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Based on gas-dynamic methods, numerical modeling of the nonlinear dynamics of sound waves in a

vibrationally excited nonequilibrium gas was carried out and the main stages of the evolution of acoustic

instability were studied. It is shown that in numerical models the linear regime with an exponential growth

law of the amplitude of disturbances is in good agreement with the linear analysis of stability, and at the

nonlinear stage of development of acoustic instability, a system of shock waves is formed. The effects of

nonlinear saturation of the intensity of shock waves, caused by the stabilization of acoustic instability, are

demonstrated.
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Introduction

The properties of nonequilibrium media are important

for understanding the physical processes occurring, for

example, in an oscillatory-excited gas [1]. Under certain

conditions, a non-equilibrium medium becomes acousti-

cally active, i.e. the amplitude of sound waves in it

increases [2–4]. Acoustic instability in a non-equilibrium

vibrationally excited gas can lead to [2]: overreflection

of sound waves at the interface between equilibrium and

nonequilibrium media; excitation of a headwind acoustic

wind; emergence of new properties of parametric interac-

tions of sound, vortex and entropy modes; changes in the

critical Reynolds number of the laminar-turbulent transition,

the structure of the boundary layer, and the coefficients

of aerodynamic drag; changes in the structure, velocity

and stability conditions of shock waves, as well as the

parameters of the flow behind the front of detonation

waves.

An important tool for studying processes and phenomena

in gas-plasma media, along with a physical experiment, is a

computational experiment based on the solution of hydro-

dynamic equations by well-tested numerical methods [5–7].

To assess the adequacy of numerical algorithms used in

numerical simulation of unstable gas-dynamic flows, it is

necessary to compare the obtained simulation results with

linear stability analysis [8].

The aim of this paper — is to develop a numerical model

(tool) for studying the nonlinear dynamics of acoustic in-

stability in an oscillatory-excited gas with various relaxation

models based on the methods of numerical gas-dynamic

simulation.

1. Mathematical Model of an Excitatory
Gas

In this paper, we will confine ourselves to considering

the model of a one-component oscillatory excited gas

with exponential Landau relaxation−Teller [2,3,9] in a one-

dimensional approximation

∂U

∂t
+

∂F

∂x
= G, (1)

where U = {̺, ̺u, ̺ε, ̺εν}T — is a vector of conservative

variables, ε = 0.5u2 + p/[(γ − 1)̺], ̺, u and p — density,

velocity, and pressure of the gas, respectively, γ — adiabatic

index, εν — specific vibrational energy of gas molecules,

F = {̺u, ̺u2 + p, (̺ε + p)u, ̺ενu}T — flux density vector

of the magnitude U,

G = {0, ̺g, ̺(εν−εe
ν)/τ−̺3 + ̺ug, ̺(εe

ν−εν)/τ + ̺Q}T,

εe
ν — equilibrium value of specific vibrational energy, τ —
oscillatory relaxation time, Q and 3 — specific heating

(pumping) and cooling (heat sink) capacities, respectively.

The system (1) is closed by the equation of state of the

ideal gas: p = R̺ T , where R = R∗/M — gas constant,

R∗ — universal gas constant, M — molar mass of the gas.

In the two-temperature approximation, the specific vibra-

tional energy of the gas molecules εν and its equilibrium

value εe
ν are functions of the vibrational Tν and thermody-

namic T temperatures, respectively [3,7,10]:

εν(Tν) =
R θν

exp (θν/Tν) − 1
, εe

ν ≡ εν(T ) =
Rθν

exp (θν/T ) − 1
,

(2)
where θν — characteristic oscillatory temperature of the gas.

The formulas (2) are written for a single oscillatory mode.
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If a polyatomic molecule has several vibrational modes, then

the total vibrational energy of the gas (considering only the

first energy level of each mode) can be represented as the

sum [10]:

εν =
∑

ℓ

rℓεν,ℓ and εe
ν =

∑

ℓ

rℓε
e
ν,ℓ,

where ℓ — mode number, and rℓ — degree of degeneracy

ℓ-mode.

