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A model of phase transformations in solids is proposed, taking into account the relationship of non-linear

processes that occur on various spatio-temporal scales in the non-linear open system of nuclei and electrons. The

characteristic times of structural changes are determined by two mechanisms of atoms displacements: thermally

activated in thermal fluctuations and athermic during non-adiabatic Landau–Zener transitions of atoms. Cooperative

processes on a large spatio-temporal scale are described by two order parameters. The macroscopic kinetics of

phase transformation is determined by two coupled nonlinear equations of the parabolic type for order parameters.

These equations have two types of solutions describing the characteristic features of morphological changes in

a solid with diffusion and martensitic phase transformations. The origin and growth of the new phase during

diffusion phase transformations are described by solutions in the form of a switching wave from the metastable

phase to a stable one. The formation of the embryo of the new phase is determined by structural changes on

the atomic scale. Thermoelastic and reconstructive martensitic transformations are described by solutions in the

form of static autosolitons — localized distributions of order parameters. Thermoelastic martensitic transformations

develop against the background of a changing short-range order, determined by athermic displacements of atoms.

Reconstructive martensitic transformations are determined by athermic displacements in the unstable phase, and

the presence of any sources of initial disturbances is not required.
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1. Introduction

The first-order phase transitions (PT) in solids (polymor-

phous, diffusion and martensitic transformations, crystalliza-

tion of the amorphous phase, decomposition of the solid

solution, etc.) are very common in nature and play a key

role in changing the microstructure and properties of various

materials. Therefore, a lot of attention was and is paid to

experimental and theoretical study of the phase transforma-

tions [1–18]. It is established that depending on a chemical

composition, temperature and velocity of heating/cooling,

the mechanisms and kinetics of the phase transformation

can be various, thereby affecting a morphology of the ob-

tained product. At comparatively high temperatures and in

conditions close to the equilibrium ones (the low velocities

of heating/cooling), the phase transformation belongs to

the diffusion ones, whose mechanism is considered to be

thermally activated displacements of atoms. Within the

temperature range 1T , the new phase grows by meas of

the old phase. The metastable phase becomes unstable in

relation to small perturbations of the density outside the

range 1T at the temperatures below (above) Tin during

cooing (heating). The phase transformations determined

by athermic shift displacements of the atoms belong to

the martensitic (diffusionless) ones. The distinctive feature

thereof is that within the range of transformation, from the

very beginning, crystals of the new phase are formed and

they do not grow with further change of the temperature.

A portion of the new phase is increased by means of

formation of new crystals. The deformation of the crystals

is predominantly of a shift nature and volume changes of

the phase transformation are low. There are thermaelastic

and reconstructive martensitic transformations. The systems

with the thermoelastic martensite transformation (TMT)
are typically represented by titanium-based alloys. The

TMTs can develop in the conditions which are close to

the equilibrium ones. The equilibrium diagram of alloy

state has a two-phase area separating the austenite phase

from the martensite phase. At T < A f (T > M f ), there is

only one martensite (austenite) phase. Within the range

Ms < T < As , the austenite and martensite phase are in

equilibrium. Here, As , A f (Ms , M f ) are commonly accepted

as designations for the temperatures of the start and end

of the range of transformation of austenite (martensite)
into martensite (austenite), respectively. The transition

from the austenite (martensite) phase into the martensite

(austenite) phase is preceded with a pre-transition state.

This state exhibits a short-range order, which is non-typical
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for the austenite (martensite) phase. In the reconstructive

martensitic transformations (RMT), the phase with another

crystal structure (FCC→BCC, BCC→HCP and so on)
is formed in fast cooling to the low temperatures. For

example, the ferrum alloys exhibit embeddings, substitutions

of RMTs during cooling to the temperatures within the

range Ms−M f . The temperature difference can be up to

hundreds of Kelvins. When cooling below the temperature

M f , the new phase is not formed. In RMT, the volumetric

portion of the martensite phase is always less than one.

The equilibrium diagrams of the state has no two-phase

area. Neither a pre-transition state, nor an embryo of

the new phase is observed. In some solids, depending

on the temperature and velocity of cooling, the phase

transformations can proceed both in one and another

mechanism.

The existing variety of the phase transformations is due

to a plurality of complex interrelated non-linear processes

that occur on various spatio-temporal scales. In the end,

the macroscopic kinetics of the phase transformation is

determined by the dynamics of atoms. Most existing models

of the phase transformations assume that the dynamics of

atoms and, consequently, the kinetics of transformation is

determined only by vibrational degrees of freedom, and

contribution of the electron degrees of freedom to the

dynamics of atoms is not taken into account and it is

implicitly assumed that adiabatic approximation is feasible

(electrons instantly adjust to slow movement of nuclei). In
this case, the transition from the metastable phase into the

stable one is possible in the mechanism of heterogeneous

nucleation. The new phase starts growing, if the embryo

of the new phase formed in the metastable phase by

means of thermal fluctuations exceeds a critical value.

