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Phase diagram of antiferromagnetic Potts model on the kagome lattice
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Using the method of computer simulation, phase transitions of the two-dimensional antiferromagnetic Potts model

with the number of spin states q = 4 on the kagome lattice with interactions of the first J1 and second J2 neighbors

were carried out. The studies were carried out for the magnitude of the exchange interaction of second neighbors

in the range 0 ≤ J2 ≤ 1. A phase diagram of the dependence of the critical temperature on the magnitude of

interactions of second neighbors was constructed. An analysis of the nature of phase transitions was carried out. It

was found that for values J2 = 0 and 0.1 there is no phase transition in this model. It is shown that in the range

0.2 ≤ J2 ≤ 1 a second-order phase transition is observed.
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1. Introduction

The study of phase transitions (PTs), critical, magnetic

and thermodynamic properties of compounds having a

kagome lattice attracted much attention. This is due to

the fact that in antiferromagnetic compounds having the

kagome lattice, frustration may occur due to the special

geometry of the lattice. Frustration effects play an important

role in magnetic systems. Experimental, theoretical and

numerical studies made it possible to establish that magnetic

systems with frustrations in many ways exhibit properties

different from the corresponding non-frustrated systems,

which causes increased interest in the study of frustration

phenomena in magnetic systems [1–3]. Spin lattice models

are widely used to study the physical properties of such

systems.

One of the spin lattice models that recently received

increased interest is the Potts model. The interest in this

model is caused by the fact, that Potts model serves as

a basis for the theoretical description of a wide range

of physical properties in the physics of condensed matter.

These include some classes of adsorbed gases on graphite,

complex anisotropic ferromagnets of cubic structure, various

multilayer magnetic systems, spin glasses, multicomponent

alloys, etc. [1,4,5]. As an example of substances described

by the Potts model and having a hexagonal lattice structure,

we can provide adsorbed films: adsorbed hydrogen atoms

(2× 2)−2H/Ni(111) on the surface of nickel Ni(111) are

placed at the nodes of the hexagonal lattice [6]. In such

adsorbed structures PTs are described by the universality

class of two-dimensional Potts models with q = 4 [7].

In recent years, a significant number of papers [4,8–16]
was devoted to the study of spin systems described by

the Potts model, in papers it was shown that the physical

properties of the Potts model depend on the spatial

dimension of the lattice, the number of spin states q, the
magnitude of the interaction of second neighbors and the

geometry of the lattice. Analysis of the data obtained

in these papers shows that, depending on the number of

spin states q and the spatial dimension, the Potts model

demonstrates PT of the first or second kind. The two-

dimensional Potts model with the number of spin states

q = 4 is quite unique and is still poorly understood. This

model is also interesting because the value q = 4 is the

boundary value of the interval 2 ≤ q ≤ 4, where PT of the

second kind is observed, and the range of values q > 4, in

which PT occurs as a transition of the first kind [4].
In the present paper we studiedy of the two-dimensional

antiferromagnetic Potts model with the number of spin

states q = 4 on the Kagome lattice, taking into account the

ferromagnetic exchange interactions of the second neighbors

J2. This model at J2 = 0 is frustrated model. Consideration

of ferromagnetic interactions of second neighbors in this

model can lead to the appearance of different phases and

PTs, and also affect its physical properties. The study of the

influence of the magnitude of the ferromagnetic interaction

of second neighbors on PT in the model under consideration

is practically absent the literature. In connection with this,

in this paper we study PT of this model in a wide range

of values of the magnitude of the interaction of second

neighbors.

2. Model and method of study

A Hamiltonian of a Potts model with the number of

spin states q = 4 taking into consideration interactions of
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Figure 1. Potts model with the number of spin states q = 4

on Kagome lattice. The insert shows the corresponding color

representation for each of the four possible spin directions.

the first and second nearest neighbors, can be written as

follows [17,18]:

H = − J
∑

〈i, j〉,i 6= j

SiS j − J2

∑

〈i,k〉,i 6=k

Si Sk

= − J
∑

〈i, j〉,i 6= j

cos θi, j − J2

∑

〈i,k〉,i 6=k

cos θi,k , (1)

where J1 and J2 — parameters of exchange antiferro-

magnetic (J1 < 0) and ferromagnetic (J2 > 0) interactions,

respectively, for the first and second neighbors, θi, j , θi,k —
angles between interacting spins Si − S j and Si − Sk . This

paper considers the range of values 0 ≤ J2 ≤ 1 with a step

of 0.1.

