05

Анализ структуры частиц сажи в пламени методом спектроскопии комбинационного рассеяния

© E.В. Гуренцов 1 , А.В. Еремин, 1 Р.Н. Колотушкин, 1 Е.С. Ходыко 1,2

105005 Москва. Россия

e-mail: kolotushkin.roman@gmail.com

Поступило в Редакцию 5 мая 2023 г.

В окончательной редакции 6 марта 2024 г.

Принято к публикации 7 марта 2024 г.

Проанализировано влияние типа топлива на структуру сажи, формирующейся в ламинарных предварительно-перемешанных пламенах смесей этилен—воздух и ацетилен—воздух. Сравнение проведено между частицами сажи, находящимися на различных этапах роста — промежуточном и конечном. Проанализированы и сравнены друг с другом спектры комбинационного рассеяния первого порядка. Показано, что для обоих топлив в процессе роста частиц сажи происходит увеличение размера графеновых плоскостей, а также уменьшение доли водорода в составе частиц. Ацетиленовая сажа продемонстрировала более графитизированную структуру, чем этиленовая.

Ключевые слова: частицы сажи, предварительно-перемешанное пламя, спектроскопия комбинационного рассеяния, внутренняя структура, графеновые плоскости.

DOI: 10.61011/JTF.2024.05.57813.119-23

Введение

Исследование структуры частиц сажи, формирующихся в процессах горения и пиролиза углеводородов, имеет большое значение для практических приложений [1], поскольку структура частиц определяет их свойства (оптические, теплофизические, электрические и т.д.). Правильный учет оптических свойств необходим для определения вклада поглощения частицами сажи солнечного излучения в тепловой баланс атмосферы, влияющий на климатические изменения [2]. Мониторинг количества частиц сажи, появляющихся как при антропогенном воздействии на окружающую среду, так и, например, при природных пожарах, основан на оптических измерениях. С помощью этих данных можно оценить опасность выбросов сажи для здоровья человека [3]. Кроме того, радиационные и теплофизические свойства сажи важны для расчетов тепловых процессов в камерах сгорания двигателей, котлов и других реакторов. С другой стороны, технический углерод широко применяется как добавка для создания различной продукции. Он используется как армирующий наполнитель при производстве шин, как электропроводное соединение в производстве пластмасс, антистатических резин и анодных резиновых заземлителей, а также как черный пигмент для создания различных видов красок и эмалей. В каждой отдельной отрасли востребованы определенные марки технического углерода, выбор которых может улучшать механические, электрические или красящие свойства продукции.

Свойства частиц сажи определяются их внутренней структурой, которая сильно варьируется в зависимости от условий их формирования [4]. Известно, что одним из основных факторов, определяющих структуру образующихся частиц сажи, является время их нахождения в высокотемпературном реакторе, когда происходит трансформация внутренней структуры частиц сажи [4]. В нашей предшествующей работе [5] были исследованы свойства частиц сажи в широком спектре условий их формирования. Были использованы углеводородные топлива с различной склонностью к сажеобразованию (ацетилен, этилен, пропилен, этилен с добавками диметилэфира), а также два принципиально разных реактора для синтеза частиц (ламинарное пламя и ударная труба). Было показано, что изменение структуры частиц сажи (и, как следствие, изменение их свойств) хорошо коррелирует с увеличением их среднего размера. В процессе роста частиц сажи происходит уменьшение расстояния между графеновыми плоскостями, составляющих структуру частиц сажи, от 0.4-0.5 nm до 0.35 nm, что близко к межплоскостному расстоянию в графите (0.335 nm). Также происходит увеличение зон "кристаллитов", т.е. областей плотно упакованных графеновых плоскостей, похожих на локальные области графита. Оба этих феномена характеризуют графитизацию частиц сажи в процессе их роста, т.е. переход от аморфной структуры к частично-упорядоченной, напоминающей графит [6].

¹ Объединенный институт высоких температур РАН,

¹²⁵⁴¹² Москва, Россия

² Московский государственный технический университет им. Н.Э. Баумана,

Значения оптических и теплофизических свойств, а также параметры внутренней структуры в зависимости от среднего размера частиц, полученные в работах [5,7], демонстрируют умеренный разброс их свойств в зависимости от типа топлива, использованного для синтеза частиц. Это свидетельствует о том, что есть еще один параметр, который влияет на процессы образования и роста частиц сажи. Метод просвечивающей электронной микроскопии (ПЭМ) не позволяет определить этот параметр. Было решено использовать альтернативный метод анализа морфологии конденсированных частиц спектроскопию комбинационного рассеяния (КР). Изменения, происходящие в структуре образца, отражаются в изменениях профиля спектра КР и его параметров, таких, как интенсивность пиков, их положение и полуширина.

Известно, что этот спектроскопический метод является распространенной диагностикой для получения подробной информации об электронной и химической структуре любого материала на основе углерода [8] как для научных исследований, так и для производственных задач. Например, на производственной линии технического углерода применяются портативные спектрометры КР, которые позволяют быстро проводить контроль качества итоговой продукции без привлечения громоздких и дорогостоящих лабораторных устано-

В обзоре А. Феррари и соавторов представлена актуальная информация о современном состоянии анализа графена методом спектроскопии КР, а также всех его аспектов [9]. Если говорить об исследовании частиц сажи, то был опубликован ряд работ, посвященных исследованию методом КР частиц, синтезированных в дизельных и бензиновых двигателях [10,11], а также для сажи, формирующейся при детонации [12]. В работах [13,14] этим методом анализировалась структура частиц сажи, полученных в предварительно-перемешанном этиленовом пламени.