Defects of various types present in the metastable phase

can lower a height of the potential barrier, increasing the

probability of critical nucleation. The transitions through the

potential barriers of the intermediate states also increase

the probability of nucleation [12–15]. The defects and

the intermediate states are also responsible for increased

velocities of movement of interphase boundaries, which are

observed in some cases. At the same time, applicability of

the model of heterogeneous nucleation to the martensitic

transformations is doubtful. In particular, at the low

temperatures and the high velocities of cooling the velocity

of critical nucleation can be much less than the observed

velocity of transformation, which is comparable to the speed

of sound in many cases.

In the phase transformation, the solid is an open system

of nuclei and electrons. This system has two ways of

displacement of atoms out of equilibrium positions. As

in the isolated system, the first way is determined by

thermal fluctuations in vibrations of atoms. It implements

the thermally activated mechanism of atoms displacements.

The probability of the displacements decreases exponentially

with reduction of the temperature. The second way is de-

termined by nonadiabatic Landau–Zener (LZ) transitions of
atoms in electronic transitions between intersecting surfaces

of potential energy [19–24]. At that, the potential energy of

the system always decreases. It implements the athermal

mechanism of atoms displacements. The probability of

the nonadiabatic LZ transitions does not depend on the

temperature. The change of interatomic interactions in the

nonadiabatic LZ transitions results in displacements of the

nuclei, removes the system from a previous equilibrium

state and it is accompanied by reduction of the potential

energy of the system. For brevity, the atoms displacements

in the nonadiabatic LZ transitions [25,26] have been called

dynamic displacements (DD). In the open system, the

change of the crystal structure (phase transformation) is

possible without critical nucleation. Let us note that the

Zeldovich theory [1] does not exclude such an option of

the phase transformation. The theory assumes that the

system has a subcritical embryo. The mechanism of its

nucleation can be both the thermally activated and athermic

one. The kinetics of the embryo growth is determined

by the velocity of transition of atoms from the metastable

phase to the embryo, while the velocity itself depends

on the mechanisms of embryo growth. There were no

restrictions of the mechanisms of embryo growth and

its sizes. The very mechanisms are determined by the

dynamics of the atoms.

The paper [26] has suggested the mechanism of nucle-

ation of the new phase in the solid, which is determined

by the nonadiabatic Landau–Zener transitions in the open

system of nuclei and electrons. It has found conditions

for nucleation of stable and unstable embryos. The present

paper continues [26] and it aims at solving a problem of

the kinetics of the phase transformation in the thermally

activated and athermic displacements of the atoms.

2. Model of phase transformation

It considers a homogeneous solid, in which only the

topological short-range order changes at PT. The solid

can be either single-component or multicomponent, both

crystalline and amorphous. The phase transformations pro-

ceeding within the temperature range 1T are accompanied

by the change of the volume 1V , absorption/release of

heat. There are simultaneously the new and old phases

within the range 1T . The curve of the dependence of V
on T has a hysteresis loop. It is assumed that macroscopic

characteristics of the system 1T, 1V are known. The two

phases are in equilibrium at the temperature T0. The phase

of nucleation of the new phase will be called a parent one.

Then, in cooling the phase stable at T > T0 will be a parent

one, so in heating will it — at T < T0. Let us introduce

a dimensionless temperature θ = T−T0
T0

, (θ = T0−T
T0

) and

the rate of its change θ̇ = Ṫ/T0 (Ṫ = dT/dt, t — time)
during heating (cooling) of the system. In the phase

transformation, the volume of the system V (θ) changes

from Vp(θ) in the parent phase to Vn(θ) in the new

phase. It is assumed that the equations of the state

Vp = Vp(θ), Vn = Vn(θ) are known. The relative change
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of the volume ϑ(θ) = [V (θ) −Vp(θ)]/Vp(θ) characterizes a

system response to processes that occur in the medium at

the temperature θ.

The relative change of the volume ϑn = [Vn −Vp]/Vp

in the phase transformation is determined by a sum of

diagonal elements of a tensor of macroscopic deforma-

tion by the phase transformation. The paper [27] deals

with three main values of the deformation tensor ε j in

the coordinate system related to the main axes. Here

j = 1, 2, 3. The local change of the volume of the

system ϑ(r, θ) is equal to the first invariant of the

deformation tensor I1(r, θ) = ε1(r, θ) + ε2(r, θ) + ε3(r, θ),
while the local shear strain is determined by the sec-

ond invariant I2(r, θ) = ε1(r, θ)ε2(r, θ) + ε1(r, θ)ε3(r, θ)
+ ε2(r, θ)ε3(r, θ). Here, r is a radius-vector in the Cartesian

coordinate system x = x1, y = x2, z = x3. The functions

I1(r, θ), I2(r, θ) specify spatial distribution of the new

phase, so do 〈I1(r, θ)〉, 〈I2(r, θ)〉 — a volume portion of

the new phase. The character 〈. . .〉 designates averaging

across the system volume. In this case, ϑ = 〈I1(r, θ)〉.
A rate of processes that occur in the phase transformation

should satisfy the inequality 〈İ1(r, t)〉 ≥ V̇p. The magnitude

V̇p = dVp/dt is specified by the velocity of heating/cooling

of the system.

