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presented. The model takes into account cross effects and chemical reactions. Stresses and deformations are
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Introduction

Zirconium alloys are used as the main structural materials

of reactor core parts and fuel assemblies of nuclear power

reactors [1,2]. Cladding tubes are the most critical items

since the failure of the reactor fuel element cladding

during operation results in emergency situations and is

practically unacceptable. Fuel element cladding operate

in very challenging conditions of exposure to temperature,

radiation, corrosive environment and stresses. External

surfaces of fuel element cladding tubes are exposed to

the corrosive impact of a coolant with a temperature up

to 380◦C, and released corrosion products can result in a

local overheating as they impair heat transfer. Corrosion

resistance is one of the key requirements for reactor core

materials.

Zirconium and its alloys react with water in a liquid state

and in the water vapor state. Zirconium is oxidized in the

result of such reactions, the remaining hydrogen diffuses into

the metal, and can react with it itself. This process has a

significant impact on the properties of zirconium alloys and

the performance of products made from zirconium alloys.

Hydrogen in metals has an unusually high diffusion

mobility and at low temperatures as well. However, the

diffusion mobility of hydrogen notably increases with the

increase of the temperature. The diffusion constant used

to quantify the hydrogen and oxygen diffusion processes

in metals exponentially increases with the temperature

increase. Zr absorbs hydrogen when heated above 250◦C

and forms ZrHx compound of variable composition and

hydrogen is released from this compound when temperature

exceeds 400◦C.

Stresses, as well as the occurrence of temperature or

stress gradients have a significant impact on the rate of

hydrogen diffusion in metals in addition to temperature.

Hydrogen diffuses in the area of the lowest temperatures

and the greatest tensile stresses, forming local (brittle) zones
with an increased level of hydrogenation.

These materials, in addition to a low neutron absorption

cross-section, should withstand a combination of challenging

conditions of exposure to high doses of radiation, high

temperatures, corrosion [3–6]. The application of various

coatings and modification of the surfaces of products can

be one of the possible ways to reduce the adverse effects of

these factors [7]. It should be noted that the grain structure

of the material, the difference of the properties of the

intragrain region and the properties of the grain boundary

region, etc. can have a significant impact on the diffusion

process [8]. The latter is particularly true for materials with

such a small grain size that a significant part of the material

volume consists of grain boundaries (they area referred

as nanocrystalline materials) [9]. Therefore, a particular

interest is also posed by zirconium alloys formed by grains

with size significantly less than 100 nm [10]. Therefore,

it is important, in particular, to study the oxidation of

zirconium alloys by oxygen in the temperature range of

600−1200K, taking into account their granular structure.

The authors of [11–14] investigated the properties and

structural state of zirconium alloys in case of exposure to a

pulsed electron beam (PEB) or a pulsed ion beam (PIB).
They demonstrated that exposure to IPP and the formation

of ZrO2 can reduce the rate of hydrogen absorption and

increase the product hydrogenation resistance.

This paper evaluates mechanical stresses in a cylindrical

zirconium alloy sample subjected to external thermal pulses

during diffusion into an oxygen and hydrogen alloy. A

micromodel that takes into account the sample granular

structure was used to study near surface diffusion. Only

short duration, immediately related to the exposure are
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considered in this paper. Long-term processes of important

practical significance may be covered by other studies.

1. Problem formulation

Let’s consider a tube made of zirconium alloy, which is a

part of the core of the nuclear power reactor fuel assemblies

(Fig. 1, a). It is exposed to corrosion during cool down. The

additional zirconium hydride and zirconium oxide can be

formed in the result of the following overall reactions owing

to the diffusion of hydrogen and oxygen into the substrate

(which originally consisted of a zirconium alloy):

Zr + H2 = ZrH2, (1)

Zr + 2O−2 = ZrO2. (2)

There are 3 diffusants (Zr, H, O) and two chemical

compounds concurrently in the system and their migration

can be neglected.

The sample is represented as consisting of two regions

such as grain-boundary and intragrain taking into account

the granular structure of the material for studying the

diffusion of hydrogen and oxygen in an alloy at the

microlevel. The intragrain regions have the shape of

identical rectangles located at the same distance from each

other and separated by boundary regions (Fig. 1, b). These
regions are characterized by different diffusion coefficients

and rates of chemical reactions of diffusants with the sample

material. Introducing the notation for concentrations shown

in Table 1, we note the balance equations and kinetic

equations in the following form

C pρ
∂T
∂t

= −∇ · JT + W, (3)

∂Ck

∂t
= −∇ · Jk + rk , k = 1, 2 (4)

hg
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Figure 1. Illustration of the formulation of the problem at the

macro level (a) and illustration of the formulation of the problem

of grain boundary diffusion (b).