In gas-dynamic calculations, model Millikan’s-

White [7,11] is usually used for the oscillatory relaxation

time, which at temperatures below 3000K agrees well with

both experimental data and the conclusions of the kinetic

theory [12]. There are other more accurate models for

calculating relaxation time at higher temperatures [10,13–
15]. Models based on analytical approximations of

experimental data [10] are also used. In general, the

oscillatory relaxation time can be written as

τ (p̂, T )=
1

p̂
exp(a0+a1T−1/3+a2T−2/3+a3T 1/3+n lnT )

1− m exp (−θ⋆/T )
,

(3)
where p̂ = p/pA — pressure in units of atmospheric pres-

sure (pA = 101 325 Pa), θ⋆ — minimum of the characteristic

temperatures of vibrational mode [15], the coefficients ak

and n are determined experimentally [10,16] or calculated

using semi-empirical formulas [11,15], and the parameter m
allows you to consider (m = 1) or not consider (m = 0) the
correction of the kinetic theory [15].

2. Results of numerical simulation

To numerically simulate the nonlinear dynamics of

unstable sound waves in a nonequilibrium vibrationally

excited gas (1)−(3), we will use the CSPH-TVD (Com-

bined Smoothed Particle Hydrodynamics−Total Variation

Diminishing, [17,18]) method, which has the second order

of accuracy in terms of spatial coordinate and time. We

will consider the dynamics of unstable sound waves against

the background of the initial stationary and homogeneous

distribution of flow parameters ( f 0 = const) of the qui-

escent gas (u0 = 0), and we will also confine ourselves

to a model with constant values of heating and cooling

functions that do not depend on density and temperature.

Then, from the energy balance equations in (1) for the

initial state, we obtain the following relations: Q0 = 30 and

εν(Tν0)−εe
ν(T0) = τ0Q0. From the last equation it is possible

to determine the initial disequilibrium of the medium, i.e. to

find the vibrational temperature Tν0 6= T0, which, in the case

of diatomic molecules with one vibrational mode, can be

expressed as (2)

Tν0 = T0 θ̄ν

[
ln

θ̄ν exp θ̄ν + S
(
exp θ̄ν − 1

)

θ̄ν + S
(
exp θ̄ν − 1

)
]
−1

,

where

θ̄ν =
θν

T0

, S =
τ0Q0

RT0

— a dimensionless parameter that characterizes the degree

of nonequilibrium of the medium in [2,3,17].

Inasmuch as in this paper we are not considering a spe-

cific gas medium, but are investigating the basic regularities

of the nonlinear evolution of acoustic instability depending

on the parameters of the relaxation model, it makes sense to

switch to dimensionless quantities in the equations (1)−(3).
This will reduce the number of calibration coefficients in

our numerical simulation and simplify the procedure for

comparing the results of the numerical simulation with

the linear stability analysis in [2,3,17]. Let us introduce

the following characteristic scales of the numerical model:

lt = τ0, lu = cs0 =
√
γ p0/̺0, lx = cs0τ0, lT = T0, lp = p0,

l̺ = ̺0/γ . Further, we will use the dimensionless quantities

f̄ = f /l f , then,considering the equation of state for the

relaxation time of (3), we get:

τ̄ ( ¯̺, T̄ ) =
γ

¯̺
exp

{
ā1T̄

−1/3 + ā2T̄
−2/3 + ā3T̄

1/3

+ (n − 1) ln T̄

}
1− m exp

(
−θ̄⋆

)

1− m exp
(
−θ̄⋆/T̄

) , (4)

where ā1 = a1T
−1/3
0 , ā2 = a2T

−2/3
0 , ā3 = a3T

1/3
0 , and the

parameter a0 is excluded from consideration.

