the contribution of electrons to heat transfer

is negligibly small [2–4]. The transport of phonons is

described by the Boltzmann equation for phonons (the
Peierls−Boltzmann equation). However, solving this equa-

tion is very difficult. Therefore, approximations to the

Peierls−Boltzmann equation are of considerable interest.

In the article [14], a ballistic-conductive (BC) model

of heat conduction in the framework of nonequilibrium

thermodynamics with internal variables was proposed. In

the papers [15,16], the linearized form of this model was

tested on experimental data and showed a quantitative

description of heat transfer by transversal ballistic phonons,

while demonstrating a qualitative description of the second

sound. The linearized form of the BC model is described by

a hyperbolic system of partial differential equations, which

ensures the finiteness of the velocity of thermal energy

propagation. The study of the linearized BC model is of con-

siderable interest, inasmuch as it can be considered not only

in the framework of nonequilibrium thermodynamics, but

also as a hyperbolic approximation to the Peierls-Boltzmann

equation, which is a hyperbolic integro-differential partial

differential equation. From this point of view, the Cattaneo

model (hyperbolic heat equation) is the first hyperbolic

approximation to the Peierls−Boltzmann equation, and the

linearized BC model is the second one.

In this paper, in the framework of the linearized BC

model, the initial value problem in three-dimensional space

is studied. An effect has been found where, when thermal

energy is added to the system, the temperature in the heat

wave takes values lower than the background temperature.

1. Statement of the Initial Value Problem

Let us consider a system of equations in three-

dimensional space that describe the BC model of heat

conduction [14–17]:

ρc∂tT + ∇ · q = f , (1a)

−m1∂tq + ∇
1

T
+ l21∇ · Q = lq, (1b)

−m2∂tQ = l11Q + l12∇q, (1c)

where T (r, t) is temperature, q(r, t) is a heat flux vector,

f (r, t) is a thermal energy source, Q(r, t) is an internal

variable (second-order tensor function), r = (x1, x2, x3), ρ
is density, c is specific heat capacity. Equation (1a) is

a standard equation for the balance of thermal energy.

Relations (1b) and (1c) are constitutive equations obtained

in the framework of nonequilibrium thermodynamics with
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internal variables After linearization, the system (1) takes

the form of

ρc∂tT + ∇q = f ,

τq∂tq + q = −λ∇T + κ21∇Q,

τQ∂tQ + Q = −κ12∇q, (2)

where τq = m1/l, τQ = m2/l11, κ21 = l21/l, κ12 = l12/l11,
λ = 1/lT 2

0 , where T0 is background temperature relative to

which linearization occurs. The parameters τq and τQ are

the characteristic relaxation times of the variables q and Q.

After bringing to a dimensionless form and redefinition

of the quantities, the system (2) takes the form

∂tT + ∇q = f , (3a)

τq∂tq + q + ∇T + κ∇Q = 0, (3b)

τQ∂tQ + Q + κ∇q = 0, (3c)

where all quantities and parameters are dimensionless,

κ > 0. At κ = 0, the equation (3b) takes the form of

the Cattaneo equation. At τQ = 0, the system (3) leads to

the Guyer-Krumhansl heat equation. At τq = 0 and κ = 0,

the equation (3b) takes the form of Fourier’s law. Thus,

the linearized BC model is a generalization of the known

models.

By excluding the variables q and Q in the system (3), we
find that the temperature satisfies the equation

τqτQ∂
3
t T + (τq + τQ)∂2t T + ∂tT − 1T − (τQ + κ2)∂t1T

= τqτQ∂
2
t f + (τq + τQ)∂t f + f − κ21 f .

(4)
The equation (4) is hyperbolic, its characteristic numbers

are λ1,2 = ±v , v =
[

(1 + κ2/τQ)/τq

]1/2
, λ3 = 0. The

hyperbolicity of the equation provides a finite velocity of

propagation of thermal energy equal to v .

Let us suppose that the medium was at rest until

t = 0 and the initial temperature was zero. In this case,

the initial conditions for the system (3) are T |t=0 = 0,

q|t=0 = 0, Q|t=0 = 0. By substituting these conditions into

the equations (3b) and (3c), the conditions ∂tq|t=0 = 0,

∂tQ|t=0 = 0 are obtained. As a result, we get the initial

conditions for the equation (4):

T |t=0 = 0, ∂tT |t=0 = f |t=0, ∂2t T |t=0 = ∂t f |t=0. (5)

2. Solving the Initial Value Problem

From the equation (4) and the initial conditions (5) it

follows the Fourier-Laplace transform of the solution of the

Cauchy problem is

LFT (ξ , s)=
[τqτQs2 + (τq +τQ)s +1+κ2ξ2]LF f (ξ , s)

τqτQs3+(τq+τQ)s2+[1+(τQ+κ2)ξ2]s+ξ2
,

where F is the Fourier transform defined by the formula

FΦ(ξ) =
∫

R3

Φ(r)eiξ rdr, L is the Laplace transform ex-

pressed by the formula LΦ(s) =
∞
∫

0

Φ(t)e−stdt .