A schematic description of model under study is pre-

sented in Figure 1. As can be seen in the Figure, each spin

has four nearest (J1) and four next nearest (J2) neighbors.

Spins marked with circles of the same color have the same

direction. The insert in the Figure shows the corresponding

color representation for each of the four possible spin

directions. Spin directions were defined in such a way that

the following equality is valid

cos θi, j =

{

1, if Si = S j

−1/3, if Si 6= S j .
(2)

According to condition (2), for two spins Si and S j

the energy of the pair exchange interaction is Ei, j = −J1

if Si = S j . If Si 6= S j , the energy is Ei, j = J1/3. Thus,

the energy of the pair interaction of spins is equal to one

value when their directions are the same, and takes another

value when the directions of the spins do not coincide. For

the Potts model with q = 4 in three-dimensional space, this

is only possible if the spins are oriented as shown in the

insert Figure 1.

Currently one of the most effective algorithms for

studying such systems is the Wang–Landau algorithm of

Monte Carlo method [19], especially in the low-temperature

region. Therefore, we used this algorithm in this study.

This algorithm allows you to calculate the density function

of states of the system and produces spin configurations

in the system. The Wang–Landau algorithm is described

in more detail in the paper [10]. Having determined the

density of states of system g(E), we can calculate the

values of thermodynamic parameters at any temperature.

In particular, internal energy U , free energy F , heat

capacity C, and entropy S can be calculated using the

following expressions:

U(T ) =

∑

E
Eg(E)e−E/kB T

∑

E
g(E)e−E/kB T

≡ 〈E〉T , (3)

F(T ) = −kBT ln

(

∑

E

g(E)e−E/kB T

)

, (4)

C =

(

(|J1|/kBT )2

N

)

(

〈U2〉 − 〈U〉2
)

(5)

S(T ) =
U(T ) − F(T )

T
, (6)

where K = |J1|/kBT , N — number of particles, T —
temperature (hereinafter the temperature is given in units

|J1|/kB), (U is a normalized value). Calculations were

performed for systems with periodic boundary conditions

(PBC) and linear dimensions L × L = N, L = 12÷ 72,

where L is measured in lattice cell sizes.

3. Simulation results

Figure 2 shows the temperature dependences of entropy S
for different vaues J2 obtained for the system with linear

size L = 24 (hereinafter the statistical error does not exceed
symbol sizes used to plot dependencies). This figure shows

that the system entropy with temperature increasing tends to

the theoretically predicted value ln 4. For the case J2 = 0 in

the low-temperature region the entropy tends to a nonzero

value. Moreover, this entropy value differs highly from zero.

This behavior of entropy indicates that for J2 = 0 the ground

state of the system is highly degenerate. Such behavior

of entropy is typical for frustrated spin systems. When

the second neighbors are included (J2 ≥ 0.1) in the low-

temperature region the entropy tends to zero. This means

that the exchange interaction of second neighbors in this

model removes the degeneracy of the ground state, even at

small values J2.

Temperature dependences of heat capacity C for different

values J2 and linear dimensions L are presented in Figure 3.

As can be seen in the Figure, for the value J2 = 0.1 there

is no sharp peak in the temperature dependence of the heat
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Figure 2. Temperature dependence of entropy S.

capacity, but a smoothed peak is observed. The absence

of a pronounced peak in heat capacity is explained by

the fact that at J2 ≤ 0.1 there is no order in this model.

For the values J2 = 0.2 and J2 = 0.3 the splitting of the

heat capacity is observed. The graph shows two peaks

and one smooth
”
hump“ (Figure 3, a). The presence of

”
hump“ indicates that the system is low-dimensional, and

the heat capacity splitting is usually observed for frustrated

spin systems [2,20]. For the model we are studying, the

heat capacity splitting is due to the fact that consideration

of the exchange interactions of second neighbors leads

to the appearance of a partially ordered magnetic state.