Таким образом, спектроскопия КР является распространенным аналитическим методом для исследования микро/наноструктуры сажи [15]. Целью настоящей работы является исследование структуры частиц сажи методом КР для определения влияния типа топлива на образующиеся частицы. Необходимо исследовать как частицы сажи, которые достигли предела трансформации внутренней структуры, так и частицы, которые находятся на промежуточном этапе роста. Настоящая работа является логическим продолжением цикла работ авторов [5,7,16]. В качестве исследуемых топлив были выбраны этилен и ацетилен. Этилен является рекомендованным топливом для исследования процесса сажеобразования в ламинарных пламенах [17]. Выбор ацетилена обусловлен тем, что он является одним из наиболее важных прекурсоров при образовании сажи вне зависимости от типа исходного топлива [18].

Методы исследования

1.1. Горелка

В качестве экспериментального реактора для синтеза наночастиц сажи была использована стандартная горелка плоского пламени типа МакКенна ("Holthuis & Associates") с пористой поверхностью из бронзы диаметром 62 mm (рис. 1). Для стабилизации пламени использовался латунный диск диаметром 60 mm и толщиной 20 mm, расположенный на высоте 23 mm над срезом горелки.

Горелка оснащена внешним кольцевым контуром для подачи экранирующего газа (N2). Этот поток дополнительно стабилизирует пламя и изолирует его от воздействия внешних возмущений. Когда соотношение топлива и окислителя больше стехиометрического, часть топлива расходуется на нагрев смеси в процессе горения, а при пиролизе оставшегося топлива происходит формирование частиц сажи. В одномерной структуре плоского пламени мольные доли веществ и температура изменяются только в зависимости от высоты над поверхностью горелки. Составы топливных смесей, использовавшихся для анализа данных по внутренней структуре частиц сажи, представлены в табл. 1. Состав этиленового пламени является рекомендованным режимом для изучения сажеобразования в пламени [17]. Состав ацетиленового пламени был подобран таким образом, чтобы общий расход газов и отношение [С]/[О] было близко к этиленовому режиму, и чтобы при этом само пламя сохраняло стабильную, ламинарную и плоскую структуру.

Расход газов контролировался с помощью регуляторов массового расхода РРГ-10 ("Элточприбор"). Для контроля температуры по вертикальной и горизонтальной осям пламени использовались платино-родиевые термопары типа В с диаметром проволоки 45 μ m и диаметром спая 70μm. Реальная температура газа оценивалась с учетом конвективных и радиационных потерь тепла в

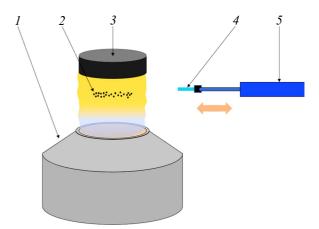
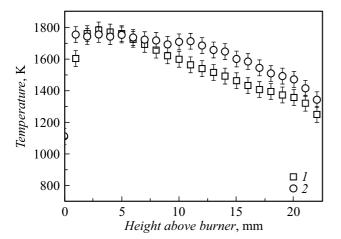
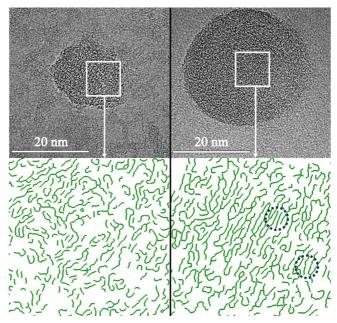



Рис. 1. Плоская горелка предварительного смешения и схема отбора проб частиц сажи: 1 — стандартная горелка типа Мак-Кенна, 2 — частицы сажи, формирующиеся в пламени, 3 стабилизатор, 4 — кварцевая пластинка, 5 — пневмоцилиндр.

Таблица 1. Составы смесей в пламенах предварительного смешения, использовавшихся для анализа структуры сажи

Смесь	C_nH_m ,%	O ₂ ,%	N ₂ ,%	[C]/[O]
Этилен-	14.1	18	67.9	0.78
воздух Ацетилен—	13.3	18.4	68.3	0.72
воздух				


Рис. 2. Температурные профили в центре пламени в зависимости от высоты над срезом горелки. Топливная смесь: I — этилен—воздух, 2 — ацетилен—воздух.

пламени и с учетом отложения частиц сажи на спае термопары по методике [19]. На рис. 2 приведены температурные профили в центре исследованных пламен, измеренные микротермопарным методом.

1.2. Отбор образцов

Горелка МакКенна формирует одномерное плоское пламя. Высота над срезом горелки при данных условиях является аналогом времени химических реакций, происходящих при горении, в том числе индикатором различных этапов процессов образования и роста частиц сажи. Нижние зоны пламени (до высоты $\sim 3 \, \text{mm}$) соответствуют этапам образования и роста молекул полиароматических углеводородов (ПАУ), предшественников частиц сажи. Средняя зона пламени (высота $\sim 3-8\,{\rm mm}$) соответствует газофазной конденсации сажевых зародышей из молекул ПАУ и начальной стадии процесса роста "молодых" частиц сажи. В верхних зонах пламени (> 8 mm) этот процесс активно развивается. Частицы сажи увеличиваются в массе и в объеме, их внутренняя структура трансформируется от аморфной к частично-упорядоченной. Стоит отметить, что графитизация внутренней структуры частиц сажи имеет предел, при достижении которого структура и свойства перестают активно изменяться, хотя частицы еще могут увеличиваться в размерах. Такие частицы называются "взрослыми". На рис. 3 представлены примеры "молодых" и "взрослых" частиц сажи, а также их внутренней структуры.