Table 1. Designations of concentrations

Substance H+ O2− Zr ZrH2 ZrO2

Designation C1 C2 C3 C4 C5

ρ
C i

∂t
= r i , i = 4, 5, (5)

5
∑

j=1

C j = 1, (6)

where T — temperature, [K]; ρ — density, [kg/m3]; C p —
isobaric heat capacity, [J/(kg·K)]; Jq and Ji — heat and

mass fluxes, rk — sources and drains of components in

reactions; W — total chemical heat release.

Reaction rates depend on concentrations according to the

law of the mass action, and on temperature according to the

Arrhenius law:

ϕ1 = k1C3C
2
1 exp

(

−
E1

RT

)

, ϕ2 = k2C
2
2C3 exp

(

−
E2

RT

)

.

(7)
In this case the mass sources and drains in chemical

reactions will have the following form in accordance with

(1), (2).

r1 = −ϕ2, r2 = −2ϕ2, r3 = −ϕ1 − ϕ2,

r4 = ϕ1, r5 = ϕ2, (8)

and the total chemical heat release will have the following

form

W = Qσ
1ϕ1 + Qσ

2ϕ2, (9)

where k i — pre-exponential factors, 1/s (i = 1, 2), Ei —
activation energies (i = 1, 2), [J/mol]; Qσ

1 and Qσ
2 — heat

of reactions. The heat and mass fluxes that take into account

cross-phenomena, in accordance with [15] will be written as

follows:

J1 = −ρD11∇C1 − ρD12∇C2 −C1D11ST1ρ∇T − t1
∂J1

∂t
,

J2 = −ρD21∇C1 − ρD22∇C2 −C2D22ST2ρ∇T − t2
∂J2

∂t
,

Jq = −λT∇T − A1∇C1 − A2∇C2 − tq
∂Jq

∂t
. (10)

where Dik, A1, A2 — transfer coefficients; A1 = D11Q∗

1 +
+D21Q∗

2 , A2 = D12Q∗

1 + D22Q∗

2 , including transfer heats

Q∗

k = ρRT 2STk f kkm−1
k , k = 1, 2; mk — molar masses of

components, [kg/mol]; R — universal gas constant; tq, tk —
relaxation times to the equilibrium state of heat and mass

fluxes; STk — Soret coefficients, related to the coefficients

of thermodiffusion by the following relations:

ST1 =
DT1

D11

, ST2 =
DT2

D22

. (11)

We come to three second-order differential equations in

both time and spatial variables by substituting (10) in (3)
and (4):

tqρCσ

∂2T
∂t2

+ ρCσ

∂T
∂t

= ∇ · (λT∇T )

+ ∇ · (A1∇C1) + ∇ · (A2∇C2) + tq
∂W
∂t

+ W,
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t1ρ
∂2C1

∂t2
+ ρ

∂C1

∂t
= ∇ · (ρD11∇C1) + ∇ · (ρD12∇C2)

+ ∇ · (C1D11ST1ρ∇T ) + t1ρ
∂r1
∂t

+ ρr1,

t2ρ
∂2C2

∂t2
+ ρ

∂C2

∂t
= ∇ · (ρD21∇C1) + ∇ · (ρD22∇C2)

+ ∇ · (C2D22ST2ρ∇T ) + t2ρ
∂r2
∂t

+ ρr2.

(12)
We come to a one-dimensional problem in a cylindrical

coordinate system assuming that the heat flux is uniformly

distributed over the side surface of a cylindrical part, and its

ends are thermally insulated:

tqρCσ

∂2T
∂t2

+ ρCσ

∂T
∂t

=
1

r
∂

∂r

×

[

rλT
∂T
∂r

+ rA1

∂C1

∂r
+ rA2

∂C2

∂r

]

+ tq
dW
dt

+ W,

t1ρ
∂2C1

∂t2
+ ρ

∂C1

∂t
=

1

r
∂

∂r

×

[

rC1D11ST1ρ
∂T
∂r

+ rρD11

∂C1

∂r
+ rρD12

∂C2

∂r

]

+ t1ρ
∂r1
∂t

+ ρr1,

t2ρ
∂2C2

∂t2
+ ρ

∂C2

∂t
=

1

r
∂

∂r

×

[

rC2D22ST2ρ
∂T
∂r

+ rρD21

∂C1

∂r
+ rρD22

∂C2

∂r

]

+ ρt2
∂r2
∂t

+ ρr2.

dC4

dt
= r4;

dC5

dt
= r5; (13)

t = 0 : C i = C i0(r); .i = 1− 5; T = T0

r = R0 : Ji = 0, i = 1, 2, Jq = 0;

r = R1 : Ji = 0, i = 1, 2, Jq =











q0, t < ti ,

0, t ≥ ti .

