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Effect of anisotropy on thermoelastic stresses in cylindrical gallium oxide

crystals grown from a melt
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The study of thermal stresses in crystals grown from a melt is of great importance for optimizing growth

regimes. The emergence of new promising materials, such as gallium oxide, requires stress calculations taking

into account the anisotropy of the thermal and elastic properties of the material. A study was carried out of

the influence of anisotropy on the distribution of thermoelastic stresses in thin crystalline rods of gallium oxide.

Approximate formulas for the components of the stress tensor are given, obtained using the asymptotic integration

of the thermoelasticity equations taking into account rectilinear anisotropy of a general form. A comparison of

stress values for two growth directions was carried out. It is shown that choosing the orientation of the growth

direction makes it possible to control the magnitude and distribution of thermoelastic stresses that arise in gallium

oxide crystals when they are grown from a melt.
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Introduction

Recently, transparent semiconductors based on gallium

oxide crystals (β – Ga2O3) have been of great interest in the

creation of new types of electronic devices (photodiodes,
transparent thin-film transistors, energy-saving windows,

etc.) [1,2]. One of the ways to grow bulk gallium oxide

crystals is the Czochralski method, in which the crystal

is drawn from the melt in an iridium crucible. Despite a

number of technological difficulties, crystals in the form

of cylinders with a diameter of up to 50mm [3–6].
However, for the further development of the technology for

obtaining perfect crystals, it is necessary to study thermal

stresses and structural defects that arise during the growth

process. For β gallium oxide phase crystals with a low-

symmetrical monoclinic structure, a strong anisotropy of

thermal and elastic properties must also be considered.

In a number of papers, numerical simulation of heat

transfer processes in the crystal and growth zone was

carried out, and calculations of thermal stresses were carried

out [7–9]. It is shown that the numerically calculated

maximum stresses according to the Mises criterion strongly

depend both on the crystallographic direction of growth [7]
and on the configuration of the elements of the thermal

zone [9]. Definitely, these calculations are a good tool

for studying the processes of heat transfer in the growth

zone and determining the fields of temperature and thermal

stresses in the grown crystals, but they require complex

packages of special programs and powerful computing

resources.

In this paper, on the basis of analytical calculations, the

effect of anisotropy of thermal and elastic properties on

the distribution of thermoelastic stresses in thin cylindrical

gallium oxide crystals grown from a melt by the Czochralski

method is studied. The calculations were performed

according to approximate formulas obtained by solving

the stationary thermoelasticity problem by the method of

singular perturbations, considering the rectilinear anisotropy

of the general form [10,11].

1. Approximate Formulas
for Thermoelastic Stresses

Here are the coefficients of thermal expansion and elastic

stiffness for the standard coordinate system (axis z coincides

with crystallographic direction [001] [7]. Coefficients

of thermal expansion: α11 = 4.7 · 10−6, α12 = α21 = 0,

α13=α31= − 0.17 · 10−6, α22=8.3 · 10−6, α23=α32 = 0,

α33 = 8.5 · 10−6 (K−1). The elastic stiffness coefficient

tensor (dimension (1010 N/m2)) is written as

(c i j) =


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23.8 13.0 15.2 0 −0.4 0
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0 0 0 4.9 0 0.6
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

.

The dimensional values of the coefficients of thermal

expansion and elastic stiffness are indicated by a line

at the top. We invert this matrix and move on to

the elastic compliance coefficients. Let us consider a

crystal rod of length L = 0.1m and radius R = 0.01m.

Let us move on to the dimensionless coordinates as

follows: r = R r, z = L z . Small parameter of the problem

ε = R/L. Let us proceed to the dimensionless coefficients
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of thermal expansion and elastic compliance by normalizing

to the corresponding invariants α00 = 7.17 · 10−6 (K−1),
s00 = 0.051 · 10−10 (m2/N).
We work in the cylindrical coordinate system (r, θ, z ).

Using the method of asymptotic integration of the ther-

moelastic equations [11] we obtain with an accuracy of

terms of order ε2 the formulas for the components of the

thermoelastic stress tensor

σ r (r, z ) = A1 (1− r2)1
d2T0

dz 2
ε2,

σ θ(r, z ) = A1 (1− 3r2)1
d2T0

dz 2
ε2, σ rθ = 0,

σ rz (r, θ, z ) =
(

A2 sin(θ) + A3 cos(θ)
)

(1− r2)1
d2T0

dz 2
ε2,

σ θz (r, θ, z ) =
(

A2 cos(θ) − A3 sin(θ)
)

(1− 3r2)1
d2T0

dz 2
ε2,

σ z (r, θ, z ) = B0[1 + r2[B1 cos
2(θ) + B2 sin(θ) cos(θ)

− (4 + B1) sin
2(θ)]1

d2T
dz 2

ε2,

where

B0 = −

1

s33

[

(s13 + s23)A1 + s34A2 + s35A3

−

1

8
(α1 + α2 − α3)

]

,

B1 =
1

B0

[

(s13 + 3s23)A1 + 3s34A2 + s35A3

−

1

2

(

α1 −
1

2
α3

)]

,

B2 = −

1

B0

[

2(s36A1 + s35A2 + s34A3) +
1

2
α6

]

,

αi = αii , i = 1, 2, 3, α4 = α23, α5 = α13, α6 = α12.