Выбранные режимы пламени эквивалентны исследованным ранее в рамках прошлых работ [5,7,6]. В табл. 2 представлены основные результаты этих исследований, где D — средний размер частиц, d — среднее расстояние между графеновыми плоскостями, E(m, 1064) функция коэффициента преломления на длине волны $1064\,\mathrm{nm}$, E_g — оптическая ширина запрещенной зоны и T_{sub} — температура сублимации. Для обоих режимов характерна прямая корреляция свойств со средним размером частиц. С ростом размера частиц происходит уменьшение расстояния между графеновыми плоскостями от 0.43 до 0.35 nm, увеличение параметра E(m, 1064), характеризующего поглощательную способность сажи, и уменьшение оптической ширины запрещенной зоны. Однако для этиленовой сажи эти процессы происходят при росте размеров частиц от 14.8 до 23 nm, тогда как для ацетиленовой сажи в диапазоне размеров частиц от 11.5 до 17.7 пт. Особенно четко это видно, если сравнить образец этиленовой сажи, отобранной на высоте 20 mm, и образец из пламени ацетилена на высоте 15 mm. Они имеют близкие показатели по d, E(m, 1064) и E_g , хотя размер частиц отличается на 33%. T_{sub} демонстрирует отличное от других параметров поведение. Для ацетиленовой сажи она растет от 2800 до 4050 К, для этиленовой — от 4100 до 4500 К. Из этого можно сделать вывод, что T_{sub} зависит только от размера частиц и не зависит от типа топлива [16].

Рис. 3. Примеры изображения ПЭМ частиц сажи (верхняя часть) и расположения графеновых плоскостей внутри частиц (нижняя часть) [5]. Слева — "молодая" частица сажи, справа — "взрослая". Выделенные области — зоны кристаллитов.

	D, nm [5]	<i>d</i> , nm [5]	<i>E</i> (<i>m</i> , 1064) [5]	$E_{g}\mathrm{eV}$ [7]	T_{sub} , K [16]	Высота пламени, mm
C ₂ H ₄	14.8 20 23	0.434 0.378 0.34	0.29 0.33 0.43	$\begin{array}{c} 0.12 \pm 0.05 \\ 0.092 \pm 0.05 \\ 0.017 \pm 0.05 \end{array}$	4100 ± 164 4400 ± 177 4500 ± 180	10 13 20
$\mathbf{C}_2\mathbf{H}_2$	11.5 13.5 15.5 17.7	0.43 0.417 0.365 0.358	0.19 0.26 0.415 0.54	$\begin{array}{c} 0.68 \pm 0.05 \\ 0.104 \pm 0.05 \\ 0.03 \pm 0.05 \\ 0.01 \pm 0.05 \end{array}$	2800 ± 112 2860 ± 114 3800 ± 152 4050 ± 160	5 10 15 20

Таблица 2. Свойства частиц сажи, исследованные в работах [5,7,16]

Было решено отбирать образцы частиц сажи для исследования методом КР на высотах 5, 15 и 20 mm в пламени ацетилен-воздух и на высотах 5 и 20 mm пламени этилен-воздух. Высоты 5 и 20 mm соответствуют частицам сажи на промежуточном и конечном этапе их роста. Частицы сажи на высоте 15 mm в пламени ацетилен-воздух вызывают интерес, поскольку близки по параметрам к этиленовой саже на конечном этапе роста. Отбор проводился на кварцевые пластинки размером $20 \times 10 \times 1$ mm. Эти пластинки с помощью пневмоцилиндра импульсным образом вводились горизонтально в центр пламени на 2 s (рис. 1). Затем вне пламени они остывали в течение 10 s в окружающем воздухе. Данная операция повторялась 50-100 раз на данной высоте с целью накопления достаточного количества исследуемого материала для спектроскопии КР.

1.3. Спектроскопия КР

Спектры КР образцов сажи измерялись на спектрометре "InVia Reflex" фирмы "Reinshow". Для возбуждения спектров использовался твердотельный Nd: YAGлазер с длиной волны 532 nm. Мощность излучения, падающего на образец, составляла $5.3 \,\mu\mathrm{W}$, чтобы не повредить его структуру. При измерениях лазерный луч фокусировался через длиннофокусный объектив х50 в круглую область диаметром $\sim 2\,\mu{\rm m}$. При измерениях линий КР использовалась дифракционная решетка разрешением 1800 gr/mm, диапазон измерения от 100 до $3600\,\mathrm{cm^{-1}}$. В каждой точке накопление сигнала проводилось суммарно в течение 250 s. Прибор был откалиброван по кремниевому стандарту. В общей сложности от 3 до 6 точек случайным образом выбирались на каждом образце для проверки однородности материала. Позднее эти спектры усреднялись для получения статистически значимого спектра КР.

2. Анализ сигналов КР

Типичный спектр КР образца сажи представлен на рис. 4. Можно заметить две основные особенности, а именно пики D и G, которые обычно доминируют в спектре КР любых неупорядоченных углеродистых

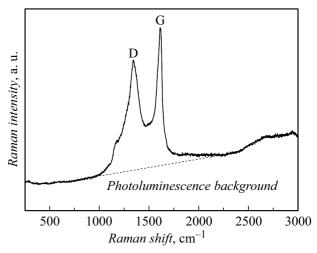
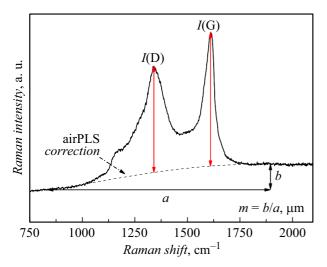



Рис. 4. Усредненный спектр КР образца сажи, полученного в пламени ацетилен-воздух на высоте 5 mm. Штриховой линией показан фон фотолюминесценции.

материалов [9]. Способность спектроскопии КР давать химическую/структурную информацию об углеродных материалах заключается в том, что наличие дефектов в графеновых плоскостях атомов с sp^2 -гибридизацией позволяет активировать моду КР D ("Defect") при $\sim 1350\,{\rm cm^{-1}}$, запрещенную в идеальной гексагональной решетке графена [20]. Краевые эффекты в небольших графеновых плоскостях являются одним из основных источников этой полосы. Полоса G ("Graphite") при $\sim 1600\,{\rm cm^{-1}}$, обусловленная каждым атомом углерода sp^2 , наоборот, в основном нечувствительна к дефектам и демонстрирует лишь небольшие изменения ширины и положения максимума в зависимости от различных углеродных структур [8]. Из рис. 4 видно, что спектр КР помимо пиков D и G имеет непрерывную вертикальную составляющую, увеличивающуюся с ростом сдвига КР и обусловленную наличием дополнительного сигнала фотолюминесценции.