The deformation by the phase transformation is

determined by displacements of the atoms out of

the positions R0 = {R01, . . . ,R0N} into the positions

Rn = {Rn1, . . . ,RnN} in the new phase. The atoms paths

pass from the potential energy surface (PES) of the parent

phase E0(R) to PES of the new phase En(R). Each PES

is a surface in the 3N — dimensional space with one’s

minimums and potential barriers separating them [28,29].
The potential energy of the parent (new) phase in the

minimum point R = R0 (R = Rn) is equal E0[R0] (En[Rn]).
In the open system of nuclei and electrons, the paths of all

the atoms must pass through the PESes Eγ(Rγ ) between

the PESes E0 and En. Here, γ = 1, . . . , m − 1 is a PES

number. For the PES E0(En) γ = 0(m). The PESes differ by
distribution of the nuclei, the electrons and the interatomic

interactions. An average value of the energy range between

the two adjacent PESes 1Eγ ≈ (En − E0)/N. The height of

the potential barrier separating the minimums at the two

adjacent PESes is 1Eγ in terms of the magnitude order.

With the big number of the PESes, 1Eγ ≪ kBT , kB is the

Boltzmann constant. When the system volume changes, as a

result of heating/cooling the PESes are displaced in relation

to each other and intersect. In these conditions, there are

two possible mechanisms of transitions from one PES to

another.

The thermally activated mechanism of the displacements

is determined by the transitions of the atoms between the

PESes in thermal fluctuations. At the same time, the

electron subsystem instantly adjusts to another distribution

of the nuclei. The probability P1th and the time of the

transition t1th between the adjacent PESes are determined

by the known expressions

P1th ∝ exp

(

−
1Eγ

kBT

)

, (1)

t1th ∝ exp

(

1Eγ

kBT

)

. (2)

The athermic mechanism of the displacements is determined

by the probability P of the nonadiabatic transition of the

atoms between the two intersecting PESes due to the

electron subsystem with subsequent nuclei displacement.

For the system of two atoms whose energy levels near

the intersection point have the same signs of derivatives of

potential energy along the coordinate [19]:

P = exp
(

−2πW 2
0 /(~v|F2 − F1|)

)

. (3)

Here v — the displacement velocity of atoms determined by

the rate of volume change during heating/cooling, F1, F2 —
the derivatives of potential energy along the coordinate

near the intersection point of the energy levels 1 and 2,

respectively, 2W0 — the width of the energy gap between

the levels. The characteristic time of a single transition

t1LZ = W0/(v|F2 − F1|) (4)

does not depend on the temperature and decreases with

increase in v . In two independent processes

1/t1 = 1/t1LZ + 1/t1th. (5)

It is clear from (2)−(5) that at the high temperatures

and the low velocities of heating/cooling t1th ≪ t1LZ and

t1 = t1th. At the low temperatures and/or the high velocities

of heating/cooling t1 = t1LZ . The nonadiabatic transitions of

atoms determine the athermic mechanism of displacements,

which is inherent in the martensitic transformations.

Taking into account the above said, the displacements of

atoms u(t) = Rn(t) − R0(t) are written as

u(t) = ud(t) + uel(t). (6)

Here, ud = {ud1, . . . , udn} — the dynamic displacements

of atoms due to the change of the interatomic interactions,

uel — the displacements determined by the vibrational

degrees of freedom. The distribution of atoms with the

coordinates R0 + ud determines a dynamic short-range

order (DSO), which is non-typical for the parent phase [25].
At the threshold values ud , the DSO system becomes

unstable in relation to the small displacements in vibrations

of atoms. The DD is to be found by reducing to solving

equations of the nonadiabatic dynamics of atoms (NDA),
which have the system volume as a governing parameter.

But, due to nonlinearity of the NDA equations, any small

perturbations (for example, replacement of the PES set)
result in different large-scale DD distributions. As a result,

the dynamics of the system is ambiguously predicted on

large spatial and/or time scales. In this situation, in order to
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find the large-scale DD distributions, which determine the

macroscopic properties of the system, it uses an approach

developed in the theory of nonlinear systems [30]. For

clarity of further discussion, we note main points. As in [26],
the one-dimensional case is considered.

2.1. Order parameters

Let us designate the homogeneous stationary DD dis-

tributions at θ > 0 as ūd . Let us consider a static wave

of the displacements δu(x) ∝ exp(ikx) with the wavelength

λ ∝ 1/k > l0. Here, l0 — the interatomic distance. At

θ < θ1 any perturbation δu results in increase in the

system’s potential energy, whereas the metastable phase

is stable in relation to the small perturbations. At the

stability threshold θ1, the distribution of the atoms, which

is typical for the parent phase, is unstable in relation

to the small perturbations ∝ exp(k1x) with the wave

vector k1. At θ > θ1, the system’s potential energy is

reduced, and the metastable phase is unstable in relation to

the small perturbations. Near the dimensionless threshold of

stability a1 = θ−θ1
θ1

≪ 1, the perturbations of the frequency

ω1 ∝ 1/t1 increase. The resultant perturbation of the

distribution is found as superposition of plane waves with

the wave vectors k = k1 ± 1k (1k
k1

≪ 1). As known,

this superposition describes beatings with the amplitude

ϕ(x , t). The amplitude of the unstable mode ϕ(x , t)
characterizes correlated (collective) distributions of atoms in

the parent phase on the spatial scales l1 ∝ 1
k1

> l0. Near the
dimensionless threshold of stability, the large-scale spatial

distribution of the displacements ud(x , t) can be written as

in [30]:

ud(x , t) − ūd = u0
d

[

ϕ(x , t) exp(ik1x) + cc
]

