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Magneto-Stark effect influence on intensity of exciton-light coupling
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1. Introduction

Though the magneto-Stark effect (MSE) was for the first

time studied in the second half of the past century [1–3],
investigation of this phenomenon is still essential for the

present-day research community [4–12]. According to these

and other studies, the effect of a magnetic field on a

moving exciton may be represented as an effective electric

field whose strength is proportional to the product of the

exciton motion wave vector and magnetic field strength.

Such effective field changes the exciton dipole moment

and may be detected in optical spectra by exciton-light

coupling variation. It should be noted that all known

previously published experimental and theoretical studies of

MSE addressed this phenomena either in bulk crystals [4–9]
or in two-dimensional systems such as double quantum

wells or stacking faults [10–12]. Exciton states observed

in such structures are characterized by the exciton wave

vector whose value is equal or close to the light wave

vector in semiconductors. This circumstance prevents from

investigating MSE for excitons with large wave vector.

At the same time, exciton states with wave vectors

exceeding the light wave vector by one order of magnitude

are observed in optical experiments in so-called wide

quantum wells (QW) [13–15]. Wells whose thickness

exceeds the exciton Bohr radius by an order of magnitude

are referred to as wide wells. Earlier, size exciton motion

as a whole [16–28] and the influence of external fields on

states with large wave vector were investigated in such QW,

see, for example, [29–37].

In particular, it was shown in [29,30] that uniaxial stress
along the twofold and fourfold axes may lead to the variation

of exciton masses and appearance of the linear in wave

vector terms, in the exciton Hamiltonian. According to

papers [31–33], electric field in wide QW results in variation

of exciton-light coupling and an effect of phase inversion of

the spectral oscillations in the reflection spectrum. When

investigating exciton optical spectra of wide QW in magnetic

field in the Voight geometry, the effects of magneto-induced

variation of the exciton mass were detected [34,35]. In the

Faraday geometry, magnetic field results in the effect of

dependence of the Zeeman splitting of exciton states on the

value of the exciton wave vector [36,37].
This study is devoted to theoretical investigation of the

MSE effect on exciton-light interaction for exciton states

with large wave vector that are usually observed in the

optical spectra of wide QW. Such large wave vectors will be

referred hereinafter implying that applicable exciton states

may be investigated in such wells. Whilst QW themselves

and the related features of size quantization are not directly

addressed herein. They are indirectly implied, because the

addressed exciton states are characterized by large wave

vectors.

The remaining part of paper is arranged as follows.

The second section describes the exciton Hamiltonian in

a magnetic field. The third section reviews the effect

of the effective electric field occurring at MSE on the

exciton states. The fourth section describes the exciton-

light interaction variation due to MSE. The last section is

devoted to conclusions.

2. Exciton Hamiltonian moving
in the transverse magnetic field

Let’s consider an exciton in GaAs crystal moving along

the z axis whose direction coincides with the crystallo-
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graphic axis [001]. In addition, for the exciton wave vector

value and components, K = Kz , Kx = Ky = 0 are met. The

magnetic field vector B is directed along the x axis, i. e.

B = Bx , By = B z = 0. The x , y and z axes are directed

along the fourfold axes [100], [010] and [010], respectively.
The exciton states observed in the optical experiment in

GaAs type materials are formed by the states of a twofold

degenerate conduction band Ŵ6 and a fourfold degenerate

valence band Ŵ8. The exciton Hamiltonian is formed by

Hamiltonians of free electrons and holes (Hc and Hν) in

these bands and their Coulomb interaction

ĤX = Eg + Ĥc + Ĥν −
e2

ε0r
, (1)

where Eg is the band gap width, e is the electron charge,

ε0 is the background dielectric permittivity of the crystal,

r = |re − rh| is the electron-hole distance (re and rh are

electron and hole radius vectors, respectively).
This Hamiltonian may be expressed through the exciton

motion wave vector, K, relative motion moment operators of

electrons and holes in the exciton, p̂α = −i~∂/∂α, and mag-

netic field potential vector Âα [10,12]. Here, α = x , y, z are

the relative motion coordinates of the electron and hole:

x = xh − x e , y = yh − y e and z = z h − z e , where xh, yh, z h

and x e, y e, z e are the hole and electron coordinates, respec-

tively. The exciton motion wave vector may be treated as

just a number. The potential vector components in the

Landau gauge are written as: (e/c)Az = (e/c)B · y and

Ax = Ay = 0. It should be noted that the effect discussed

below is essentially manifested for the states characterized

by high wave vector K ≫ 1/aB , where aB is the exciton

Bohr radius. As shown in [38], mixture of heavy-hole

and light-hole excitons may be neglected for such wave

vectors. In this approximation, energy-wave vector relation

for heavy-hole and light-hole excitons is parabolic as for

non-degenerate exciton bands. Considering the above,

Hamiltonian (1) may be written as

Ĥh(l) = Eg +
~
2K2

2Mh(l)
+

p̂2

2µ
−

e2

ε0r
+

(e
c

)