Хорошо известно, что отношение интенсивности пиков D и G, I(D)/I(G), может быть выражено как функция размера графеновых плоскостей L_f , составляющих структуру частиц сажи [20]. Первоначально в графи-

Рис. 5. Интерпретация спектра КР образца сажи, извлеченного из пламени ацетилен—воздух на высоте 5 mm и определение пиков интенсивности I(D), I(G) и фона фотолюминесценции m.

те была обнаружена обратно-пропорциональная зависимость между $I({\rm D})/I({\rm G})$ и L_f [20], однако эта зависимость верна для материалов с характерным размером L_f более 3 nm. Когда речь идет о материалах с размером графеновых плоскостей менее 3 nm, она перестает работать. Причина этого заключается в том, что с уменьшением L_f сокращается количество ароматических колец в одном графеновом домене, которые ответственны за активацию пика D. Как следствие, интенсивность $I({\rm D})$ и отношение $I({\rm D})/I({\rm G})$ для данных материалов показывают прямо-пропорциональную зависимость от L_f . В работе [8] показано, что эта зависимость имеет квадратичный вид $I({\rm D})/I({\rm G}) \propto L_f^2$. Эмпирическое выражение для этой зависимости было приведено в работе [9] и имеет следующий вид:

$$L_f^2[nm^2] = 5.4 \cdot 10^{-2} \cdot (E_L)^4 [eV^4] \cdot I(D) / I(G), \quad (1)$$

где $E_{\rm L}$ — энергия падающего фотона.

В настоящей работе рассматриваются частицы сажи, представляющие собой сильно неупорядоченные/аморфные углеродные материалы с размером графеновых плоскостей менее 2 nm [4,5]. Поэтому в соответствии с результатами работ [14,15] для интерпретации спектров КР может быть использована формула (1). Определение пиков I(D) и I(G) из спектра КР проводится с помощью функции коррекции базовой линии, основанной на алгоритме airPLS [21] (рис. 5).

Типичные спектры КР гидрированных образцов сажи с возбуждением в видимом диапазоне спектра содержат увеличение фона фотолюминесценции с ростом сдвига частоты КР. Это связано с насыщением водородом центров безызлучательной рекомбинации, где они создают промежуточные уровни в электронной структуре, интенсифицируя излучательную рекомбинацию и подавляя безызлучательную [22]. При содержании атомов Н более

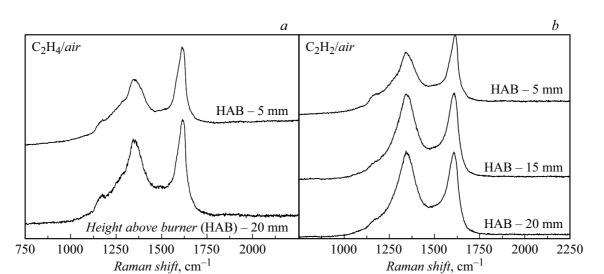
 $\sim 40{-}45\%$ фон фотолюминесценции обычно превышает сигнал КР.

Из анализа фона фотолюминесценции в спектре КР можно получить дополнительную информацию о химическом составе частиц сажи. Казираги и др. [23] вывели эмпирическое уравнение, которое можно использовать для определения содержания атомов водорода в структуре образца на основе измеренного отношения между интенсивностью фона фотолюминесценции спектра КР (m) и интенсивностью полосы I(G) (рис. 5):

$$H[\%] = 21.7 + 16.6 \cdot \log_{10} \{ m/I(G) \}, \tag{2}$$

где H [at.%] — процент атомов водорода, из которого можно рассчитать отношение H/C.

Необходимо отметить, что в работе [23], где получена формула (2), были исследованы пленки гидрированного углерода, а не частицы сажи. Поскольку оба эти материала классифицируются как формы углерода, в которых атомы имеют как sp^2 -, так и sp^3 -гибридизацию, авторы считают оправданным использование формулы (2) для получения информации о содержании водорода в структуре частиц сажи [15].


3. Результаты

На рис. 6 представлены спектры КР частиц сажи, полученных в пламени. Все спектры были нормализованы по пику G. Изображения слева соответствуют высотам 5 и 20 mm пламени этилен—воздух. Изображения справа — высотам 5, 15 и 20 mm пламени ацетилен—воздух. Как и ожидалось, на всех спектрах ярко выражены пики D ($\sim 1350\,\mathrm{cm}^{-1}$) и G ($\sim 1600\,\mathrm{cm}^{-1}$), характерные для углеродных материалов. Стоит заметить, что для обоих режимов, заметны следующие тенденции, связанные с увеличением высоты пламени:

- 1) увеличение интенсивности пика D относительно пика G, что свидетельствует о росте графеновых плоскостей в структуре частиц сажи;
- 2) уменьшение фона фотолюминесценции, связанного с содержанием водорода в частицах сажи.

При этом спектры ацетиленовой сажи на высотах 15 и 20 mm визуально очень похожи, что может говорить о том, что активный процесс трансформации внутренней структуры частиц в пламени ацетилен—воздух прекращается на высоте 15 mm. Помимо этого, на спектрах можно увидеть наличие небольшого дополнительного пика в районе $\sim 1200\,\mathrm{cm}{-1}$. Согласно работе [13], эта вибрационная мода активируется за счет $s\,p^2{-s}\,p^3$ -связей или за счет растяжения атомов С—С и С=С в алифатических структурах, однако в рамках настоящей работы она не анализировалась.

