Структурное состояние InSb в композитном материале InSb/опал по данным просвечивающей электронной микроскопии

© А.Е. Калмыков, Л.М. Сорокин, Д.А. Курдюков

Физико-технический институт им. А.Ф. Иоффе Российской академии наук,

194021 Санкт-Петербург, Россия

E-mail: aekalm@mail.ioffe.ru

Поступила в Редакцию 26 февраля 2024 г. В окончательной редакции 18 марта 2024 г. Принята к публикации 21 марта 2024 г.

Методом просвечивающей электронной микроскопии высокого разрешения проведено исследование структурного состояния антимонида индия, введенного в опаловую матрицу. Показано, что наполнитель имеет микрокристаллическую структуру с размерами зерен, на порядок превышающими размеры отдельных пор матрицы. Охарактеризована дефектная структура отдельных кристаллов.

Ключевые слова: композит, опал, InSb, просвечивающая электронная микроскопия.

DOI: 10.61011/FTP.2024.02.57875.6074

1. Введение

Композиционные материалы на основе синтетических опалов продолжают привлекать внимание исследователей [1-4] благодаря возможности с их помощью управлять потоками электромагнитной энергии [5,6].

Синтетические опалы, как и природные, состоят из шаров аморфного кремнезема (SiO₂), образующих гранецентрированную кубическую решетку [7,8]. Диаметры шаров (D) находятся в диапазоне 0.15-1 мкм. Расчет показывает, что в предположении точечного касания шаров, на долю пор между шарами приходится до 26% полного объема. Поры в опале двух типов: тетраэдрические размером 0.23D и октаэдрические размером 0.41D, соединены каналами с поперечным сечением 0.155D [9] и также образуют трехмерную периодическую структуру. Введением различных веществ можно менять показатель оптического контраста $\eta = (\varepsilon_v/\varepsilon_s)/2$ полученного таким образом композита. Здесь ε_v и ε_s диэлектрические постоянные наполнителя и шаров. При достижении величины контраста $\eta > 2.8$ в композите образуется полная фотонная запрещенная зона [10]. Контраст чистого опала для этого недостаточен, поэтому необходимо вводить наполнитель с высоким показателем преломления, например полупроводниковые материалы. С целью дальнейшего повышения контраста материал матрицы удаляют жидкостным травлением. В результате получается так называемая инвертированная опаловая

Несмотря на то что большое количество работ посвящено исследованию свойств композиционных материалов на основе синтетических опалов, нам не удалось в литературных источниках обнаружить результатов детального исследования структурного состояния полупроводниковых наполнителей. В то же время, если в качестве наполнителя используется полупроводниковый материал, то его электронные и оптические свойства

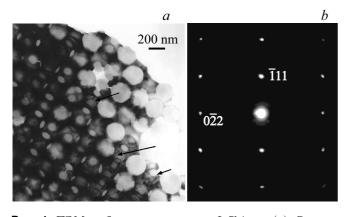
в значительной степени зависят от его структурного состояния.

Цель данной работы — исследование структурного состояния антимонида индия (InSb) в качестве наполнителя опаловой матрицы.

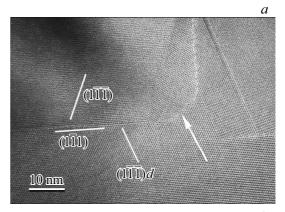
InSb является узкозонным прямозонным полупроводником со структурой сфалерита с достаточно высоким показателем преломления n=4 в инфракрасном диапазоне [11]. Этот материал используется в качестве инфракрасных фотодетекторов.