~K
Mh(l)

By

+
(e

c

)2 m3
e + m3

h

2M2memh
B2y2. (2)

Here, the second term is the kinetic energy of a moving

exciton that is a constant scalar quantity for the certain wave

vector K. Mh(l) = me + mhh(lh) is the mass of hheavy-hole

exciton (index h) and light-hole exciton (index l), where

me is the effective mass of an electron and mhh(lh) is the

mass of heavy-hole (hh) or light-hole (lh). It should be

noted that to describe the exciton motion as a whole in

an approximation of large wave vectors (K ≫ 1/aB , where

aB is the exciton Bohr radius), the mass of heavy- and

light-holes are assumed equal to mhh(lh) = m0/(γ1 ± 2γ2),
where γ1 and γ2 are the Luttinger parameters and m0 is

the mass of a free electron, see [38]. The third term

describes the kinetic energy of the relative motion of and

electron and hole in an exciton. This used a notation for the

reduced mass µ = memh/(me + mh), where mh = m0/γ1 is

the mass of a hole that has the same value for heavy-

hole and light-hole excitons in such approximation [38].
A notation for the squared relative motion momentum

operator is also introduced: p̂2 = p̂2
x + p̂2

y + p̂2
z . The fifth

term in expression (2) contains both the exciton motion

wave vector and a relative motion coordinate of an electron

and hole. The last term in expression (2) describes the

diamagnetic exciton shift, where an expression for the mass

of exciton M = me + mh is used.

Expression (2) shall also contain a term describing the

Zeeman splitting in a magnetic field: µB(geσx + ghJx)B .

here, σx is the Pauli matrix and Jx is the angular moment

matrix of a hole, ge and gh are g-factors of an electron and

hole, respectively; µB is the Bohr magneton. The analysis

shows that in the magnetic fields for GaAs addressed below,

the energy variation described by this operator is much

lower than the energy variations described by the remaining

terms in expression (2), therefore, the Zeeman splitting is

not discussed below.

In such scenario, the effects of mixture of heavy-hole and

light-hole exciton states may be neglected, because their

contributions to the energy are low compared with the rest

contributions addressed herein. This allows the heavy-hole

and light-hole exciton states to be considered independently

from each other within the approximations used herein.

To further simplify the problem, it should be noted

that, in QW on the basis of GaAs/AlGaAs compounds,

contribution of light-hole excitons to spectra is significant

only near the main optical transition of a light-hole exciton

for which the wave vector is K = q (q is the wave vector of

light). At the same time, the exciton-light coupling variations

addressed herein are significant only at large exciton wave

vectors such as K ≫ q. Therefore, below we shall restrict

ourselves only to the case of heavy-hole exciton states that

are most vividly revealed in optical experiments.

3. Magneto-Stark effect for large exciton
wave vectors

In order to find the energy and wave functions of the

relative motion of an electron and hole in an exciton,

Hamiltonian eigenproblem (2) shall be solved. Since the

analytical solution of such problem has not been found

yet, we will solve it numerically. For this purpose, it is

convenient to pass from a Cartesian to cylindrical coordinate

system according to the expressions, see, for example, [13]:

ρ =
√

x2 + z 2, y = y, φ = arctan g(x/z ). (3)

If the first two terms in (2) are omitted, which may

be assumed as constant numbers at fixed K, then after

pass to cylindrical coordinates and considering the above

Physics of the Solid State, 2024, Vol. 66, No. 1



32 D.K. Loginov, A.V. Donets

approximations, this Hamiltonian is written as

Ĥh = −
~
2

2µ

(

∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

∂2

∂z 2

)

−
e2

ε0
√

ρ2 + y2
− eFKBy + DB2y2. (4)

The notations

FKB = ~KB/(Mhc)

and

D = (e/c)2(m3
e + m3

h)/(2M2memh)

are introduced here. This expression does not contain

derivatives with respect to φ, because only the symmetric

ground state of the exciton is considered which does not

depend on this variable.