, (7)

where u0
d — the parameter determined by the medium prop-

erties, cc signifies complex conjugate. In the stable parent

phase, ϕ = 0. Note that in addition to the distribution (7),
other distributions are also possible. But, the frequency ω1 is

the highest of all possible. That is why the time of formation

of the distribution (7) is the least. For this reason, it is this

time that exhibits in the experiment. All other distributions

either fail to exhibit, or the distribution thereof is low.

The localized displacements of atoms (7) result in long-

range stresses and heterogeneous deformation ε j(r, θ). The
solution of the equations of the continuum mechanics can be

avoided by considering the collective modes of deformation,

which are determined by the vibrational degrees of freedom.

Let us designate the main values of the tensor of homoge-

neous deformation as ε̄1, ε̄2, ε3. At ϑ < ϑc , the medium

deformation is still homogeneous, while the small perturba-

tion ∝ exp(ikx) with any wave vector k results in increase

in the system’s potential energy. The threshold of stability

ϑc has an unstable mode of displacements ∝ exp(ik2x)
with the wave vector k2 < k1. At ϑ > ϑc , the small

perturbations of the frequency ω2 ∝ 1/t2 increase. Near

the dimensionless threshold of stability a2 = ϑ(ϕ)−ϑc

ϑc
≪ 1,

the deformation is determined by superposition of the plane

waves with the wave vectors k = k2 ± 1k (1k
k2

≪ 1). The

spatio-temporal distribution of the main deformations in the

phase transformation is written as

ε j(x , t) − ε̄ j = ε0j
[

η(x , t) exp(ik2x) + cc
]

. (8)

Here, the coefficient ε0j determines the value of the main

deformations, η(x , t) — the amplitude of the unstable

mode, which characterizes heterogeneous deformation of

the medium on the spatial scales l2 ∝ 1
k2

> l1. The first and

the second invariants of deformation I1(x , t), I2(x , t) are

found in a standard way. As per Landau, in the physics the

amplitudes of the unstable modes are commonly referred to

as order parameters (OP). In the linear approximation, the

dimensionless threshold of stability a2 can be written as

a2 = −1 +
ϑ(ϕ)

ϑc
= −1 + pϕ, p =

1

ϑc

dϑ(ϕ)

dϕ
. (9)

It follows from the definition of a2 that the magnitude

p > 0, and the sign of the derivative
dϑ(ϕ)

dϕ must coincide

with the sign of ϑc .

2.2. Equations for the order parameters

When finding the OP equations, we assume that the open

system has processes, in which the potential energy of the

system of atoms is reduced. Usually, the relative change of

the volume and the value of the shear strain at PT does not

exceed ten percent. It can be assumed that the OPs ϕ, η

are small parameters. So, in order to find the OP equations,

it is allowed to use the Ginzburg–Landau approach and the

Landau–Khalatnikov approach. Taking into account (9), the
OP equations obtained in this way are as follows [26]:

t1∂tϕ = [α − gη]ϕ + q2ϕ
2 − q3ϕ

3 + l21∂
2
x2η, (10)

t2∂tη = (−1 + pϕ)η − bη3 + l22∂
2
x η. (11)

The typical velocity v2 = l2/t2 of the equation (11) is a

group velocity. In the dimensionless variables,

t̃ = t/t2, x̃ = x/l2, η̃ = ηb1/2, ϕ̃ = ϕq1/2
3 (12)

the equations (10) and (11) are transformed as follows (the
sign

”
˜“ is omitted hereinafter)

τ ∂tϕ = (α − cη)ϕ + βϕ2 − ϕ3 + l2∂2x2ϕ, (13)

∂tη = (−1 + dϕ)η − η3 + ∂2x2η. (14)

Here

τ =
t1
t2
, l =

l1
l2
, β = q2q−1/2

3 , d = pq−1/2
3 , c = gb−1/2.

(15)
The coefficients of the equations (13), (14) are parameters,

which are determined by the properties of the parent and
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the new phase. It is assumed that these parameters are

either known, or they can be calculated. The parameter

c ∝ ϑn of (13) characterizes increase in the system’s elastic

energy in nucleation of the new phase. The meaning of

the parameters α, β is considered below. The equation (13)
describes the dynamics of a bistable medium. The bistability

is determined by the fact that in the phase transition

the paths of the atoms can simultaneously stay on the

PESes E0(R0) and Eγ(Rγ) with γ > 0. The equation (14)
represents the real Ginzburg–Landau equation [30].

