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In this paper we investigate the adequacy of deep learning force field models for modeling amorphous bodies. A

polymer with the studied physical properties, polyphenylene sulfide, was chosen as a test substance. The simulation

results shows that the forces predicted by neural networks acting on polymer atoms are significantly different from

the forces calculated by ab initio molecular dynamics methods. A qualitative comparison with the force field model

of a simpler compound, black phosphorene, shows that feedforward neural networks are unsuitable for modeling

complex amorphous substances.
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Introduction

In computer simulation, molecular dynamics (MD) meth-

ods are often used, which can be divided into two main

categories: ab initio (first principles) MD methods and the

classical MD method. Approaches from the first category

include the simulation of electron dynamics according to

the density functional theory (DFT) [1,2], which takes up

most of the computational time in calculations. Due to

its simplicity, the classical MD method requires much less

computational resources, but it is often not possible to

achieve the same accuracy, than during simulation with the

first principles.

It is known that in the last decade, deep learning has been

widely used in various fields of science, including physics.

For example, attempts have been made [3,4] to introduce

neural networks (NN) into the classical MD method to

predict force fields and interatomic interaction potentials,

which makes it possible to perform simulations at the speed

of the classical MD method and with the accuracy of ab

initio methods.

In this paper, we will consider the possibility of using

NN with the DeePMD [3] method to simulate polymers

using the example of a relatively simple compound — of

polyphenylene sulfide (PPS) [5].

1. Methods

The force field model in the DeePMD method is built

as a dependence of the total energy of the system on the

positions of atoms relative to each other:

E =
∑

i

Ei =
∑

i

Es(i)(R
i), (1)

where Ri — is a matrix of relative coordinates — distances

from an atom i to an atom j within some interaction

radius rc . The dependence of the energies Es (i) on the

matrix of relative coordinates is built in two steps: first,

a matrix of features Di is constructed according to the

matrix Ri in order to preserve the translational, rotational,

and permutation symmetry of the system; then the NN

is adjusted so that Es(i) = N f
s(i)(D

i), it is called fitting

(FNN). The descriptor Di is also constructed through the

NN Ne
s(i)(R

i), called an embedding (ENN). An additional

column vector can be used to form the descriptor. It is

computed as a function of the type of atom (chemical

element) through another neural network Nt(Ai), which is

called an atomic-type embedding (TENN).

All three networks, TENN, ENN, and FNN, are feed-

forward NNs containing multiple hidden layers.

The data for NN training are the simulation results ab

initio methods. Of these, the two main ones are singled

out: Born-Oppenheimer MD [6] and Car-Parrinello MD

(CPMD) [7]. The latter approach is the most computation-

ally efficient, and therefore we will carry out the simulation

using the CPMD method in the free software package

Quantum ESPRESSO.

2. Polyphenylene Sulfide Model

To prepare for the training of the PPS force field model,

we first, as mentioned earlier, collect the Canonical Ensem-

ble (NVT) CPMD simulation data from several simulations.

They differ from each other in the different starting positions

of the atoms (deviations from their initial positions). Besides
that, each launch was no different: in the first 100,000 steps

of the trajectory, the system was balanced with an initial

temperature of 0K and with a final temperature of 300K.
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Figure 1. Loss functions in Training and Control.

At equilibrium, the next 50,000 steps are saved to be used as

deep learning data. The temperature is controlled by a Nose-

Hoover thermostat [8] with a frequency of 25 THz. The

kinetic energy cut-off for the wave functions is chosen to be

80Ry, and for the charge density and pseudopotentials —
320Ry.

The unit cell is a configuration of 132 atoms.

A total of 140,000 frames were collected for the training

data, 10,000 frames for the validation data, and 2,000 frames

for testing.

The most stable computer model of polyphenylene

sulfide is obtained after 2 · 106 training steps with the

following neural networks parameters: TENN: {2, 4, 8,

16}; ENN: {20, 40, 80}; FNN: {200, 200, 200, 200,

200, 200}. Here, separated by commas, is the number

of neurons in the hidden layers in the NN. The test using

the test command in DeePMD shows the following root

mean square errors: energies — 9.8 · 10−2 eV; energies

per atom — 7.4 · 10−4 eV; forces — 0.22 eV/Å; virial —
0.29 eV, virial per atom — 2.2 · 10−3 eV.