Acoustic instability in an oscillatory-excited gas can

occur at certain values of the parameters τ̺ = ∂ ln τ /∂ ln ̺,

τT = ∂ ln τ /∂ lnT and the degree of disequilibrium of

the medium S. Inasmuch as, in the model under

consideration (4) τ̺ = −1, then the conditions under

which sound waves are unstable are of the form [2,3,17]:
τT < γ−1

1 and S > γ1Cν(1−γ1τT )−1, where γ1 = γ − 1,

Cν = R−1∂εe
ν/∂T . Thus, the initial distribution of the

parameters of the gas medium and the intensity of

heating must satisfy these conditions, which provide the

possibility of increasing the amplitude of acoustic waves

at the initial linear stage of evolution according to the

law ∝ exp(ᾱx̄), where ᾱ = αcs0τ0 — is a dimensionless

acoustic increment. The maximum acoustic increment

value is reached at ω̄ = ωτ0 ≈ 2π and is defined as

ᾱmax ≈ γ1[S(1− γ1τT )−γ1Cν ]/(2γ) [2,3].

Numerical experiments were conducted for different per-

turbation frequencies ω̄ = (0.5, 1, 2)π. The computational

domain x̄ ∈ [0,L] (L = 100) was covered by cells of

size h = L/N, and the number of computational cells

was specified within N = 103−104 . The source of the

stimulated disturbances localized at the origin (|x̄ | < λ̄/4)
is given as ḡ(x̄ , t̄) = ĝ sin(ω̄t̄), where λ̄ = 2π/ω̄ — is the

dimensionless wavelength of the perturbations, ĝ ≈ 10−4 —
is the amplitude of the perturbing specific force. In as

boundary conditions in numerical experiments, we will

use the
”
rigid wall“ condition on the left boundary,

and on right —
”
the free flow condition“. To demonstrate

the main stages of the evolution of acoustic instability,

the following basic parameters of the numerical model

were chosen: γ = 1.4, ā1 = 10, ā2 = ā3 = n = m = 0,
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Figure 1. A Quasilinear Stage in the Evolution of Unstable Sound Waves. a — pressure distribution in an acoustic wave on condensing

grids (linear stage); b — relationship of ᾱN/ᾱ on spatial resolution λ̄/h for different frequency values ω̄; c — distribution of pressure,

density, and temperature during the transient (quasi-linear) stage. The dotted line corresponds to the solutions of the linear model.

θ̄ = θ̄⋆ = 6, ω̄ = 2π, N = 104 . These baselines are further

applied by default.

The quasilinear stage of the evolution of unstable acoustic

waves is shown in Fig. 1. By the time t̄ = 10 (Fig. 1, a),
the source generates a wave packet with ten maxima

and an initial amplitude of relative pressure and density

perturbations ∼ 10−5. As can be seen from Fig. 1, a,

the generated wave packet is a harmonic wave with an

exponentially increasing amplitude, with the exception of

only the first maximum, which borders on an unperturbed

medium and is the front (right) edge of the wave packet.

For comparison with linear stability analysis [2,3], this

figure presents the results of simulations on a sequence

of condensing meshes, demonstrating the convergence of

the numerical solution to the solution of the linear model:

f̃ = f̂ 0 exp(ᾱx̄) sin(k̄ x̄), where f̂ 0 — is the initial amplitude

of the perturbations, k̄ — dimensionless wavenumber.

An important characteristic in simulation of the dynamics

of unstable sound waves that affect the growth rate of

perturbations in a numerical experiment is the spatial wave

resolution, i.e., the number of cells per wavelength (λ̄/h).
Fig. 1, b for different frequencies shows the dependence on

λ̄/h of the value of the acoustic increment ᾱN obtained in

a numerical experiment with respect to ᾱ from the linear

model. It can be seen that at the values λ̄/h > 50, the

differences in the wave amplitude growth rate in the linear

and numerical models are less than 1%. The evolution of

unstable acoustic waves at the time t̄ = 45 (Fig. 1, c) can

be characterized as a transitional stage from the linear to

the nonlinear regime, in which the nonlinear winding of

the wave fronts occurs and the linear sinusoidal profile is

deformed into a nonlinear
”
sawtooth“.