Let’s consider the subproblem of diffusion at the mi-

crolevel in a rectangular coordinate system. Let the upper

index at the concentration of the diffusant indicate its

location: B — in the grain boundary region, G — in

the intragrain region (Fig. 1, b). We will consider this

subproblem in an isothermal approximation, neglecting

cross-effects.

The diffusion equations for this case have the following

form

t j
i ρ

∂2C j
i

∂t2
+ ρ

∂C j
i

∂t

= ρD j
i ∇ · (∇C i,B) − t j

i ρ
∂r j

i

∂t
− ρr j

i ,

i = 1, 2, j = B, G. (14)

In this case the diffusant fluxes have the following form

in the intragrain and grain boundary regions

J
j
i = −D j

i ρ∇C j
i − t j

i
∂J

j
i

∂t
, i = 1, 2, j = B, G. (15)

The kinetic equations are similar to the equations

from (13), with the difference that they take into account

the difference of reaction rates in different areas:

ρ
dC j

i

dt
= r j

i , i = 4, 5, j = B, G. (16)

The concentration of C j
5 can be found from the mass

balance equation (6). There is no diffusant in the substrate

at the initial moment of time, there are also no reaction

products:

t = 0 : C j
1 = C j

2 = C j
4 = C j

5 =
∂C j

1

∂t
=

∂C j
2

∂t
= 0,

j = B, C.

Concentrations of diffusants are defined at the outer

boundary

x = 0 : C1 = C01, C2 −C02. (17)

Conditions of the fourth kind are fulfilled at all internal

borders. For example, for 0 ≤ x ≤ hg , y = 1:

CB
1 = CG

1 , JB
1 = JG

1 , CB
21 = CG

2 , JB
2 = JG

2 . (18)

Remaining conditions:

x → ∞ : J
j
1 = J

j
2 = 0, y = 0,

y = 1 + hg : J
j
1 = J

j
2 = 0, j = B, G. (19)

The conditions (19) are true for both grains and grain

boundaries.

2. A method for solving the
thermodiffusion problem

Let’s use dimensionless variables for the numerical solu-

tion of problem (13):

ξ =
r

x∗

, θ =
T − T0

T∗ − T0

,

τ =
t
t∗
, J̄i =

Ji

J∗
, J̄q =

Jq

Jq∗
,

where the following scales are used: x∗R2 — the outer ra-

dius of the part, t∗ = ti — the duration of the external pulse,

T∗ = q0x∗

λT
+ T0, J∗ = ρκT

R2
, Jq∗ = λT (T∗−T0)

x∗

, and κT = λT
ρCσ

—
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Table 2. Notation of the dimensionless problem formulation (20)−(26)

8̄1 = C3C2
1 exp

(

ε1
Ar

(θ−1)
θ+σ

)

, 8̄2 = C3C2
2 exp

(

ε2
Ar

(θ−1)
θ+σ

)

L1 =
D0
11

Cσ ρ

λT
exp

(

− ED1

RT∗

)

8D1 = exp

(

1
Ar

(θ−1)
(θ+σ )

)

, 8D2 = exp

(

εD
Ar

(θ−1)
(θ+σ )

)

L2 =
D0
22

Cσ ρ

λT
exp

(

− ED2

RT∗

)

Q̄σ
1 =

Qσ
1

ρCσ (T∗−T0)
, Q̄σ

2 =
Qσ
2

ρCσ (T∗−T0)
S̄T1 = ST1(T∗ − T0); S̄T2 = ST2(T∗ − T0)

k̄1 = t∗k1 exp
(

− E1

RT∗

)

, k̄2 = t∗k2 exp
(

− E2

RT∗

)