It should be noted that the third term in expression (4)
may be formally represented as a contribution to energy

from the effective electric field depending on the product of

the wave vector and magnetic field. Exciton state variation

under the action of such effective field was addressed earlier

in literature as the magneto-Stark effect [1–9]. The last term

in (4) describes the diamagnetic exciton shift which makes

positive contribution to the exciton energy. Of this term

may be assumed as a confiment along the y coordinate

of electron and hole motion in the exciton, besides the

Coulomb summand, also by the parabolic potential. The

slope of such potencial well depends on the squared

magnetic field. This parabolic potential prevents exciton

ionization by the effective electric field FKB , which tends to

spread the electron and hole along the y axis.

Thus, the relative motion energy of the electron and hole

in a sufficiently strong magnetic field may be regarded

as the magneto-Stark effect in a parabolic well. Full

potential considering MSE is derived from three last terms

in expression (4) and is written as

U(K, B) = −
e2

ε0
√

y2 + ρ2
− eFKBy + DB2y2. (5)

As can be seen, (5) depends on the applied field and on the

exciton motion wave vector.

Numeric solution of the problem of finding the Hamil-

tonian wave functions (4) shall be found using the repre-

sentations of derivatives with difference schemes on a finite

discrete coordinate grid [39]. Since this operator includes

second derivatives with respect to two variables, solution of

the problem of finding the operator eigenfunctions is limited

to the diagonalization of a seven-diogonal matrix.

Wave function calculation data is shown in Figu-

re 1, a, b, c. The calculations used the following material

constants of bulk GaAs: Luttinger parameters γ1 = 6.8

and γ2 = 2.2, effective electron mass me = 0.066m0 [40];
background dielectric permittivity ε0 = 12.56 [41]. Com-

paring Figure 1, a, b with Figure 1, c, it could be seen

that the magnetic field for the moving exciton results in

the shift of the wave function peak along the y axis

relative to the origin of coordinates. This shift is associated

with the action of effective electric field FKB . As shown

in Figure 1, d, the effective field results in asymmetric

distortion of potential (5) and, in displacement of the wave

function peak from point ρ = 0, y = 0 along the y axis.

4. Influence of the magneto-Stark effect
on longitudinal and transverse
exciton splitting

Intensity of the exciton-light coupling may be ex-

pressed through the degree of longitudinal-transverse split-

ting [9,13,14]. From knowing the relative motion functions

of the electron and hole in the exciton, it is possible

to calculate exciton longitudinal-transverse splitting using

expression [13]:

~ωLT =

(

2eP1

Eg

)2
π

ε0
|ψ(0)|2. (6)

Here, ψ(0) is the relative motion wave function with

r = 0; constant P1 = ~pcν/m0, where pcν is the interband

matrix element of the electron momentum. For GaAs,

P1 = 10.3 · 10−5 meV · cm [42]. As shown in Figure 1,

ψ(0) shall depend on the wave vector of the applied mag-

netic field. Therefore, the longitudinal-transverse splitting

will also depend on K and B .

Calculation of the longitudinal-transverse exciton splitting

considering MSE is shown in Figure 2. As can be seen,

an increase in the field for the exciton at rest (K = 0)
results in gradual increasing of ~ωLT . This is associated

with the fact that with magnetic field increasing the effective

potential confining the electron-hole pair motion in the

exciton increases and the wave function localization region

becomes narrow due to the diamagnetic effect (Figure 1, d).
In this case, the probability of finding the electron and hole

at the origin of coordinates increases resulting in growth of

~ωLT according to expression (6).

At the same time, with K 6= 0, the effective electric field

results in an opposite effect: the growth of longitudinal-

transverse splitting in the field becomes lower than with

K = 0. Moreover, with K = 2.5 · 106 cm−1, magnetic field

growth up to B ≤ 1.5T results in decrease in ~ωLT . This is

associated with potential profile distortion along the y axis

as shown in Figure 1, d. In such distorted potential, the

relative motion wave function peak moves from the origin

of coordinates as shown in Figure 1, c. This results in a

decrease in |ψ(0)|2 and, as follows from expression (6), in a

decrease in the longitudinal-transverse splitting as shown

in Figure 2. In magnetic field B > 1.5 T, diamagnetic

contribution to ~ωLT becomes higher than the contribution

of the effective electric field, and the longitudinal-transverse

splitting starts growing with an increase in B even for

K = 2.5 · 106 cm−1.
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Figure 1. Wave functions of the exciton ground state: a — calculated without any field; b — in field B = 3T for an exciton at rest and

c — in field B = 3T for a moving exciton with wave vector K = 2.5 · 106 cm−1; pane (d) — potential profile U(K, B) for the relative

motion of an electron and hole taken at ρ = 0 (see expression (5)).