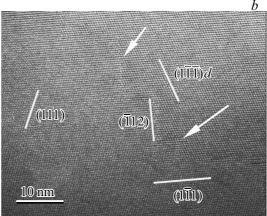
2. Методика эксперимента

Синтетический опал был изготовлен методом Штобера [12] в виде плотноупакованных шаров аморфного кремнезема диаметром ~ 230 нм. InSb наполнял матрицу в жидком состоянии (температура плавления 527°C) под действием капиллярных сил в вакуумной камере для предотвращения реакции с кислородом [13]. Согласно гравиметрическим измерениям, степень заполнения составила 98 ± 3 об%. В ходе кристаллизации плотность антимонида индия уменьшается с 6.5 до $5.77 \, \text{г/см}^3$. Учитывая, что коэффициент температурного расширения (КТР) аморфного кремнезема очень мал, снижение температуры в процессе кристаллизации незначительно, следует ожидать, что наполнитель окажется в сильно напряженном состоянии. Композит выдерживался при температуре плавления InSb в течение 30 мин с тем, чтобы избыток наполнителя покинул матрицу. Далее композит охлаждался до комнатной температуры. Так как KTP InSb более чем в 10 раз превышает KTP SiO_2 (5.4 · 10⁻⁶ K⁻¹ и 0.5 · 10⁻⁶ K⁻¹, соответственно) степень заполнения упала на 0.7 об%.


Образцы для ПЭМ-исследования были приготовлены стандартными методами, включающими нарезку и шлифовку с последующим ионным травлением ионами аргона. Как показали предварительные эксперименты, в

процессе утончения и под воздействием электронного пучка микроскопа в образцах композита наполнитель оставался в матрице. Структурные исследования проводились с помощью просвечивающего электронного микроскопа JEOL 4000EX(II) с ускоряющим напряжением 400 кВ. EDX-спектры регистрировались с помощью микроскопа JEOL 2010, снабженного Si(Li)-детектором.


3. Экспериментальные результаты и обсуждение


ПЭМ-изображения, полученные при небольших увеличениях (от 5000x), продемонстрировали, что наполнитель образовал трехмерную сетку, заполнив сообщающиеся поры. Анализ EDX-спектров не выявил отклонения состава материала в порах от стехиометрического InSb. Картины микродифракции (рис. 1,b) показали, что наполнитель находится в монокристаллическом состоянии на участках образца, площадью в несколько квадратных микрометров, т. е. эти участки значительно превосходят размеры отдельных пор.

В кристаллах наполнителя были обнаружены двойниковые вставки. Так как электронная дифракция соответствовала материалу с решеткой ГЦК, была выбрана область InSb с ориентацией (111) параллельно электронному пучку. Картины микродифракции, зарегистрированные вдоль оси зоны соответствовали решетке с двойниками, которые обнаруживаются на ПЭМ-изображениях. Двойниковые вставки имели форму вытянутых полос с длинной стороной до 700 нм, что превышает размеры одной поры матрицы (рис. 1, a). Поперечный размер вставок < 30 нм. Геометрическая структура матрицы такова, что через соседние поры можно провести прямолинейный отрезок длиной до $4D\sqrt{3}$, в нашем случае — 1600 нм [9]. Минимальный поперечный размер каналов между пустотами равен 36 нм. Таким образом, наблюдаемые вставки расположены сразу в соседних

Рис. 1. ПЭМ-изображение композита InSb/опал (a). Стрелки указывают двойниковые вставки. Картина электронной микродифракции, зарегистрированная от композита. Ось зоны $\langle 211 \rangle$ (b).

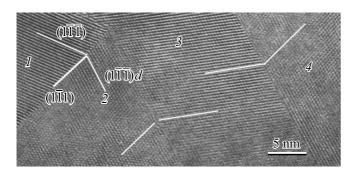


Рис. 2. Изображения различных участков композита, зарегистрированные в режиме высокого разрешения от разных участков образца. Направление падения пучка [110]. Белые линии указывают положения плоскостей $\{111\}$. $(1\bar{1}\,\bar{1})d$ — индексы Миллера плоскостей двойника. Стрелки указывают границы между двойниками.

порах — в двух (или одной) тетраэдрических и одной октаэдрической. Тот факт, что кристаллографическая ориентация InSb в порах и каналах одна и та же, свидетельствует о механизме направленной кристаллизации при охлаждении.

Электронные микрофотографии, зарегистрированные в режиме высокого разрешения, позволили охарактеризовать границы между двойниками. По большей части это когерентные границы, совпадающие с плоскостью $\{111\}$, которая является плоскостью двойникования кристаллов с кубической гранецентрированной структурой. Также присутствуют границы, состоящие из фасеток с ориентацией $\{111\}$ и перпендикулярных к ним фасеток с ориентацией $\{112\}$. Протяженность фасеток колеблется от размера порядка элементарной ячейки InSb (рис. 2, a) до 10 нм (рис. 2, b).