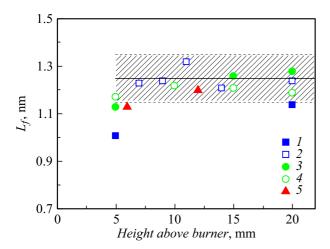
Из измеренных спектров КР сажи были извлечены значения I(D)/I(G). В пламени этилен—воздух они составили 0.64 и 0.81 для "молодых" и "взрослых" частиц сажи соответственно. Использование уравнения (1) дает значения размера графеновых плоскостей

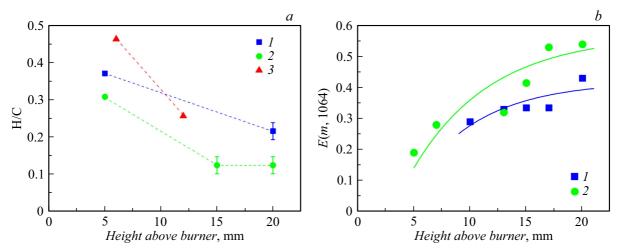
Рис. 6. Спектры КР частиц сажи, отобранных на различных высотах пламени этилен—воздух (a) и ацетилен—воздух (b).

 $L_f = 1.01\,\mathrm{nm}$ для высоты 5 mm и $L_f = 1.14\,\mathrm{nm}$ для высоты 20 mm. Аналогичным образом были получены результаты для ацетиленового пламени: для высоты над срезом горелки 5 mm — I(D)/I(G) = 0.8, $L_f = 1.13$ nm; для высоты $15\,\mathrm{mm}\,-\,I(\mathrm{D})/I(\mathrm{G})=0.99,\;L_f=1.26\,\mathrm{nm},$ для высоты $20 \,\mathrm{mm} \, - \, I(\mathrm{D})/I(\mathrm{G}) = 1.02, \, L_f = 1.28 \,\mathrm{nm}.$ На рис. 7 эти значения L_f сопоставлены со средним размером графеновых плоскостей, полученных с помощью метода ПЭМ [5], а также с результатами исследования [14], где методом КР изучалось схожее пламя этилен—воздух ([C]/[O] = 0.72). Видно, что для частиц сажи, синтезированных в пламени ацетилен-воздух, наблюдается хорошее согласие между значениями L_f , полученными методом ПЭМ (пустые кружки) и методом спектроскопии КР (сплошные символы). Для этиленовой сажи значения L_f , определенные из спектра КР (сплошные квадраты), лежат несколько ниже, чем результаты электронной микроскопии (пустые квадраты), однако величина расхождения не превышает ~ 18%, что можно считать приемлемым при использовании двух принципиально разных методик. Размер графеновых плоскостей 1-1.3 пт примерно соответствует молекуле ПАУ циркумкоронену ($C_{54}H_{18}$) [25]. Это интересное наблюдение, неплохо согласующееся с результатами работы Ванга [25], где подробно рассматривается процесс образования зародышей частиц сажи и где показано, что молекулы ПАУ только при достижении размеров циркумкоронена могут образовывать димеры с достаточно прочной связью для выживания в условиях пламени. Для этого сравнивались константы равновесия реакции димеризации K_p следующих ПАУ: коронен ($C_{24}H_{12}$), овален $(C_{32}H_{14})$ и циркумкоронен $(C_{54}H_{18})$ с критическим значением K_p , необходимым для сохранения димера в условиях сажевого пламени при атмосферном давлении. Было показано, что из трех рассмотренных ПАУ только у циркумкоронена равновесная константа димеризации выше критического значения в диапазоне температур

1600—1900 К, характерного для сажевых пламен, в том числе исследованных в настоящей работе (рис. 2).

Важнейшим результатом данных измерений является заметный рост величины графеновых плоскостей с увеличением высоты пламени. Хорошо известно, что с увеличением высоты пламени изменяется не только структура, но и размер первичных частиц сажи (см., например, [4,26]). Таким образом, можно утверждать, что, по мере формирования частиц сажи, с увеличением высоты пламени, наряду с увеличением общих размеров частиц, происходит рост размеров графеновых плоскостей в их структуре. С другой стороны, данные результатов измерений, проведенных методом ПЭМ в пламенах различных топлив в работе [5], не позволяли заметить изменения величины графеновых плоскостей при росте частиц сажи. Другими словами, в соответствии с данными ПЭМ частицы сажи вне зависимости от их размера и стадии роста состояли из примерно одинаковых структурных элементов. Действительно, на рис. 7, где пустыми символами обозначена часть результатов из работы [5], отчетливо видно отсутствие систематического изменения размеров графеновых плоскостей, полученных методом ПЭМ, на разных высотах пламени, что соответствует примерно постоянному значению L_f , равному 1.25 ± 0.1 nm (рис. 7 — заштрихованная область). Однако результаты спектроскопии КР, полученные в настоящей работе, а также в работе [14], указывают на наличие роста графеновых плоскостей как для этиленовой, так и для ацетиленовой сажи при увеличении высоты пламени над срезом горелки. Взяв во внимание весь массив экспериментальных данных, полученных в настоящей работе и в исследованиях [4,5,14], можно предположить, что размер графеновых плоскостей действительно увеличивается в процессе роста частиц сажи, однако этот размер достигает предельного значения на промежуточном этапе формирования частиц, хотя сами частицы еще продолжают увеличиваться в размерах




Рис. 7. Средняя длина графеновых плоскостей частиц сажи в зависимости от высоты пламени над срезом горелки. Результаты получены: 1 — методом КР в пламени этилен-воздух, 2 — методом ПЭМ в пламени этилен-воздух [5], 3 методом КР в пламени ацетилен-воздух, 4 — методом ПЭМ в пламени ацетилен-воздух [5], 5 — методом КР в пламени этилен—воздух ([C]/[O] = 0.72) [14]. Заштрихованная область показывает средний размер графеновых плоскостей 1.25 ± 0.1 nm из работы [5].