σ = T0
T∗−T0

, Ar = RT∗
ED1

, δ =
R2
1

κt∗

Ā1 = (θ + σ )2⌊L1γ18D1 f 0
11S̄T1 f 0

11 + L2γ28D2 f 0
21S̄T2 f 0

22⌋ ε1 = E1

ED1
; ε2 = E2

ED1
; εD = ED2

ED1

Ā2 = (θ + σ )2⌊L1γ18D1 f 0
12S̄T1 f 0

11 + L2γ28D2 f 0
22S̄T2 f 0

22⌋ γ1 = ρR1
m1Cσ

; γ2 = ρR1
m1Cσ

f 0
11 = 1 + m1

m3

C1

1−C1−C2
, f 0

22 = 1 + m2

m3

C2

1−C1−C2
, W̄ = Q̄σ

1 k̄1ϕ̄1 + Q̄σ
2 k̄2ϕ̄2

f 0
12 = 1

m1
m3

C1
1−C1−C2

, f 0
21 = 1

m2
m3

C2
1−C1−C2

, τ1 = t1
t∗
; τ2 = t2

t∗
; τq =

tq
t∗

the thermal conductivity coefficients, dimensionally coincid-

ing with the diffusion coefficients. In this case the problem

will have the following form

τq
∂2θ

∂τ 2
+

∂θ

∂τ
=

1

δ

1

ξ

∂

∂ξ

(

ξ ·
∂θ

∂ξ

)

+
1

δ

1

ξ

∂

∂ξ

(

ξ · Ā1

∂C1

∂ξ

)

+
1

δ

1

ξ

∂

∂ξ

(

ξ · Ā2

∂C2

∂ξ

)

+ τq
∂W̄
∂τ

+ W̄ ,

(20)

τ1
∂2C1

∂τ 2
+

∂C1

∂τ
=

L1

δ

1

ξ

∂

∂ξ

(

ξ · f 0
118D1

∂C1

∂ξ

)

+
L2

δ

1

ξ

∂

∂ξ

(

ξ · f 0
128D1

∂C2

∂ξ

)

+
L1S̄T1

δ

1

ξ

∂

∂ξ

(

ξ ·C1 f 0
118D1

∂θ

∂ξ

)

− τ1
∂ r̄1
∂τ

− r̄1, (21)

τ2
∂2C2

∂τ 2
+

∂C2

∂τ
=

L2

δ

1

ξ

∂

∂ξ

(

ξ · f 0
218D2

∂C1

∂ξ

)

+
L2

δ

1

ξ

∂

∂ξ

(

ξ · f 0
228D2

∂C2

∂ξ

)

+
L2S̄T2

δ

1

ξ

∂

∂ξ

(

ξ ·C2 f 0
228D2

∂θ

∂ξ

)

− τ2
∂ r̄2
∂τ

− r̄2, (22)

dC4

dτ
= r̄4, (23)

dC5

dτ
= r̄5, (24)

τ = 0 : C i = C i0(ξ), I = 1−5, θ = 0. (25)

ξ = 1 : J̄i = 0 i = 1, 2, J̄q =











1, τ < 1,

0, τ ≥ 1.
(26)

Functions, coefficients and parameters are listed in Ta-

ble 2.

The dimensionless parameters introduced in the dimen-

sionless formulation of the problem have a well-defined

physical meaning and represent relations of characteristic

scales of different processes. For example, δ — an

equivalent of the Frank-Kamenetsky parameter is a square

of the ratio of the radius of the product to the value of the

thermal boundary layer formed in the part during the pulse

exposure; L1 and L2 — Lewis numbers or the ratio of the

diffusion constants to the thermal conductivity coefficient; k̄1

and k̄2 — the ratio of the pulse duration to the characteristic

reaction times at a temperature of T∗ achieved when the

part is heated by a flux of q0 during the same time; Q̄σ
1 and

Q̄σ
2 — the ratio of transfer heats to the heat reserve in the

heated layer when it is heated to T∗, etc. The result is a

function of their values.