3. Homogeneous stationary solutions

The equation (13) at c = 0 has three homogeneous

stationary solutions: ϕ0 = 0,

ϕh =
β

2
+

(β2

4
+ α

)1/2

, ϕin =
β

2
−

(β2

4
+ α

)1/2

,

as shown on Figure 1. The parameter β determines a

numerical value of ϕ. Stability of the solutions is analyzed

to show the following. The solution ϕin (a dashed curve 3

of Figure 1) is always unstable. The solution ϕ0 is the only

one and stable at α < α1 = − β2

4
(the area I of Figure 1),

which takes place for the stable parent phase at θ < θ0.

At α1 < α < 0, the medium is in the bistable state (the

areas II, III of Figure 1). If α1 < α < α2 = − 2β2

9
, then the

solution ϕ0 is stable, and ϕh is metastable (the curve 1 of

Figure 1). At α2 < α < 0, the solution ϕh is stable (the
curve 2 of Figure 1), ϕ0 — metastable. At α = α2, both the

solutions have the same stability. At α > 0, (the area IV of

Figure 1) the solution ϕh(ϕ0) is stable (unstable), and any

small perturbation α increases. Therefore, the parameter

α = α(θ). The temperature θ0 is found from the equality

α = −2β2/9. The equation α(θ) = 0 is used to find the

temperature θin of stability loss of the parent phase in

relation to the small perturbations. The sign
”
−“ in front

of the coefficient c in the right side of the equation (13)
shows that the elastic deformation of the medium increases

the potential energy (∝ −
∫

∂tϕdϕ) of the system.

The equation (14) at d = 0 has the only stable solution

η0 = η = 0. At d > 1/ϕ, there is a solution η > 0, which

is matched with a smaller value of the potential energy

(∝ −
∫

∂tηdη). The magnitude dϕ − 1 > 0 determines the

rate of OP increase η.

The equations (13), (14) always have the homogeneous

stationary solution (HSS) η0, ϕ0, which corresponds to the

parent phase. The stability has been analyzed in a standard

way to show that the solution η0, ϕ0 is stable in relation to

the small homogeneous and heterogeneous perturbations of

the frequency ω and with the wave vector k at

−τ + α < 0, (16)

−α > 0. (17)

At α < 0, these inequalities are always satisfied, which takes

place for the parent phase in the stable and the metastable

IVIIII II

0

1

2

3

ϕ

α
α
1
α
2

Figure 1. Dependence of the order parameter ϕ on α. See the

article text for explanations.

D

M

1

2

3

45

B

G

η

ϕ

Figure 2. Zero-isoclines of the equations (17) — the blue

curves (1, 2) and (18) — the red curves (3, 4, 5).

state. Other HSSes are determined by points of curve

intersection (zero-isocline):

(α − cη)ϕ + βϕ2 − ϕ3 = 0, (18)

(−1 + dϕ)η − η3 = 0. (19)

The plot curves (18), (19) at α < 0 and characteristic

points of intersection are shown on Figure 2. The

parabola (18) intersects the straight line η = 0 in the points

ϕ = ϕin and ϕ = ϕh. The curve (19) at

dG > dD > dB > d0 (20)

and fixed values of the other three parameters can intersect

the parabola (18) in the three characteristic points B,

D, G. Here, d0 — the value of d, below which the

curves (18), (19) do not intersect. When

d = dm =
2

β

[

1 +
(β2 − 4α

4c

)2
]

(21)
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the curves intersect at the vertex of the parabola (the point

M) at ϕ = β/2. Taking into account (8), the smaller value

of ϑc is matched with the bigger value of d .
HSS stability is analyzed to show the following. The

solution ηB > 0, ϕB > 0 in the point B is stable in relation

to the small homogeneous and heterogeneous perturbations.

The HSS ηD > 0, ϕD > ϕin in the point D is stable in

relation to the small homogeneous perturbations, but it is

unstable in relation to the heterogeneous perturbations. In

this case, ϕD < ϕB. The point G (HSS ηG = 0, ϕG < ϕin)
has no stable solution [26,31]. This situation is possible in

the systems without the phase transformations, for example,

when the high-temperature phase is quenched.

4. Heterogeneous solutions

The heterogeneous solutions ϕ(x , t), η(x , t) describe the

transitions of the system from the metastable state η0, ϕ0

into the states in the points B and D. The transition

into the point B includes formation and propagation of

a switching wave (SW) ϕ(x − vswt), η(x − vswt), whose

velocity is vsw . In front of (behind) the front, the medium

is in the state η0, ϕ0 (ϕB > 0, ϕB > 0). The OPs change

at the SW front. The transition into the point D can

include excitation of localized solutions ϕ(x , t), η(x , t) —
autosolitons (AS) [32]. They are non-equilibrium localized

states of a nonlinear medium. SW and AS nucleation

requires initial OP perturbation ϕ with the amplitude

1ϕ0 > ϕin. (22)

For this, Nin of the atoms should be displaced into positions,

which are non-typical for the parent phase. The probability

of the displacement of Nin of the atoms is determined by

a product of the probabilities (1) or (3). Then, in the

nonadiabatic transitions of the atoms the time of origin of

the initial perturbation (22):

tLZ = NinW0/(v|F2 − F1|), (23)

and in the thermally activated displacements

tth ∝ exp

(

Nin1Eγ

kBT

)

. (24)

The product Nin1Eγ means energy of critical nucleation. It

follows from the formulas (23), (24) that at Nin ≫ 1 the

time of origin of the initial perturbation (22) in thermal

fluctuations will be great in comparison with (23). So, the
condition (22) is fulfilled by the time (23). This conclusion
should not be surprising, as the parent and the new phases

differ by the interatomic interactions.