и объеме. Другими словами, на раннем этапе роста частиц сажи графеновые плоскости также растут, но при достижении определенного размера частиц ($\sim 10\,\mathrm{nm}$) графеновые плоскости достигают максимальной длины $(1.25 \pm 0.1 \, \text{nm} \, [5])$ и дальнейший рост частиц продолжается за счет других механизмов (коалесценция, конденсация и т.д.).

На основании измерений интенсивности фона фотолюминесценции на спектрах КР сажи в пламени этилен-воздух на высотах 5 и 20 mm над срезом горелки были получены значения $m/I(G) = 2.11 \pm 0.05 \, \mu \mathrm{m}$ и $m/I({
m G}) = 0.58 \pm 0.05 \,\mu{
m m}$, что с использованием уравнения (2) позволяет определить среднее значение процентного содержания атомов водорода в частицах сажи $H=27.1\pm0.3\%$ и $H=17.8\pm0.8\%$ соответственно. Такие же измерения были проведены для исследования структуры частиц сажи, сформировавшихся в пламени ацетилен-воздух на высотах 5, 15 и 20 mm над срезом горелки. Для высоты над срезом горелки 5 mm были получены значения $m/I(G) = 1.3 \pm 0.05 \,\mu\mathrm{m}$ и $H = 23.6 \pm 0.4\%$. Для высот 15 и 20 mm результаты идентичны $m/I(\mathrm{G}) = 0.23 \pm 0.05 \,\mu\mathrm{m}$ и $\mathrm{H} = 11 \pm 1.8\%$. Для обоих типов топлив при увеличении высоты пламени происходит уменьшение процентного содержания атомов Н в процессе роста частиц сажи. При этом для режима ацетилен-воздух в отличие от режима этилен-воздух характерна меньшая доля Н как для "молодых", так и для "взрослых" частиц сажи.

Атомы Н в структуре частиц сажи содержатся в виде органического углерода [14]. Наличие включений органического углерода оказывает сильное влияние на структуру и, как следствие, на свойства частиц сажи (оптические, теплофизические свойства, склонность к окислению и др.). На рис. 8, a на основе полученных результатов показано, как уменьшается отношение Н/С в процессе роста частиц сажи с увеличением высоты пламени. Как и на рис. 7, здесь для сравнения добавлены результаты работы [14], где методом КР были определены величины m/I(G) для схожего пламени этилен-воздух ([C]/[O] = 0.72). Из рис. 7 и 8, a видно, что зона роста частиц сажи в работе [14] в условиях этиленового пламени была более узкой, чем в настоящей работе. Однако значения Н/С частиц этиленовой сажи, которые и в настоящей работе, и в работе [14] идентифицируются как "взрослые", имеют близкое значение (0.21 и 0.26 соответственно). При этом ацетиленовая сажа обладает меньшим Н/С, чем этиленовая, на всем этапе роста частиц сажи от "молодых"до "взрослых". Разница величин Н/С пламен различных топлив достигает максимума на диапазоне высот пламени 15-20 mm и составляет ~ 50%. Такое существенное расхождение во внутренней структуре частиц приводит к разнице в их оптических свойствах. Для сравнения на рис. 8, b показана зависимость функции коэффициента преломления на длине волны $1064\,\mathrm{nm}~E(m,1064)$ частиц сажи от высоты пламени, полученная в работе [5] методом лазерно-индуцированной инкандесценции (ЛИИ) при параметрах пламен, полностью эквивалентных параметрам, использованным в настоящей работе (табл. 1). На рис. 8, b величины E(m, 1064) ацетиленовой сажи превосходят значения E(m, 1064) этиленовой сажи на всех участках пламени, где была возможность зарегистрировать сигналы ЛИИ. Поскольку E(m, 1064) напрямую связана с коэффициентом поглощения для частиц в пределе Рэлея, можно сделать вывод, что частицы сажи из пламени ацетилен-воздух обладают лучшей поглощательной способностью, чем частицы сажи из пламени этилен-воздух, что качественно коррелирует с уменьшением содержания водорода в составе частиц.

Как следует из рис. 2, в исследованных пламенах отличались температурные профили. До высоты 7 mm температура в обоих режимах равна ~ 1750 К. С дальнейшим ростом высоты температура в пламени этилен-воздух демонстрирует более быстрое падение, чем в пламени ацетилен-воздух. Разница температур на этом участке составляет $\sim 100-150\,\mathrm{K}$. В работе [27] было исследовано различие в структуре частиц сажи, формирующихся в пламени предварительно перемешанных газов метан-воздух при температурах 1650 и 1770 К. Показано, что изменение структуры частиц сажи, формирующихся в пламени предварительно перемешанных газов, больше зависит от характеристик топлива, чем от температуры пламени [27,28]. Если сравнивать частицы сажи, исследованные на высотах 5 mm в обоих режимах пламени при равных температурах, то можно сделать вывод, что в настоящей работе исследования структуры частиц сажи, синтезированных в пламенах

Рис. 8. Изменение свойств частиц сажи в зависимости от высоты над срезом горелки: a — соотношение H/C, b — E(m, 1064) из работы [5], где I — пламя этилен—воздух, 2 — пламя ацетилен—воздух, 3 — пламя этилен—воздух ([C]/[O] = 0.72) [14].

разных углеводородов при соответственно разной температуре, показали более сильную корреляцию с видом топлива, чем с температурой пламени.