The source terms in the diffusion and kinetics equations

have the following the form:

r̄1 = −ϕ̄2, r̄2 = −2ϕ̄2, r̄3 = −ϕ̄1 − ϕ̄2,

r4 = ϕ̄1, r̄5 = ϕ̄2, W̄ = Q̄σ
1 ϕ̄1 + Q̄σ

2 ϕ̄2. (27)

3. Method for solving the grain boundary
diffusion problem

Let’s use the other dimensionless variables to numerically

solve the problem (16)−(19) at the micro level [16]:

X =
x
x∗

, Y =
y
y∗

, τ =
t
t∗
, J̄i =

Ji

J∗

,

where the following scales are used: x∗ = y∗ = 1 — grain-

boundary area half-width, t∗ — external pulse duration,

J∗ = 1
t∗
, D̄J

i = t∗
12 D j

i , i = 1, 2, j = B, G. In this case the

problem will have the following form

τ B
1

∂2CB
1

∂τ 2
+

∂CB
1

∂τ
= D̄B

1

∂2CB
1

∂X2
+ D̄B

1

∂2CB
1

∂Y 2
− r̄B

1 − τ B
1

∂ r̄B
1

∂τ
,

τ G
1

∂2CG
1

∂τ 2
+

∂CG
1

∂τ
= D̄G

1

∂2CG
1

∂X2
+ D̄G

1

∂2CG
1

∂Y 2
− r̄G

1 − τ G
1

∂ r̄G
1

∂τ
,

τ B
2

∂2CB
2

∂τ 2
+

∂CB
2

∂τ
= D̄B

2

∂2CB
2

∂X2
+ D̄B

2

∂2CB
2

∂Y 2
− r̄B

2 − τ B
2

∂ r̄B
2

∂τ
,

τ G
2

∂2CG
2

∂τ 2
+

∂CG
2

∂τ
= D̄G

2

∂2CG
2

∂X2
+ D̄G

2

∂2CG
2

∂Y 2
− r̄G

2 − τ G
2

∂ r̄G
2

∂τ
.

(28)
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Table 3. Physical values of substances and compounds

Value Hydrogen Oxygen Alloy Zr ZrH2 ZrO2

E, kJ/mol 34.704−47.239 72.3−120.5 141−172 25.3 12.8

S, kJ/(mol·K) 131 205 39.08 35.2 50.4

H, kJ/mol 39.2 966.5 −1099 −166.1 −1100.6

m, kg/mol 1 · 10−3 16 · 10−3 91 · 10−3 93 · 10−3 123 · 10−3

ρ, kg/m3 0.09 1141 6511 5620 6000

λ,W/(m·K) 0.167 0.0258 20.96 − 2.5

CP , kJ/(kg·K) 14.5 0.919 0.291 − 0.4

Tmelt , K 13 54 2128 1073 2973

Table 4. Formal kinetic parameters of reactions

Parameters I II

k i , 1/s 1.60 · 1022 3.90 · 1021

Eai , J/mol 4.48 · 104 1.739 · 105

Q, J/m3 −166.1 −1100.6

Conditions at the external boundaries

X = 0 : C j
1 = C10, C j

2 = C j
20,

X → ∞ : C j
i = 0. (29)

Y = 0, Y = h̄g + 1 : J̄B
i = J̄G

i = 0.

Conditions at the internal boundaries

CB = CG , J̄b
i = J̄G

i . (30)

Initial conditions

τ = 0 : CB
i = 0,

∂CB
i

∂τ
=

∂CB
i

∂τ
= 0, (31)

i = 1, 2, j = B, G.

4. Evaluation of model parameters

It is useful to estimate the range of parameter variation

since some of the physical quantities that are known and

listed in the table 3 and 4 are either highly inaccurate

or poorly defined. We will find the following using

the properties of Zr, H, O, ZrH2, ZrO2 provided in the

literature [17–27]. Ar = ⌊10−2 . . . 0.3⌋, σ = ⌊0.5 . . . 1.5⌋,
L1=⌊10−2 . . .10−1⌋, L2=⌊10−2 . . .10−1⌋, S̄T1=⌊10−1 . . .20⌋,
S̄T2=⌊10−1 . . . 20⌋, εD=[0.5 . . . 1.5], τ1=⌊10−2 . . . 30⌋,
τ2=⌊10−3 . . . 30⌋, τq=⌊10−1 . . . 10⌋, k̄1=⌊105 . . . 107⌋,
k̄2=⌊104 . . . 106⌋, Q̄6

1=⌊10−2 . . . 10⌋, Q̄σ
2 =⌊10−2 . . . 10⌋.

We see that the parameters of the model vary in a wide

range.

5. The problem of mechanical equilibrium

The problem of the mechanical equilibrium of a hollow

cylinder is the second part of the problem. It is necessary

to find stresses in a hollow cylinder of finite dimensions

caused by a short-term thermal pulse. Gravity and external

pressure can be ignored. Ignoring the impacts of the ends,

it can be assumed that the cylinder cross sections which

are perpendicular to the cylinder axis remain flat and work

under the same conditions, so that radial movements depend

only on the radius. In this case, the problem of equilibrium

in a cylindrical coordinate system will be one-dimensional.