With value J2 increasing the smooth
”
hump“ and the low-

temperature peak disappear, and one pronounced peak

remains (Figure 3, b). This Figure shows that dependence

of the heat capacity C on temperature for all systems near

the critical temperature shows well-defined maxima, which

increase with increase in number of spins in the system, and

these maxima, within the limits of error, fall on the same

temperature even for systems with the lowest value L. This
indicates, firstly, the high efficiency of the method used to

add PBC, and secondly, the achievement of saturation by N
for many parameters we studied.

To analyze the character of PT and to determine the

critical temperature TN we used the method of fourth-order

Binder cumulants [21]:

UL = 1−
〈m4〉L

3〈m2〉2L
(7)

where UL — magnetic cumulant.

The parameter of system order m was calculated by the

formula:

m =
1

N

(

4Nmax − N1 − N2 − N3 − N4

3

)

(8)

where N1, N2, N3, N4 — number of spins corresponding to

one of 4 spin directions, respectively.

Expression (7) allows to define the critical temperature

TN more accurately for PT of second kind. Also, the use of

Binder cumulants allows good testing the type of PT in a

system. In case of PT of the second kind the temperature

dependency curves of Binder cumulants UL have a clearly

defined point of intersection [21].

Figure 4 shows typical dependence of UL on temperature

for J2 = 0.5 at different values L. It can be seen from

the graph that in the critical region the temperature

dependencies UL intersect each other in a single point

(TN = 0.662). This supports the assumption of PT of the

second kind presence in this model. Similar picture is

observed for all values in the range of 0.2 ≤ J2 ≤ 1.0.

Figure 5 shows the phase diagram of critical temperature

vs. magnitude of interaction of the next to nearest neighbors.

The diagram shows that for the values J2 = 0.0 and 0.1

the critical temperature is zero, and there is no PT. This is

explained by the absence of magnetic ordering in this model

at J2 ≤ 0.1. The increase in the contribution of the influence

of exchange interaction of next to nearest neighbors in this

model leads to PT occurrence.
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Figure 3. Temperature dependencies of heat capacity C .
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Figure 4. Temperature dependencies of Binder magnetic

cumulant UL .
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Figure 5. Phase diagram of critical temperature vs. magnitude of

interaction of the next to nearest neighbors.
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Figure 6. Histograms of the energy distribution for J2 = 0.5.

To determine PT kind, we used histogram data analysis

of MC method [19,22]. This method allows for reliable

determination of PT kind. PT order calculation procedure

by this method is described in detail in [23,24]. The

results obtained on the basis of histogram data analysis

show that PT of the second kind is observed in this

model in range 0.2 ≤ J2 ≤ 1.0. This is demonstrated in

Figure 6. This Figure shows the histogram of the energy

distribution for system with linear size L = 60 for the value

J2 = 0.5. The graph is plotted for temperature close to

the critical temperature (TN = 0.622). It can be seen from

the Figure that in the dependence of the probability W
on energy one maximum is observed, which indicates PT

of second kind. The presence of the one maximum in

energy distribution histograms is a sufficient condition for

the PT of the second kind. Note, that one maximum in

the distribution histograms for the model under study are

observed for values J2 in the range 0.2 ≤ J2 ≤ 1.0. This

allows us to state that in this range of values J2 PTs of the

second kind are observed.

4. Conclusion

The study of phase transitions in the two-dimensional

antiferromagnetic Potts model with the number of spin

states q = 4 on the kagome lattice, taking into account

ferromagnetic interactions of second neighbors, was carried

out using the Wang–Landau algorithm of the Monte Carlo

method. The analysis of the nature of phase transitions was

carried out in a wide range of values of the interaction

between second neighbors J2. It is shown that in the

interval 0.2 ≤ J2 ≤ 1 the phase transition of second kind

is observed. For values J2 ≤ 0.1 there is no order in the

system, and frustrations are observed. It is shown that at

the value J2 = 0 the ground state of the system is highly

degenerate. Consideration of ferromagnetic interactions of

second neighbors leads to the removal of degeneracy of the

ground state for values J2 ≥ 0.1.
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