5. Diffusion phase transformations

The diffusion phase transformations occur at compara-

tively high temperatures, low rates of temperature change

and are characterized by a wide loop of hysteresis and

larger volume changes in comparison with the martensitic

transformations. In these conditions, taking into account (8),
the coefficient d must be small, and the transition from

the metastable state comes into the point B. It is generally

assumed that nucleation and growth of the new phase are

determined by thermally activated processes. Indeed, in

these conditions, as it follows from (4), at low velocities v

of (23), Nin ≈ 1 and the inequality t1 = t1th is fulfilled. The

atoms displacements are determined by the vibration de-

grees of freedom. The same degrees of freedom determine

medium deformation. It means that the parameters τ < 1,

l < 1 must have close values, i. e.

τ . l. (25)

If this condition is fulfilled, then v1 = l1/t1 . v2 = l2/t2.
The diffusion transformation occurs at an interface of the

new phase and the matrix. When the said interface moves,

the volume portion of the new (parent) phase increases

(decreases). This situation of transformation is described by

heterogeneous solutions in the form of the switching wave.

The dynamics of nucleation and propagation of the SW

has been considered based on the numerical solution of

the equations (13), (14), wherein all the parameters are

determined by properties of the phases. The form of

the initial perturbations is shown in Appendix. Figure 3

exemplifies the calculation results at

α = −0.02, β = 0.6,

c = 0.1, d = 3, l = 0.15, τ = 0.1. (26)

At these parameters, ϕh≈0.56, ϕin≈0.04, ηB ≈0.53,

ϕB ≈ 0.43. The parameters of the initial perturbation

1ϕ0 = 0.1, σϕ = 3, x0 = 50. It is clear from the data

of Figure 3 that there are two stages of nucleation and

growth of the new phase. The first stage includes, first

of all, increase in OP ϕ, OP η ≈ 0 (Figure 3, left panel).
When the inequality dϕ > 1 is fulfilled, OP η starts

increasing. Its growth rate is determined by the magnitude

(−1 + dϕ). It can be seen from the equation (14),
wherein η̇ ∼ (−1 + dϕ)η. At the same time, OP ϕ has

almost no change. By the point of time t = tinc , both the

OPs accept stationary values ηB, ϕB. The localized OP

distribution can be considered as a formed embryo of the

new phase. Note that its formation results from evolution

of the non-equilibrium system on the atomic scales. It

is not necessary to include representations of any sources

in the form of defects. The second stage (at t > tinc)
includes embryo growth due to SW propagation. The

volumed occupied by the new (parent) phase is increased

(decreased) (Figure 3, right panel). In case of fulfillment of

the condition (25), the width of the transition area between

the parent and the new phase is still constant. At t ≫ tinc

the entire volume is filled with the new phase. The time

tinc means an incubation period, wherein the embryo of the

new phase is formed at the first stage.
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Figure 3. Spatial distribution of the order parameters ϕ — the blue curves (1, 3, 5), η — the red curves (2, 4, 6) in the switching wave

in various points of time t . On the left panel, t = 5 (1, 2), 10 (3, 4), 20 (5, 6). On the right panel, t = 25 (1, 2), 40 (3, 4), 90 (5, 6).

If the volume is largely changed, the parameter d < d0. In

this case, there is only HSS η = 0, ϕ = ϕh, which is stable

in relation to the small perturbations. The system transition

from the state η0, ϕ0 into the metastable state η = 0, ϕ = ϕh

occurs by nucleation and propagation of the SW ϕ(x − v1t),
η = 0. The homogeneous solution η = 0, ϕ = ϕh, which

is stable in relation to the small perturbations, can be

unstable in relation to the perturbations of the OP η of

the amplitude 1η > (dB − d0)ϕh . This perturbation can be

created by excitation of a longitudinal wave due to external

impact. Then, with the perturbation available, the SW is

nucleated to propagate from the state η = 0, ϕ = ϕh into

the state ηB, ϕB. If the perturbations are across the entire

volume of the sample, the phase transformation can occur

simultaneously across the entire volume. In this case, the

rate of the phase transformation can be high. It is possible

that such a mode of the phase transformation is observed at

”
explosive“ crystallization of amorphous materials [32].

When there is no source of elastic deformations (the sys-

tem is homogeneous) and slow change of the temperature

(tLZ ≫ tth), the condition (22) is not fulfilled. When θ < θin

(α < 0), the system is still in the metastable state. When

θ > θin (α > 0), the metastable phase in unstable in relation

to the small perturbations. Any small perturbation results

in the phase transformation. The diffusion transformation

occurs in a mode of overcooling/overheating.