Below we assume that the source is instantaneous,

namely f = ϕ(r)δ(t), where δ(·) is the Dirac delta function.
In this case, LF f (ξ , s) = Fϕ(ξ ), and the Fourier-Laplace

transform of the solution to the initial value problem is

expressed by the formula

LF T (ξ , s) =
s2 + as + (τqτQ)−1(1 + κ2ξ2)

s3 + as2 + bs + c
Fϕ(ξ)

=
u2 + Cu + D

(u − 2A)[(u + A)
2
+ B2]

Fϕ(ξ)

=

[

E
u − 2A

+
F(u + A) + G

(u + A)2 + B2

]

Fϕ(ξ ),

where

a =τ −1
q +τ −1

Q , b(ξ)=(τqτQ)−1+v2ξ2, c(ξ)=(τqτQ)−1ξ2,

v is the speed of propagation of thermal energy.

s3 + as2 + bs + c = u3 + χu + ψ,

s = u − a/3, χ(ξ) = −a2/3 + b,

ψ(ξ) = 2(a/3)3 − ab/3 + c,

A = (α + β)/2, B =
√
3(α − β)/2, C = a/3,

D = −2a2/9 + (τqτQ)−1(1 + κ2ξ2),

α =
3

√

−ψ/2+
√
∆, β =

3

√

−ψ/2−
√
∆,

∆ = (χ/3)3 + (ψ/2)2,

the roots α and β are chosen so that the equality αβ = −χ/3
is true and the value A is real,

E =
4A2 + 2AC + D

9A2 + B2
, F = 1− E,

G =
−3A3 + AB2 + (3A2 + B2)C − 3AD

9A2 + B2
.

Considering the equation s = u−a/3, we get an expression

for the inverse Laplace transform

L
−1

[

E
u − 2A

+
F(u + A) + G

(u + A)
2
+ B2

]

= e−µ1tE + e−µ2t

×
[

F cosBt + G
sinBt

B

]

,

where µ1 = −2A + a/3, µ2 = A + a/3. As a result, we get

that the Fourier transform of the solution of the initial value

problem has the form

FT (ξ, t) =
{

e−µ1tE + e−µ2t
[

F cosBt + GB−1 sinBt
]}

×Fϕ(ξ).
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The solution TBC of the initial value problem (4), (5) in comparison with the solution THE of the initial value problem for the heat

equation.

The solution to the problem (4), (5) is found by means of

the inverse Fourier transform:

T (r, t) = (2π)−3

∫

R3

FT (ξ , t)e−iξ rdξ .

We assume that at the initial moment t = 0 a unit

amount of thermal energy was released at the origin, namely

f (r, t) = ϕ(r)δ(t), where ϕ(r)=(
√
2πσ )−3 exp(−r2/2σ 2),

r = |r|, σ ≪ 1. In this case Fϕ(ξ ) = exp(−σ 2ξ2/2),

ξ = |ξ |, the temperature distribution is spherically symmet-

rical and is calculated by formula

T (r, t) =
1

2π2r

∞
∫

0

ξFT (ξ, t) sin(rξ)dξ. (6)

The figure shows the solution (6) to the Cauchy prob-

lem (4), (5) with source f (r, t) = ϕ(r)δ(t). Parameter val-

ues are τq = 0.0156, τQ = 0.0058, κ2 = 0.0196, σ = 0.002.

These parameter values correspond to the dimensional

parameter values from [16]. The graph shows a heat

wave propagating at a speed of v , with the temperature in

this wave taking values below the background temperature

(T = 0 corresponds to an absolute temperature equal to

the background temperature T0). The peak near the

origin corresponds to the zero characteristic number of

the equation (4). The figure also shows the solution of

the Cauchy problem for the heat equation ∂tT−1T = f ,
T |t=0 = 0 with the same source f .

Conclusion

An effect has been found where, when thermal energy is

added to the system, the temperature in the heat wave takes

values below the background temperature.

Acknowledgments

The author thanks the reviewers for their critical remarks,

which contributed to the improvement of the quality of the

paper.

Conflict of interest

The author declares that he has no conflict of interest.

References

[1] D.D. Joseph, L. Preziosi. Rev. Mod. Phys., 61, 41 (1989).
DOI: 10.1103/RevModPhys.61.41

[2] Y. Guo, M. Wang. Phys. Rep., 595, 1 (2015).
DOI: 10.1016/j.physrep.2015.07.003

[3] Z.M. Zhang. Nano/Microscale Heat Transfer (Springer,
Cham, 2020), DOI: 10.1007/978-3-030-45039-7

[4] G. Chen Nat. Rev. Phys., 3, 555 (2021).
DOI: 10.1038/s42254-021-00334-1

[5] A.I. Zhmakin. Tech. Phys., 91, 5 (2021).
DOI: 10.1134/S1063784221010242

[6] R.A. Guyer, J.A. Krumhansl. Phys. Rev., 148, 766 (1966).
DOI: 10.1103/PhysRev.148.766

[7] W. Dreyer, H. Struchtrup. Continuum Mech. Thermodyn., 5,

3 (1993). DOI: 10.1007/BF01135371

Technical Physics, 2023, Vol. 68, No. 12



1576 International Conference of PhysicA.SPb 23−27 October, 2023

[8] D.Y. Tzou. Macro- to Microscale Heat Transfer: The

Lagging Behavior (Taylor & Francis, Washington, 1997),
DOI: 10.1002/9781118818275

[9] I. Müller, T. Ruggeri. Rational Extended Thermodynamics

(Springer, NY., 1998), DOI: 10.1007/978-1-4612-2210-1
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