09

Synthesis and Luminescence of Ba₂YCI₇

© R.A. Bhoyar¹, Y.K. More², S.P. Wankhede³, P.D. Belsare⁴, S.V. Moharil⁵

¹ RTM Nagpur University,
⁴⁴⁰⁰³³ Nagpur, India
² Department of Physics, Bhiwapur Mahavidyalaya,
⁴⁴¹²⁰¹ Bhiwapur, India
³ Department of Physics, K.D.K. College of Engineering,
Nagpur, India
⁴ Shri Ramdeobaba College of Engineering and Management,
⁴⁴⁰⁰¹³ Nagpur, India
⁵ Department of Physics, RTM Nagpur University,
⁴⁴⁰⁰³³ Nagpur, India
E-mail: rajanibhovar1@gmail.com

Received February 28, 2024 Revised March 24, 2024 Accepted March 24, 2024

New findings for Ba₂YCl₇ activated with 4f transition elements Eu²⁺ and Ce³⁺ are presented. These phosphors were synthesized using wet chemical procedure. As-synthesized Ce³⁺-doped sample exhibited intense photoluminescence (PL). For Eu²⁺ activation, further heat treatment in reducing atmosphere at 700°C was necessary. Intense emission from these activators could be identified with the allowed intra-configurational transitions. Ease of preparation combined with intense PL make these hitherto unexplored phosphors potential candidates for applications such as scintillation.

Keywords: halide, photoluminescence, phosphor.