В работе [5] было показано, что причиной изменения оптических свойств частиц сажи в процессе их роста является процесс их графитизации: уменьшение среднего расстояния между графеновыми плоскостями и увеличение объема кристаллических областей в структуре частицы сажи, что полностью подтверждается данными спектроскопии КР об увеличении размеров графеновых плоскостей в структуре частиц (рис. 7). Более того, результаты спектроскопии КР говорят о том, что соотношение Н/С также необходимо учитывать в качестве параметра, влияющего на структуру и свойства частиц сажи в процессе их роста. Предполагается, что различия в содержании Н и степени его уменьшения в процессе роста частиц напрямую зависят от типа топлива, используемого для синтеза. Кинетический анализ различия путей формирования частиц сажи из ацетилена и этилена требует отдельного исследования и выходит за рамки настоящей работы. Однако в соответствии с общепринятым механизмом формирования сажи HACA (hydrogen-abstraction-acetylene-addition) [29], ацетилен является основным "кирпичиком" в процессе роста частиц сажи [18]. Предполагается, что из-за этого при горении ацетилена образуются в основном ароматические соединения, которые напрямую участвуют в процессе роста частиц сажи. При горении этилена, помимо образования ароматических соединений, формируются алифатические структуры. К таким соединениям относятся ацикличные углеводороды с группами СН₃ и СН₂, которые содержат большое количество водорода и которые могут находиться в структуре частиц сажи в виде вкраплений на краях графеновых плоскостей. Они замедляют рост графеновых плоскостей, уменьшая интенсивность колебательной моды D на спектрах КР, и увеличивают относительную долю Н в структуре частиц,

оказывая влияние на рост сигнала фотолюминесценции. Косвенное подтверждение этому можно найти в работе [30], где сравнивалось содержание алифатических структур в частицах сажи, синтезированных в пламени этилена и метана. Было показано, что при горении метана, как менее склонного к сажеобразованию топлива, доля алифатических структур в частицах сажи была выше, чем в этиленовой саже. В силу того, что отношение Н/С в метане в два раза выше, чем в этилене, доля водорода в метановой саже также была выше, а ее поглощательная способность ниже. Ацетилен как топливо для синтеза частиц сажи в работе [30] не рассматривался, поэтому наше предположение требует экспериментального подтверждения.

Заключение

Методом спектроскопии КР были исследованы частицы сажи, синтезированные в предварительно-перемешанных пламенах этилен—воздух и ацетилен—воздух. Сравнение параметров частиц, синтезированных в данных условиях, проводится впервые. Отбор проб образцов проводился на высотах пламени, соответствующих промежуточной и конечной стадиям формирования частиц.

Было установлено, что графеновые плоскости — базовые элементы структуры частиц сажи — растут в размерах с увеличением высоты пламени. Для пламени этилен—воздух размер графеновых плоскостей L_f возрастает от 1.01 до 1.14 nm, для пламени ацетилен—воздух — от 1.13 до 1.28 nm. Полученные результаты дополняют данные, полученые ранее методом ПЭМ, указывая на процесс увеличения размера графеновых плоскостей L_f на начальных этапах роста частиц сажи. Размер графеновых плоскостей 1-1.3 nm соответствует полиароматической молекуле циркумкоронена с количеством атомов углерода 54.

Было показано, что доля водорода в частицах сажи уменьшается с увеличением высоты пламени. Для пламени этилен—воздух доля H уменьшается от $27.1\pm0.3\%$ до $17.8\pm0.8\%$; для пламени ацетилен—воздух — от $23.6\pm0.4\%$ до $11\pm1.8\%$. Процесс дегидрирования отражает изменение внутренней структуры частиц сажи в процессе их роста и является одним из процессов, характеризующих графитизацию частиц наряду с увеличением объема кристаллических областей внутри частиц сажи и уменьшением среднего расстояния между графеновыми плоскостями.

Ацетиленовая сажа демонстрирует более графитизированную структуру, чем этиленовая сажа, что выражается в больших значениях L_f и меньшем содержании Н в процессе роста частиц сажи. Предполагается, что причиной этого является меньшая доля алифатических структур, формирующаяся при горении ацетилена, по сравнению с этиленом. Результаты, полученные в рамках настоящей работы, могут найти применение в климатических моделях, для уточнения вклада частиц сажи в нагрев атмосферы, а также для совершенствования методов мониторинга аэрозолей, содержащих частицы сажи

Благодарности

Авторы работы благодарят А.А. Аверина (Институт физической химии и электрохимии им. А.Н. Фрумкина РАН) за помощь в проведении измерений образцов.

Финансирование работы

Работа выполнена при поддержке Министерства науки и высшего образования Российской Федерации, ГЗ № 075-00270-24-00.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] Е.В. Гуренцов, А.В. Еремин, Р.Н. Колотушкин. Оптика атмосферы и океана, **35** (8), 626 (2022). DOI: 10.15372/AOO20220805 [E.V. Gurentsov, A.V. Eremin, R.N. Kolotushkin. Atmos. Oceanic Opt, **35** (6), 645 (2022). DOI: 10.1134/S102485602206015X]
- [2] T.C. Bond, S.J. Doherty, D.W. Fahey, P.M. Forster, T. Berntsen, B.J. DeAngelo, M.G. Flanner, S. Ghan, B. Kärcher, D. Koch, S. Kinne, Y. Kondo, P.K. Quinn, M.C. Sarofim, M.G. Schultz, M. Schulz, C. Venkataraman, H. Zhang, S. Zhang, N. Bellouin, S.K. Guttikunda, P.K. Hopke, M.Z. Jacobson, J.W. Kaiser, Z. Klimont, U. Lohmann, J.P. Schwarz, D. Shindell, T. Storelvmo, S.G. Warren, C.S. Zender. J. Geophys. Res. Atmos., 118, 5380 (2013). DOI: 10.1002/jgrd.50171
- [3] G. De Falco, Ch. Colarusso, M. Terlizzi, A. Popolo, M. Pecoraro, M. Commodo, P. Minutolo, M. Sirignano,