Potential models trained with other NN parameters or the

number of training steps led to rapid destabilization of the

simulated substance. Here are some examples of models

that have been tested:

1. TENN: {2, 4, 8}, ENN: {20, 40, 80}, FNN: {200, 200,
200, 200, 200};
2. TENN: {2, 4, 8, 16}, ENN: {60, 60, 60}, FNN: {200,

200, 200, 200, 200, 200};
3. TENN: {2, 4, 8, 16}, ENN: {10, 20, 40, 80},

FNN: {200, 200, 200, 200, 200, 200, 200}.
The first model had 2 · 106 steps, and the second and

third — of 3 · 106 steps.

By model stability, we mean that, firstly, when simulating

a material with classical MD in an NPT ensemble, its

density remains approximately constant over time and close

to experimental values, and secondly, the structure of

monomer elements (phenylsulfide in the case of PPS) is

preserved.

The training and control curves (Fig. 1) indicate that the

model has been trained correctly.

3. Results and discussion

To test the stability of the model, we equilibrate a system

of 4752 atoms in an NVE ensemble using a Berendsen

thermostat [9] for 200 ps. The polyphenylene sulfide in the

system is heated from 10 to 273K. Then, at a constant

temperature (273K), the PPS passes into the NPT ensemble

(a thermostat and a Nose-Hoover barostat are used).

Up to about 100 ps (or up to a temperature point of

about 140K), the distances between the atoms in one PPS

benzene radical remained constant on average (Fig. 2). At

the same time, the standard deviation (RMSD) of particles

from the initial positions of the simulated PPS reaches a

value of 0.1 Å. With increasing temperature, the molecular

structure is disrupted more and more, at the time of

transition to the NPT ensemble, the RMSD is equal to

3.3 Å. By the last point in the simulation time, the RMSD

increased to 4.5 Å. The displacement of hydrogen atoms in

the compound is especially noticeable.
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Figure 2. Change in particle distance in atomic pairs in a single

PPS phenylsulfide.
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Figure 3. Forces acting on individual atoms in PPS in classical

CMD and AIMD simulations: a — hydrogen, b — carbon, c —
sulfur.
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Figure 4. Forces acting on different individual phosphorus atoms in black phosphorene in classical CMD and AIMD simulations.

This result suggests that the force field model incorrectly

predicts the potentials of interatomic interactions.

As a confirmation of this assumption, we run the

PPS simulation using classical molecular dynamics in the

same configuration (same starting positions, velocities, and

number of particles) as in the system in the training set. We

use a force field model with the same parameters of neural

networks here. The simulation result (Fig. 3) shows that the
forces acting on hydrogen atoms are significantly larger in

the classical MD relative to ab initio MD. The forces acting

on carbon atoms are also larger. The effect on sulfur atoms,

however, is lowered by the force field model.

Let us build a computer model of black phosphorene [10]
using the same strategy that we used to simulate PPS. The

results of classical MD (Fig. 4) show an adequate agreement

between the phosphorene predicted by the force field model

and the data from ab initio MD.

The forces of both materials, PPS and black phosphorene,

are compared in simulations with the same temperature

(300K) in the NVT ensemble.

Conclusion

Based on the work results it can be concluded that

the feed-forward NNs of DeePMD method are apparently

poorly suited for simulation of amorphous substances. This

can be explained by the presence of a large number of

degrees of freedom in polymer chains, which are not fully

considered by simple NNs. On the contrary, for crystalline

structures, as shown by the example of black phosphorene,

such a network architecture is able to build an adequate

force field model.

It should be noted that there is currently a number of

studies that use feed-forward NNs as an auxiliary tool

for determining the surface of potential energy in large

organic molecules. In [11,12] it is proposed the following

approach to the study of protein molecules, called by the

authors NN-TMFCC — neural network two-body molecular

fractionalization with conjugate caps. The molecule is

broken down into fragments corresponding to the amino

acids in the protein, and the effect of broken bonds is

compensated by the artificial introduction of functional

groups — acetyl and methylamine groups. In each of these

fragments, the position of the atoms is varied many times,

and the energy and forces acting on the atoms are calculated

by the methods of the density functional theory. From the

data obtained, a dataset is formed, which serves to train

the NN with a direct coupling, calculating the energies and

forces acting on the atoms in the selected fragment of the

protein molecule. Further, simulations are carried out using

the method of classical molecular dynamics, which uses a

protein-specific model of the force field, parameterizing the

interaction of the above-mentioned protein fragments.

In the future, we plan to develop an approach to building

the force field models with NNs, using graph, convolutional

and transformer architectures. It is expected that with their

help it will be possible to build adequate force field models

of amorphous substances.
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