In relatively small fields, the longitudinal-transverse split-

ting shall depend on squared magnetic field and wave vector

in accordance with the perturbation theory. Therefore,

with B < 0.9T, positions of points in Figure 2 shall be

approximated by expression

~ωLT (K, B) = d(K)B2 + ~ωLT (0). (7)

Here, ~ωLT (0) is the longitudinal-transverse splitting with-

out magnetic field which, according to expression (6)
and when using material constant given above, is equal

to 0.0663meV. Values of d(K) in function of the wave

vector are shown in Figure 3. Positions of reference points

in this Figure are described by expression

d(K) = δ · K2 + γd , (8)

where constant coefficients are as follows

δ = 1.4 · 10−15 meV · T−2 · cm−2

and

γd = 0.0037meV · T−2.

The first term in (8) is associated with MSE, which

describes a term containing FKB in expressions (4) and (5).
The second describes square-law variation of ~ωLT in

magnetic field due to the diamagnetic effect.

As shown in Figure 2, in field B ≈ 0.9T and for

K ≥ 2 · 106 cm−1, reference points are poorly described by

functions written as (7) and (8). This may be explained

by the fact that at such values of the wave vector and

magnetic field, the perturbation theory, from which square-

law dependence of ~ωLT on FKB is derived, is not applicable.

For approximation of point positions in the Figure at

B > 0.9 T, the following more complicated expressions shall

be used

~ωLT (K, B) = a(K)B2 + b(K)|B | + ~ωLT (0). (9)

Here, the term proportional to |B | is attributed to the

effect of the diamagnetic shift on the exciton-light coupling.

As shown, for example, in [34], with B > 1T, terms that

are linear in |B | occur in expressions for the diamagnetic

shift of exciton energy vs. magnetic field. This results in
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fieldsB ≤ 0.9 T and expressions (9) and (10) with B > 0.9 T.
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occurrence of the similar summand in the expression for

the longitudinal-tranvers splitting in (9). It should be noted

that it is the second term in expression (9) that describes

nonmonotonicity of variation of ~ωLT with an increase in B
in Figure 2.

Values of a and b in expression (9) are shown in Figu-

re 4. Positions of reference points may be approximated by

expressions

a(K) = αK2 + γa ,

b(K) = βK2 + γb. (10)

These dependences are shown in Figure 3 as solid curves.

Coefficients in expressions (10) have the following values:

α = 1.5 · 10−16 meV · cm2 · T−2,

γa = 1.1 · 10−3 meV · T−2

and

β = −1.3 · 10−15 meV · cm2 · T−1,

γb = 2.6 · 10−3 meV · T−1.

Like in expression (8), the first summands in the right-

hand side are described by FKB -dependent terms in expres-

sions (4) and (5). The second summands in the right-hand

side of each of expressions (10) describe the influence of

the diamagnetic effect on the exciton-light coupling. Thus,

an expression was derived to allow quantitative description

of the above effect.

Note that the effect describe above may be observed

experimentally only for states with large wave vector

K ≫ 1/aB [38]. Such states may be observed in optical

spectra of wide QW. To assess how vividly this effect

shall be revealed in optical experiments, we calculated

the QW reflection spectra based on GaAs/Al0.3Ga0.7As.

The calculation implied that the structure consists of a

290 nm barrier with a background dielectric permittivity

of εb = 11, GaAs well layer with thickness LQW = 210 nm

and semi-infinite barrier layer with permittivity εb = 11.

Background dielectric permittivities of barriers approxi-

mately correspond to that of ternary Al0.3Ga0.7As solution.

Reflection spectra calculation used a bulk polariton modes

interference model in a semiconductor plate with Pekar’s

addition boudary condition, see, for example, [15,16,18].
The calculations used the same values of GaAs variables as

for the longitudinal-tranvers splitting calculation. Also, the

nonradiative exciton attenuation parameter in GaAs layer

was assumed equal to Ŵ = 0.1meV. Figure 5 shows the

reflection spectra of such QW calculated without a magnetic

field and in field B = 3T.