- A. D'Anna, R.P. Aquino, A. Pinto, A. Molino, R. Sorrentino.Front. Immunol., 8, 1415 (2017).DOI: 10.3389/fimmu.2017.01415
- [4] B. Apicella, P. Pre, M. Alfe, A. Ciajolo, V. Gargiulo, C. Russo, A. Tregrossi, D. Deldique, J.N. Rouzaud. Proc. Combust. Inst. 35, 1895 (2015). DOI: 10.1016/j.proci.2014.06.121
- [5] E.B. Гуренцов, A.B. Дракон, A.B. Еремин, P.H. Колотушкин, Е.Ю. Михеева. TBT, **60** (3), 374 (2022).DOI: 10.31857/S0040364422020053 [E.V. Gurentsov, A.V. Drakon, A.V. Eremin, R.N. Kolotushkin, E.Yu. Mikheyeva. High Temperature, **60** (3), 335 (2022). DOI: 10.1134/S0018151X22020055
- [6] H.A. Michelsen, M.B. Colket, P.-E. Bengtsson, A.D. Anna, P. Desgroux, B.S. Haynes, J.H. Miller, G.J. Nathan, H. Pitsch, H. Wang. ACS Nano, 14 (10), 12470 (2022). DOI: 10.1021/acsnano.0c06226
- [7] Е.В. Гуренцов, А.В. Еремин, Р.Н. Колотушкин, Е.С. Ходыко. Краткие сообщения по физике, **49** (12), 35 (2022). [E.V. Gurentsov, A.V. Eremin, R.N. Kolotushkin, E.S. Khodyko. Bull. Lebedev Phys. Inst., **49** (12), 422 (2022). DOI: 10.3103/S1068335622120028]
- [8] A.C. Ferrari, J. Robertson. Philos. Trans. R. Soc. A, 362, 2477 (2004). DOI: 10.1098/rsta.2004.1452
- [9] A.C. Ferrari, D.M. Basko. Nat. Nanotechnol., 8, 235 (2013).DOI: 10.1038/nnano.2013.46
- [10] M. Lapuerta, F. Oliva, J.R. Agudelo, J.P. Stitt. Combust. Sci. Technol., 183 (11), 1203 (2011).
 DOI: 10.1080/00102202.2011.587484
- [11] H. Ge, Z. Ye, R. He. J. Environ. Sci. (Beijing, China), 79, 74 (2019). DOI: 10.1016/j.jes.2018.11.001
- [12] E. Villa-Aleman, J.R. Darvin, M.H. Nielsen, T.M. Willey. J. Raman Spectrosc., 53, 1571 (2022). DOI: 10.1002/jrs.6401
- [13] B. Dippel, H. Jander, J. Heintzenberg. Phys. Chem. Chem. Phys., 1, 4707 (1999). DOI: 10.1039/A904529E
- [14] S. Bocchicchio, M. Commodo, L.A. Sgro, M. Chiari,
 A. D'Anna, P. Minutolo. Fuel, 310, 122306 (2022).
 DOI: 10.1016/j.fuel.2021.122308
- [15] C. Russo, A. Ciajolo. Combust. Flame, 162, 2431 (2015). DOI: j.combustflame.2015.02.011
- Дракон, [16] E.B. Гуренцов, A.B. A.B. Еремин. P.H. Колотушкин, Е.Ю. Михеева. ЖТФ, **92** (1), (2022).DOI: 10.21883/JTF.2022.01.51855.206-21 E.V. Gurentsov, A.V. Drakon, A.V. Eremin, R.N. Kolotushkin, E.Yu. Mikheyeva. Tech. Phys., 92 (1), 53 (2022). DOI: 10.21883/TP.2022.01.52533.206-21]
- [17] B. Axelsson, R. Collin, P.-E. Bengtsson. Appl. Opt., 39, 3683 (2000). DOI: 10.1364/AO.39.003683
- [18] Т.В. Комарова. *Получение углеродных материалов* (РХ-ТУ им. Д.И. Менделеева, М., 2001)
- [19] C.S. McEnally, Ü.Ö. Köylü, L.D. Pfefferle, D.E. Rosner.
 Combust. Flame, 109 (4), 701 (1997).
 DOI: 10.1016/S0010-2180(97)00054-0
- [20] F. Tuinstra, J.L. Koenig. J. Chem. Phys., 53, 1126 (1970). DOI: 10.1063/1.1674108
- [21] Z.-M. Zhang, S. Chen, Y.-Z. Liang. Analyst, 135 (5), 1138 (2010). DOI: 10.1039/B922045C
- [22] J. Robertson. Phys. Rev. B, **53**, 16302 (1996). DOI: 10.1103/PhysRevB.53.16302
- [23] C. Casiraghi, F. Piazza, A.C. Ferrari, D. Grambole, J. Robertson. Diamond Relat. Mater., 14, 1098 (2005). DOI: 10.1016/j.diamond.2004.10.030

- [24] Y. Zou, X. Hou, H. Wei, J. Shao, Q. Jiang, L. Ren, J. Wu. Angew. Chem., 62 (19), e2023010 (2023). DOI: 10.1002/anie.202301041
- [25] H. Wang. Proc. Combust. Inst., **33** (1), 41 (2011). DOI: 10.1016/j.proci.2010.09.009
- [26] A.V. Drakon, A.V. Eremin, E.V. Gurentsov, E.Yu. Mikheyeva, R.N. Kolotushkin Appl. Phys. B: Lasers Opt., 127 (6), 81 (2021). DOI: 10.1007/s00340-020-07426-3
- [27] M. Alfe, B. Apicella, J.-N. Rouzaund, A. Tregrossi, A. Ciajolo. Combust. Flame, 157 (10), 1959 (2010). DOI: 10.1016/j.combustflame.2010.02.007
- [28] M. Alfe, B. Apicella, R. Barbella, J.N. Rouzaud, A. Tregrossi, A. Ciajolo. Proc. Combust. Inst., 32 (1), 697 (2009). DOI: 10.1016/j.proci.2008.06.193
- [29] H. Wang, M. Frenklach. Combust. Flame, 110, 173 (1997). DOI: 10.1016/S0010-2180(97)00068-0
- [30] C. Russo, A. Tregrossi, A. Ciajolo. Proc. Combust. Inst., 35, 1803 (2015). DOI: 10.1016/j.proci.2014.05.024