6. Martensitic transformations

As said above, the athermic mechanism of the martensitic

transformations is determined by nonadiabatic transitions of

the atoms. The shear mechanism of deformation in the

martensitic transformations is explained as follows. For the

systems with the martensitic transformations, the relative

changes of the volume ϑc of (9) usually do not exceed

several percent and they are smaller than those in the

diffusion ones. So, the parameter d ∝ 1/ϑc must be greater

than for the diffusion transformations. The interest is

paid to the solutions, which describe the transition from

the metastable parent phase into the point D of Figure 2.

This case may include excitation of the localized solutions

ϕ(x , t), η(x , t) — the autosolitons (AS) [33]. The kinetic

variables change sharply inside the autosoliton, whereas

they are equal to stationary values on its periphery (in this

case they are zero). The static autosolitons describe the

localized distributions of the new phase, which are typical

for the martensitic transformations. The static autosolitons

can be excited in case of available perturbation of the final

amplitude (22), and fulfillment of the inequalities [33]:

τ < 1, l ≪ 1, τ > l (27)

and the condition

d > 1/ϕD. (28)

The first inequality of (27) as per (15) means similarity of

the characteristic times on all the spatial scales. It follows

from the second inequality that the atoms displacements on

the atomic scales must be small in comparison with the

interatomic distances. It follows from the last inequality

of (27) that there is an equality v2 > v1. I.e., the

macroscopic deformation should be realized in the fast

mechanisms, which are represented by twin formation. This

peculiarity is inherent in the martensitic transformations.

A physical meaning of the condition (27) is explained by

reviewing Figure 2. It is clear therefrom that with the

same value of the parameter d the magnitude ϕD decreases

with increase in the parameter c , and vice versa. The

parameter c characterizes increase in the system’s elastic

energy in formation of the new phase. Shear moduli of the

solid are always smaller than a bulk modulus. So, increase

in the elastic energy in shear strain is always less than in the

change of the system volume. It is no surprise that in the

martensitic transformations the volume changes are small,

and deformation is determined by shear components.
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Figure 4. Spatial distribution of the order parameters ϕ — the blue curves (1, 3, 5), η — the red curves (2, 4, 6) in the statical autosoliton

in various points of time t . On the left panel, t = 5 (1, 2), 20 (3, 4), 23 (5, 6). On the left panel, t = 26 (1, 2), 35 (3, 4), 70 (5, 6).

The spatio-temporal OP distributions in nucleation and

development of the static AS are shown on Figure 4 at

d = 10, τ = 0.9, l = 0.05. (29)

The rest parameters are the same as in (26). With the

selected values of the parameters, ηD ≈ 0.11, ϕD ≈ 0.35. It

is clear from Figure 4 that there are three stages. At the

first stage, OP ϕ increases to the value ϕmax ≈ 0.29 for the

time t ≈ 20, OP η is close to zero. At the second stage, OP

η quickly increases, and to the point of time t ≈ 26 it is of

the maximum value ηmax ≈ 1.3. At the third stage, both the

OPs decrease to the stationary values in the static AS.

Formation of the static AS exhibits as bands of the

localized shear macroscopic strain and is accompanied by

reduction of the system’s elastic energy. At the same time,

as per (8) the homogeneous system forms a system of

regularly-arranged stable bands of localized deformation.

With further change of the temperature, new bands can

appear only between the previously formed bands. This

situation qualitatively agrees with a situation experimentally

observed in the martensitic transformations.

As clear from Figure 2, with increase in the parameter c ,
the stationary value of OP ηD reduces to ηD ≈ 0.08. Then,

with the same value of the parameter d, an oscillating

AS with a periodically changing amplitude is excited. We

remind that the magnitude c ∝ ϑn, and ϑn is determined

by the properties of the crystal lattices of the austenite

and martensite phases. The martensitic transformation may

be observed in systems, whose transition of the crystal

lattice of the austenite phase into the crystal lattice of

the martensite phase occurs mainly via shifts of atoms

in mutually perpendicular directions along the two axes.

Compression/expansion along the third axis should be slight.

Thus, for example, in the TiNi alloys with TMT observed

the austenite phase has the B2 structure with the lattice

cell parameter aA ≈ 0.30 nm, the martensite phase B19′

has a monoclinically-distorted orthorhombic cell with the

parameters aM ≈ 0.29 nm, bM ≈ 0.41 nm, cM ≈ 0.46 nm.

The volume changes do not exceed several tenth percent [5].

In the reconstructive martensitic transformations in the

steels Feγ(C) → Feα(C) (C — carbon concentration), the
martensite phase has a body-centered tetragonal lattice. As

known, the FCC lattice can be switched into the BCC

lattice via 20%-compression along one of the axes 〈001〉
synchronous extensions by ≈ 13% along a pair of the

orthogonal axes 〈100〉, 〈100〉 or 〈110〉, 〈1̄10〉 of the FCC

lattice. On the atomic scales, such reconstruction is realized

by means of change of the interatomic interactions. In

case of carbon atoms available, the phase with the BCC

crystal lattice is unstable. The phase with the BCT crystal

lattice is stable. The volume changes in the martensitic

transformation are small as well. This result is achieved

by high rates of quenching to the temperatures below the

threshold values. Therefore, it prevents decomposition of

supersaturated solid solution of carbon in the α-phase. The

high rates of quenching and the low temperatures determine

the athermic mechanism of the martensitic transformations.