The left-hand half of the figure shows the amplitude-

dominating feature of reflection associated with the basic

optical transition of a heavy-hole exciton. The right-hand

half shows a zoomed in region that contains scattering

reflection oscillations that attenuate towards the high energy
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Figure 4. Values of a and b in expression (9) at various K. Solid

curves are approximations by expressions (10).
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Figure 5. Reflection spectra calculated for a LQW = 210 nm

GaAs/Al0.3Ga0.7As QW without magnetic field (red solid line)
and in field B = 3 T (green solid line). The blue dashed

curve shows the spectrum in the same magnetic field calculated

without considering MSE, but considering the contribution of the

diamagnetic effect to the exciton-light coupling. The black dashed

curve is the calculated spectrum in magnetic field considering

MSE, but without considering the diamagnetic effect. Digits

near the reflection oscillations mean the size quantization level

number N corresponding to this spectral feature.

region and are associated with the exciton size quantization

levels, see [13–15]. An exciton motion size quantization

level with number N is assigned to each of such oscillations..

This number is associated with the exciton motion wave

vector as a whole by expression: K = 2πN/LQW . It

should be noted that either even or odd numbers of size

quantization levels are assigned to each oscillation in the

reflection spectra [15]. Moreover, the first several levels fall

into the main peak region and are not visible against its

background, see, for example, [17,34].
To visualize the effect in question, we have moved the

spectra on the energy axis to make sure that positions of

amplitude-dominating oscillations coincide in all spectra. In

addition, we did not consider the effective exciton mass

variation in a magnetic field which also results from MSE

and was discussed earlier, for example, in [34,35].
Comparison of the reflection spectra calculated for B = 0

and B = 3 T shows that the spectral oscillation amplitudes

in magnetic field increase compared with the amplitudes of

the same oscillations without magnetic field. This differ-

ence is maximum for the dominating reflection oscillation

associated with the basic optical transition of the exciton.

Increase in amplitude in magnetic field is caused by the

diamagnetic effect on the light exciton interaction that is

described by constants γd in expression (8) and by γa , γb

in expression (10). For oscillations associated with the

exciton motion size quantization levels, an increase in the

oscillation amplitude in magnetic field becomes lower with

increasing N, i. e. exciton wave vector. In particular, for

an oscillation with N = 15, the amplitude in field B = 3T

becomes equal to the amplitude of the same oscillation

in field B = 0. Magneto-induced decrease in amplitude

depending on the exciton wave vector is caused by MSE

and described by δ in expression (8) and by α, β in

expression (10).

To demonstrate the diamagnetic effect and MSE sep-

arately, Figure 5 also shows the spectra calculated at

δ = α = β = 0 and γd = γa = γb = 0, respectively. As can

be seen, when only the diamagnetic effect (δ = α = β = 0)

is considered, magnetic field causes an increase in am-

plitudes of all oscillations in the spectrum approximately

by 20% regardless of their wave vector (N). At the same

time, when the effect of only MSE (γd = γa = γb = 0)

on the light-exciton interaction is considered, then only a

decrease in the reflection oscillation amplitude occurs in

magnetic field with an increase in N. An exception in

this case is the amplitude-dominating reflection feature of

the optical transition of the exciton for which the wave

vector is small. Therefore, the MSE effect on the light-

exciton interaction for this reflection oscillation is negligible

compared with other oscillations in the spectrum.

As far as we know, experimental exciton spectra of wide

QW in magnetic field have not been reviewed before for

the dependence of the longitudinal and transverse exciton

splitting on the wave vector. To check the findings obtained

herein, further experimental investigations are required.

5. Conclusion

The longitudinal-tranvers exciton splitting under the

magneto-Stark effect was calculated for large exciton wave

vectors. It is shown that, on the one hand, the effective

electric field results in a decrease in the exciton-light

coupling. The exciton-light coupling strength becomes lower

with increasing product of the magnetic field strength and

exciton wave vector. On the other hand, the diamagnetic

exciton energy shift facilitates an increase in the exciton-

light coupling strength. Thanks to the diamagnetic shift, this

intensity grows with squared magnetic field and does not

depend on the wave vector. As a result of simultaneous

effect of the two factors, the exciton-light coupling for

states with sufficiently large wave vector should vary non-

monotonously with growth of the applied magnetic field.
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