The following ratios are true for this problem: εrr = du
dr ,

εϕϕ = u
r , εrϕ = εrz = εϕ,z = 0.

The hypothesis of flat cross sections allows assuming that

the relative elongation in the direction of z is a constant

value, εz z = const.

Then this value is expressly present in all formulas

and requires calculation based on an additional condition.

The equilibrium equations for the selected conditions have

the following form in the cylindrical coordinate system:
dσrr
dr +

σrr−σϕϕ
r = 0.

Boundary condition

r = R0 : σ = 0 (32)

indicates that the internal surface is not stressed. The outer

surface is also not stressed:

r = R1 : σ = 0. (33)

The following notations are used in (32), (33): σ —radial

component of the stress tensor, u — radial displacement.

It is necessary to add the Duhamel−Neumann relation to

the above equations and conditions which has the following

form for our problem

σrr =
(1− ν)E

(1− 2ν)(1 + ν)

du
dr

+
νE

(1− 2ν)(1 + ν)

×
(u

r
+ εz z

)

−
E

3(1− 2ν)
ω,

σϕϕ =
(1− ν)E

(1− 2ν)(1 + ν

u
r

+
νE

(1− 2ν)(1 + ν)

×

(

du
dr

+ εz z

)

−
E

3(1− 2ν)
ω,
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σz z =
(1− ν)E

(1− 2ν)(1 + ν)
εz z +

νE
(1− 2ν)(1 + ν)

×

(

u
r

+
du
dr

)

−
E

3(1− 2ν)
ω, (34)

σrϕ = σrz = σϕz = 0,

where E and ν — modulus of elasticity and Poisson’s ratio.

We obtain ω = 3
[

αT (T − T0) +
∑n

i=1 αi (C i −C i0)
]

tak-

ing into account thermal stresses and concentration stresses,

where αi —linear coefficients of concentration expansion,

αT — linear coefficient of thermal expansion; C i —
mass concentrations of components (reagents and reaction

products), i = 1, 2, 3, 4, 5.

The solution to the equilibrium problem has the following

form

u =
1

3

1 + ν

1− ν

1

r

r
∫

P0

ω(r)rdr +
P
2

r +
B
r
,

εrr ≡ ε =
1

3

1 + ν

1− ν

[

ω(r) −
1

r2
∫

r

R0

ω(r)rdr

]

+
P
2
−

B
r2

,

εϕϕ ≡ ε =
1

3

1 + ν

1− ν

r
∫

R0

ω(r)rdr +
P
2

+
B
r2

,

σ = −
E

3(1 − ν)

1

r2

r
∫

R0

ω(r)rdr +
E

(1− 2ν)(1 + ν)

×

[

P
2

+ νεz z

]

−
1

r2
BE
1 + ν

.

Here A, B — integration constants. Next, we will introduce

new integration
”
constants“ for convenience

F =
E

(1− 2ν)(1 + ν)

[

A
2

+ νεz z

]

, G =
BE
1 + ν

. (35)

Then the expressions for nonzero components of stress

and strain tensors will have the following form

σ = −
E

3(1− ν)

1

r2

r
∫

R0

ω(r) + F −
G
r2

, (36)

σϕϕ =
E

3(1 − ν)

r
∫

R0

ω(r)dr + F +
G
r2

−
E

3(1− νk)
ω, (37)

σz z = −
E

3(1− νk)
ω + 2Fν − Eεz z , (38)

εrr ≡ ε =
1

3

1 + ν

1− ν



ω(r) −
1

r2

r
∫

R0

ω(r)rdr



 +
A
2
−

B
r2

,

(39)

εϕϕ ≡ ε =
1

3

1 + ν

1− ν

1

r2

r
∫

R0

ω(r)rdr +
A
2
−

B
r2

. (40)

The integration constants and the value are found using

conditions (32)−(34).

6. Dimensionless variables in
the mechanical equilibrium problem

We use the dimensionless variables in the resulting

solution (26)−(30):

S =
σ

σ∗
, e =

ε

ε∗
, ω̄ =

ω

ω∗

,

ū =
u
u∗

, ξ =
r

x∗

,

where S = Srr (Sϕϕ), e = err (eϕϕ, ez z ), and

σ∗ = 3EαT (T∗−T0), ε∗ = 3αT (T∗ − T0), ω∗3αT (T∗ − T0),
u∗ = ω∗x∗ — scales consistent with the previous one.