The framework of the proposed model makes it possible

to explain availability of the pre-transition states in TMT

and absence thereof in RMT. In TMT, the parent phase

is metastable. The transition into the stable phase is

conditioned by (22). I. e., the systems shall have initial

perturbation of OP ϕ of a finite amplitude. OP ϕ

characterizes distribution of the dynamic displacements of

atoms when changing the interatomic interactions. The

change of the interatomic interactions with change of the

temperature (volume) is accompanied by the change of

the elastic constants and DSO formation. With change of

the temperature, the amplitude ϕ is of a threshold value,

and there is TMT against the background of the excited

DSO. The DSO excitation explains the fact that the first-

order phase transitions occur in the low temperatures, too.

For example, in the proustite crystal (Ag3AsS3) in the

equilibrium conditions, the first-order phase transition takes

place at the temperature Tc0 = 28−30K [34]. In the non-
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equilibrium conditions (with increase in the velocity of

heating/cooling), the perturbation of the finite amplitude

will be achieved within a smaller period of time. It is

equivalent to the fact that the temperature of the non-

equilibrium phase transition will be above θc in cooing and

below θc in heating. It is exactly this pattern that is observed

experimentally [34].

In RMT, the dynamic displacements of the atoms result in

formation of the unstable α-phase with the BCC lattice. As

per (23), the time of its formation is in reverse proportion

to the velocity of cooling. No perturbation of the finite

amplitude is required for the transition from the unstable

phase into the martensite phase with the BCT lattice. The

energy range between the PESes increases with decrease

in the system volume (the number of atoms), and the

probability of the nonadiabatic transitions decreases. As

a consequence, RMT in such systems may be difficult, or

may not occur at all.

7. Conclusion

The proposed model of the phase transformations in the

solids has taken into account processes, which occur in the

open system on the various spatio-temporal scales. On

the atomic scales, the dynamics of atoms is nonadiabatic,

there are the two mechanisms of the atoms displacements:

the thermally activated one and the athermic one. The

dynamics of the system on the large scales is determined

by the collective (correlated) displacements of atoms and

described by the two order parameters — the amplitudes of

the unstable modes, which are excited on the thresholds of

system stability. The thresholds of stability are determined

by thermodynamic characteristics and equations of state for

the two phases. The instability development on all the

spatio-temporal scales is accompanied by reduction of the

system’s potential energy.

The kinetics of the phase transformation is described by

the two coupled non-linear equation of a parabolic type

for the order parameters. The governing parameters of the

equations are the macroscopic characteristics of the system:

the temperature (the volume of the metastable phase) and

the difference of the volumes of the two phases. Based on

analysis of the solutions of the equations, conditions have

been found, at which various kinetics patterns of the phase

transformations are realized.

The diffusion phase transformations occur in the systems,

in which the difference of the volumes of the two phases is

comparatively great. The nucleation and growth of the new

phase are described by the solutions in the form of the wave

of switching from the metastable phase into the stable one.

The nucleation of the new phase is caused by the athermic

displacements of the atoms. There is the incubation period

of nucleation and growth of the embryo. Depending on the

temperature change rate, the transition from one phase into

another can be in the mode of overcooling/overheating or

in the mode of
”
explosive“ transformation.

The martensitic transformations occur in the systems,

whose transformation of the crystal lattices in the phase

transition is accompanied by the small change of the volume

and the large shear strains. The solutions of the equations,

which describe the forming martensite phase, are static

autosolitons. The thermoelastic martensitic transformations

develop against the background of the displacements, which

are determined by the change of the interatomic interactions

in the transition from one crystal lattice into another. The

formed short-range order, which is non-typical for the

metastable phase, acts as embryos of the martensite phase.

In the reconstructive martensitic transformations, which

occur in the non-equilibrium conditions, the formed short-

range order is typical for the unstable phase. Therefore,

no embryo is required for formation of the martensite

phase.

Thus, the model of the phase transformations in the solids

(which is comparatively simple in terms of mathematics)
leads to results, which qualitatively agree with the available

experimental data. It means that the model takes into

account the main physical processes that occur in the open

system of nuclei and electrons in the phase transformation.

Appendix

The equations (13), (14) have been numerically solved

using the finite-difference method with a completely implicit

scheme in the interval 0 ≤ x ≤ X . At t = 0, the system is in

the state η0, ϕ0 . The initial perturbation for the variable ϕ

was specified as

1ϕ = 1ϕ0 exp
[

−σϕ(x − x0)
2
]

.

Here, δϕ0, σϕ, x0 — the amplitude, dispersion and the

coordinate of the initial perturbation, respectively. The

initial perturbation for the variable η is accepted to be

a stochastic one with the amplitude 0 ≤ 1η(x) ≤ 10−3.

Periodic boundary conditions were set.
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