In these formulas, 1 = α00 T 00/s00 — is the normalizing

factor that provides the transition from the dimensionless

to the dimensional components of the thermoelastic

stress tensor, and d2T0/dz 2 — the dimensionless

second derivative of the temperature along the rod

axis, T 00 — melting point of gallium oxide (2080◦ K).
The temperature is normalized to the melting point:

T 0 = T0 T 00. We consider the second derivative of the

temperature constant and choose the value of the second

derivative of the temperature at distance 0.02m from

the crystallization front: d2T0/dz 2 = −5 · 104 K/m2,

d2T0/dz 2= −5·104L2/T 00= −0.24. The constants

A1, A2, A3 are defined from a system of three linear

algebraic equations

a11A1 + a12A2 + a13A3 = b1,

a12A1 + a22A2 + a23A3 = b2,

a13A1 + a23A2 + a33A3 = b3,

a11 = 3s ′22 + 2s ′12 + s ′66 + 3s ′11,

a12 = 3s ′24 + s ′14 + s ′56, a13 = 3s ′15 + s ′25 + s ′46,

a22 = 3s ′44 + s ′55, a23 = 2s ′45,

a33 = 3s ′55 + s ′44, s ′i j = s i j −
s i3s3 j

s33
, i, j = 1, 2, 4, 5, 6,

b1 = −

1

4s33
[(2α2 − α3)s13 + (2α1 − α3)s23 − α6s36

+ (α1 + α2)s33],

b2 = −

1

4s33
[(2α1 − α3)s34 − α6s35 + α4s33],

b3 = −

1

4s33
[(2α2 − α3)s35 − α6s34 + α5s33].

2. Stress Calculation Results

Fig. 1 shows the results of calculations of the components

of the thermoelastic stress tensor for the standard coor-

dinate system (axis z coincides with the crystallographic

direction [001]). Analysis of the thermoelastic stress

tensor components for the orientation of the crystal growth

direction [001] shows that the shear stress σrθ is zero, the

normal components σr and σθ (Fig. 1, a) are independent

of the θ coordinate and are distributed in the direction

along the radius by parabola. We note that this is the case

for all orientations of the crystal rod, as follows from the

approximate formulas for these tensor components given

above. This is consistent with the data on stress calculations

in the isotropic approximation. Strong anisotropy along

the cross-section of the crystal is demonstrated by three

components σrz (Fig. 1, b), σθz (Fig. 1, c) and σz (Fig. 1, d).
The σrz component is zero on the outer surface, grows

toward the center, and has different signs in the θ = 0 and

π directions. The component σθz has a more complex

distribution over the cross section: the zero region is located

around the circumference at r = 0.5 cm, the stress increases

towards the center to 0.04 and to 0.08MPa towards the

surface. Accordingly, the stress sign in the directions

θ = π/2 and 3π/2 is different. It should also be noted

that these components make a small contribution to the

overall picture of the stress distribution. The most significant

in magnitude is the normal component σz , the maximum

values of 1.3MPa on the surface at θ = π/2 and 3π/2.

In the middle of the crystal there is a region of negative

values with a maximum of −0.5MPa, with all lines of equal

stresses located practically along the direction θ = 0.

Fig. 2 shows the results of calculations for the second

orientation of the crystal: the axis z coincides with the

crystallographic direction [010]. This orientation is most

commonly used in the growth of gallium oxide crystals

by the Czochralski method and is also discussed in [7].
To calculate the stresses in this orientation, the elastic
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Figure 1. Stress distribution σr and σθ along the radius of the crystal cross-section (a); stress plots σrz (b), σθz (c) and σz (d) in the

cross-section of the crystal for the case of growth on axis z with direction [001].
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Figure 2. Normal stress plot σz for the case of crystal orientation

in the direction [010].

constant tensors and thermal expansion coefficients were

recalculated. Stress analysis for this case showed that the

components σr and σθ did not change much, the tangent

components of the stress tensor σrz , σθz were zero. The

most significant, as in the first case, was the component

σz , and the cross-section distribution picture is close to the

first case, but the value of the stresses at the surface is

slightly higher (up to 1.5MPa). In terms of magnitude

of stresses, our calculations according to the formulas are

close to the results of numerical calculations. The maximum

average stresses calculated in [7] using the Mises criterion

were approximately 6MPa for a crystal twice as large

in diameter. In our opinion, the calculations show a

strong influence of the anisotropy of the properties of the

gallium oxide crystal and the orientation of the growth

direction on thermoelastic stresses. However, in order to

select the optimal orientation of the growth direction and

minimize the formation of structural defects (dislocations,
block boundaries and twins), it is still necessary to solve
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the problem of recalculating the stress tensor components

along the slip planes.

Conclusion

A comparison of stress values for two growing directions

was carried out. It is shown that accounting the anisotropy

of elastic properties and thermal expansion, as well as the

choice of the orientation of the direction of growth of a

gallium oxide crystal relative to the crystallographic axes,

made it possible to control the magnitude and distribution

of thermoelastic stresses arising in the process of growth,

and therefore the degree of its structural perfection.
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