Equations (36)−(40) in dimensionless variables and

boundary conditions will have the following form

Srr = −
1

3(1− ν)

1

ξ2

ξ
∫

ξ0

ω̄(ξ)ξdξ + F̄ −
Ḡ
ξ2

, (41)

Sϕϕ =
1

3(1− ν)

ξ
∫

ξ0

ω̄(ξ)ξdξ + F̄ +
Ḡ
ξ2

−
1

3(1 − ν)
ω̄,

(42)

Sz z = −
1

3(1− ν)
ω̄ + 2F̄ν − ez z , (43)

err =
1

3

1 + ν

1− ν






ω̄(ξ) −

1

ξ2

ξ
∫

ξ0

ω̄(ξ)ξdξ






+

P̄
2
−

B̄
ξ2

, (44)

eϕϕ =
1

3

1 + ν

1− ν

1

ξ2

ξ
∫

ξ01

ω̄(ξ)ξdξ +
P̄
2
−

B̄
ξ2

, (45)

ξ = ξ0 : S = 0, (46)

ξ = 1 : S = 0, (47)

where

ω̄ = θ +

n
∑

k=1

gk(Ck −Ck0), gk =
αk − αk0

αT (T∗ − T0)
,

k = 1− 5, F̄ =
F

3EαT (T∗ − T0)
, Ḡ =

G
3EαT (T∗ − T0)

,

P̄ =
P

3αT (T∗ − T0)
, B̄ =

B
3αT (T∗ − T0)

.

A system of linear algebraic equations with respect to

the integration constants will be obtained by substituting

(41)−(45) in conditions (46),(47). The system of equations

in new notation for finding constants F̄ , Ḡ is based on the

written boundary conditions:

F̄ −
Ḡ

ξ20
= 0, (48)
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Figure 2. Distribution of temperature(a), hydrogen and oxygen concentrations (c, d), stresses (e−g), deformations (h, i) over space at

successive time points, τ : 1 — 1, 2 — 4, 3— 6, 4 — 9, 5 — 15 and concentrations of substances produced by reactions over time (b)
taking into account chemical reactions k1 = 1 · 104, k2 = 3 · 105 .

−
1

3

1 + ν

1− ν

1

ξ1

ξ1
∫

ξ0

ω̄(ξ)ξdξ + F̄ −
Ḡ

ξ21
= 0, (49)

2F̄ν = ez z . (50)

The system (48)−(50) allows finding F̄, Ḡ and ez z , which

have the following form

F̄ =
ξ1

ξ21 − ξ20

1

3

1 + ν

1− ν

ξ1
∫

ξ0

ω̄(ξ)ξdξ,

Ḡ =
ξ20 ξ1

ξ21 − ξ20

1

3

1 + ν

1− ν

ξ1
∫

ξ0

ω̄(ξ)ξdξ,

ez z =
2νξ1

ξ21 − ξ20

1

3

1 + ν

1− ν

ξ1
∫

ξ0

ω̄(ξ)ξdξ.

Problem (14)−(20) was solved numerically using a

specially developed algorithm based on an implicit second-

order difference scheme in space and time for the differential

equation of thermal conductivity and diffusion. The nonlin-

ear multipliers and terms on each time layer were linearized

and calculated using quantities which were already known

from the previous layer. The obtained difference equations

were reduced to a form that was convenient for the

application of the elimination method. The boundary

conditions are also approximated using the second order

of approximation by decomposition of grid functions at

points closest to the boundary into Taylor series relative

to the boundary points. The convergence was verified

by extrapolation to the zero step. The implementation

of the law of conservation of mass was monitored in all

calculations.