The nonlinear stage of acoustic instability evolution is

shown in Fig. (2). By the moment of time t̄ = 60

(Fig. 2, a) there is a nonlinear saturation of the relative

amplitude of perturbations at the level of ∼ 2.5−10%

( f̄ max ∼ 1.025−1.1), and the entire wave packet acquires

”
sawtooth“ shape. At this stage, the unstable sound waves

form a small-scale shock wave (SW) system with almost

the same amplitude and spatial scale (distance between

the fronts) ∼ λ̄. As can be seen from Fig. 2, a, at the

boundary of the wave packet, the amplitude of the shock

waves begins to change due to nonlinear interaction with

neighboring shock waves within the wave packet and the

undisturbed gas. The amplitude and velocity of the first

maximum increase, which leads to the expansion of the
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Figure 2. A nonlinear stage in the evolution of unstable sound waves. The spatial distributions of dimensionless parameters f̄ in an

acoustic wave at different time points are shown.
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Figure 3. The SW structure in the region of the first

maximum of the wave packet at time t̄ = 80 (see Fig. 2, b),
where ū⋆ = |ū − ū1| — is the velocity of gas flow to the front SW,

ū1 — SW velocity (of the first maximum of the wave packet).

wave packet. From Fig. 2, b it can be seen that with

the further propagation of the SW system in space, the

nonlinear effects of the expansion of the wave packet

and the interaction of neighboring shock waves intensify.

By time t̄ = 80, the pressure on the leading edge of the

wave packet (first maximum) increases to f̄ max ≈ 1.8, and

the distance between the first and second maxima increases

approximately 6.5 fold. At this stage of evolution between

the first and third maxima, an area of low pressure and

temperature is formed, with a minimum in the vicinity

of the third maximum. As a result, the degree of

nonequilibrium increases significantly (Smax > 5), which

leads to an additional nonlinear increase in instability and

the disappearance of the nonlinear saturation effect in this

field. Changes to other model parameters, such as τT

and T̄ν , also contribute to the effect of nonlinear instability

amplification. A detailed study of these effects, including

the possible development of thermal instability in this field,

is beyond the scope of this paper.

The structure of the shock wave formed at the time

of time t̄ = 80 on the leading edge of the wave packet

is shown in Fig. 3. The gas flows onto the right wave

front at supersonic velocity ū⋆ = |ū−ū1| (where ū1 — SW

velocity) and Mach number M = ū∗/c̄s ≈ 1.3, and after

passing through the sound point on the SW front, the

flow becomes subsonic (M ≈ 0.8). The SW front in this

numerical calculation is about 5 cells, which corresponds to

∼ 0.05λ̄. A similar structure of shock waves is formed in

the vicinity of other maxima of the wave packet, but with

smaller amplitudes of perturbations and deviations of the

Mach number from unity (M ∼ 1.08).

Conclusions

On the basis of the numerical gas-dynamic method

CSPH-TVD, a software package has been developed for the

study of the nonlinear dynamics of acoustic instability in

an oscillatory-excited gas with various relaxation models.

The dynamics of unstable sound waves in nonequilibrium

gas at the linear and nonlinear stages of acoustic instability

development have been investigated. At the linear stage, the

convergence of the numerical solutions of our model to the

results of the linear stability analysis is shown. The nonlinear

stage is characterized by the formation of a SW system with

an almost constant amplitude for about ten maxima of the

wave packet. In the vicinity of the leading edge of the wave

packet, the effect of nonlinear instability amplification was

detected, leading to rapid cooling of the gas and requiring

more detailed further investigation with various models of

oscillatory relaxation, heating, and cooling.

In this paper, numerical calculations are presented for

the values of the parameters corresponding to the diatomic

gas H2 at the temperature T0 ≈ 1000K and the pressure

p0 = pA [16]. The built numerical model can be used
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to study the dynamics of acoustic instability in gases

with several vibrational modes, for example, CO2, having

previously determined the total vibrational energy of the

gas. In some approximation, our model can also be

applied to gas mixtures, having previously calculated the

average/effective values of the model parameters for the

mixture, which will allow us to qualitatively determine the

main regularities of the evolution of acoustic instability in

such media, and then, if necessary, refine the solutions in

the scope of a more complex multicomponent model.
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