Обнаружено явление последовательного двойникования относительно плоскостей $\{111\}$. Пример такого явления представлен на рис. 3. Хорошо видно, что зерна 1-4 являются результатом последовательного двойникования.

Рис. 3. Последовательное двойникование InSb. Направление падения пучка [110]. Белые линии указывают положения плоскостей $\{111\}$. $(1\bar{1}\bar{1})$ — индексы Миллера плоскостей двойника.

Как уже упоминалось выше, в результате кристаллизации наполнитель оказывается в сильно сжатом состоянии, отсюда следует, что наблюдаемая деформация наполнителя происходит по механизму двойникования. Других значительных дефектов структуры выявлено не было.

4. Заключение

Таким образом, показано, что материал наполнителя находится в монокристаллическом состоянии в значительных объемах опаловой матрицы, каналы между порами также заполнены кристаллическим InSb с одной той же ориентацией. Единственным существенным нарушением порядка оказалось двойникование по плоскостям {111}.

Финансирование работы

Финансирование работы осуществлялось из средств федерального бюджета на выполнение государственного задания ФТИ им. А.Ф. Иоффе РАН.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] С.Д. Ханин, А.И. Ванин, Ю.А. Кумзеров, В.Г. Соловьев, А.В. Цветков, М.В.Яников. ЖТФ, **92** (2), 291 (2022).
- [2] Н.Ю. Михайлин, Ю.М. Гальперин, В.И. Козуб, Ю.А. Кумзеров, М.П. Волков, С.Г. Романов, А.В. Фокин, Д.В. Шамшур. ЖЭТФ, **155** (5), 894 (2019).
- [3] D.Yu. Nefedov, E.V. Charnaya, A.V. Uskov, D.Yu. Podorozhkin, A.O. Antonenko, J. Haase, Yu.A. Kumzerov. Phys. Solid State, 60 (12), 2640 (2018).
- [4] A.I. Vanin, A.E. Lukin, S.G. Romanov, V.G. Solovyeva, S.D. Khaninc, M.V. Yanikov. Phys. Solid State, 60 (4), 774 (2018).

- [5] Photonic crystals: Advances in design, fabrication and characterization, ed. by K. Busch, S. Lölkes, R.B. Wehrspohn, H. Föll (Wiley-VCH, 2004).
- [6] J.D. Joannopoulos, R.D. Meade, J.N. Winn. *Photonic Crystals: Molding the Flow of Light* (Princeton University Press, 2008).
- [7] В.Н. Богомолов, Д.А. Курдюков, А.В. Прокофьев, С.М. Самойлович. Письма ЖЭТФ, 63, 496 (1996).
- [8] A. Blanco, E. Chomski, S. Grabtcak, M. Ibisate, S. John, S.W. Leonard, C. López, F. Meseguer, H. Miguez, J.P. Mondia, G.A. Ozin, O. Toader, H.M. van Driel. Nature, 405, 437 (2000).
- [9] V.G. Balakirev, V.N. Bogomolov, V.V. Zhuravlev, Y.A. Kumzerov, V.P. Petranovsky, S.G. Romanov, L.A. Samoilovich. Crystallogr. Rep., 38, 348 (1993).
- [10] K. Bush, S. John. Phys. Rev. E, 58, 3896 (1998).
- [11] http://www.matprop.ru/InSb_optic
- [12] W. Stöber, A. Fink, E. Bohn. J. Colloid Interface Sci., 26, 62 (1968).
- [13] D.A. Kurdyukov, N.F. Kartenko, V.G. Golubev. J. Alloys Compd., 492, 611 (2010).

Редактор А.Н. Смирнов

Structural state of InSb in InSb/opal composite material according to transmission electron microscopy data

A.E. Kalmykov, L.M. Sorokin, D.A. Kurdyukov

loffe Institute.

194021 St. Petersburg, Russia

Abstract The structural state of indium antimonide introduced into the opal matrix was studied by high-resolution transmission electron microscopy. It is shown that the filler has a microcrystalline structure with grain sizes an order of magnitude larger than the dimensions of individual matrix pores. The defective structure of individual crystals is characterized.