The components of stress and strain tensors were calcu-

lated using formulas (41)−(45) and Table 4. The following

parameters were used: Ar = 0.3, σ = 0.6, L1 = 1 · 10−1;
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Figure 3. Distribution of temperature (a), concentrations of hydrogen and oxygen (c, d), stresses (e−g), strains (h, i) in space at

successive time points τ = 6 and concentrations of substances produced by reactions in time (b), with varying velocity constants of the

first reaction: 1 — k1 = 1 · 104, k2 = 3 · 105; 2 — k1 = 4 · 104, k2 = 3 · 105 .
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Figure 4. Concentrations of diffusing hydrogen in the grain-boundary region (Y = 0.5) (a) and in the intragrain regions (Y = 1.5) (b)
with different relaxation times. Grain size h̄g = 2, ratio of diffusion constants D̄B/D̄G = 10, reaction velocity ratio kB/kG = 200. Half

of the width of the grain boundary area is assumed as a unit length scale. The distributions are shown at time point τ = 27. 1 —
τB = τG = 0; 2 — τB = 5, τG = 10; 3 — τb = 10, τG = 20; 4 — τB = 15, τG = 30.

L2 = 3 · 10−1; δ = 50, εD = 1, ε1 = 2.1, ε2 = 2.6, γ1 = 1,

γ2 = 1, Q̄σ
1 = 5, Q̄σ

2 = 3, g1 = 0.6, g2 = 0.9, g3 = 1.8,

g4 = 1.2, g5 = 1.4, ᾱT = 1.2, ξ0 = 0.1, ξ1 = 1, Ē = 1,

τ1 = 5, τ2 = 5, τq = 10. The following varying dimension-

less parameters were used in the calculations: k̄1, k̄2 —

reaction rate constants, S̄T1, S̄T2 —Soret coefficients.
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7. Analysis of numerical results

The distribution of temperature, concentrations, stresses

and strains at successive time points at relaxation times

τ1 = 5, τ2 = 5, τg = 10 is shown on Fig. 2. A heat

wave moves from the outer surface of the part with the

selected set of parameters (Fig. 2, a). Hydrogen and oxygen

(Fig. 3, c, d) diffuse deeper into the substrate and, as a result

of reactions, zirconium oxide and zirconium hydride are

formed near the outer surface of the sample (Fig. 2, b).
Fig. 2, b shows average integral concentrations of zirconium

oxide and zirconium hydride. Stresses and strains increase

(Fig. 2, e−h, lines 1−3), and begin to decrease (Fig. 2, e−h,

the lines 4, 5) from the time point greater than the maximum

relaxation time (τq = 10) . Distortions can be seen near

the outer boundary on the tangential stress wave (Fig. 2, f),
which correspond to the composition varying over time

(formation of zirconium oxide and zirconium hydride).
The zirconium hydride concentration increases with an

increase of the rate constant of the first reaction, i.e.

the formation of zirconium hydride (Fig. 3), and the

concentration of hydrogen and zirconium oxide decreases

while the temperature increases slightly. Radial stresses

and strains increase, which is obviously clearly related to

changes of composition.

An increase of the rate constant of the second reaction

(formation of zirconium oxide) has virtually no impact

on the distribution of concentration, radial and tangential

stresses and only slightly affects the temperature distribution

in the sample, which is associated with an increase of the

heat release in the result of the reaction (not shown in the

figure). The accounting for the Soret and Dufour effects

is more evident in the distribution of stresses and strains

(not shown in the picture). The qualitative nature of the

distributions of all quantities does not change.

Some examples of calculations of processes taking place

at the micro level are provided below. Higher concentrations

of the diffusant will be observed in the intragrain region,

where its accumulation takes place. Concentration waves in

grain boundary regions are clearly visible in case of short

times slightly exceeding the relaxation times (Fig. 4). That

said, the longer the relaxation time, the more clearly these

waves are expressed.

The formation of reaction products can be described

in terms of average concentrations of 〈C i 〉 = 1
S

∫

�s

C i ds ,

i = 1, 2, S — area of the region of interest �s (Fig. 5).
Therefore, products are formed more slowly in average

with higher relaxation times.

Conclusion

The study presents a macromodel of the evolution of

the composition of a cylindrical sample under conditions of

short-term thermal exposure. The impact of the Soret and

Dufour effects and the rate constants of the two reactions

on temperature and concomitant stresses is illustrated in the

paper. The diffusants accumulate in the intragrain region

at the microlevel, taking into account the grain structure

of the material, and diffusants are rapidly consumed in

the grain-boundary region. The nature of the stress and

strain distribution is affected by the Soret and Dufour

effects and changes in composition, including the effect of

the rate constants of the zirconium oxide and zirconium

hydride formation reactions. The saturation of the material

surface areas with diffusers has a wave-like character when

mass flux relaxation phenomenon is taken into account.

The obtained results and a similar approach to solving the

problem can be applied to describe the operation of metal

products under extreme conditions.
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