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A method for calculating the inductive and power parameters of complex coaxial axisymmetric current systems

based on a cylinder model is proposed. The method is based on the equivalence of the energies of coils and

equal-sized cylinders with equal densities of their surface currents. The inductances, mutual inductances and

ponderomotive forces in the coil system are calculated from the mutual energy and 3D fields of the cylinders. It is

shown that the volume-average demagnetizing factor of a cylinder is equivalent to the Nagaoka coefficient for the

inductance of coils of finite length. From the analysis of the correlation between the energy densities of the cylinder

and the demagnetization energy, the criterion of a
”
short coil“ is determined. The correspondence of the results

obtained by the cylinder model to the calculations by current models is established. A method for calculating

interlayer mechanical stresses, mutual radial and axial forces and stresses in a system of coaxial coils (cylinders) is

presented. An example of using a cylinder model for calculating the inductance of a rectangular coil is given.
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Intoduction

Inductive and power (ponderomotive) characteristics are

the most important parameters of magnetic systems The

term
”
solenoid“ is usually used to describe a type of coil

whose length is much greater than its diameter. Force

interactions in axisymmetric magnetic systems are usually

calculated for current systems: coils and solenoids. Calcula-

tions of ponderomotive forces are necessary when creating

high-intensity pulsed magnetic fields [1–6]. The specified

literature is devoted to the technical implementation of

the assigned tasks with an emphasis on the strength

characteristics of products The calculations use approximate

formulas for magnetic fields obtained for current systems.

The complexity of calculating coil fields leads to the

need to simplify problems and present results using series,

approximating formulas, or graphic-analytical methods [4,5].
The difference in parameter values calculated using different

methods can be several percent, which is considered

quite acceptable. Extended information on methods for

calculating coils can be found on the Internet at the sites [7],
where links to primary sources are also provided.

The single-layer coil plays a special role in the design of

magnetic systems. On its basis, complex multicomponent

systems are calculated. Methods for calculating the induc-

tance of single-layer coils through elliptic integrals were first

developed by J.C. Maxwell for windings made of round

wire [8] and L. Lorentz for coils of ribbon conductors [9].
These results have the same meaning for electrical and

radio engineers as Maxwell’s electromagnetic field equations

do for physicists. Nagaoka redefined the Maxwell-Lorentz

formulas by introducing the concept of the geometric factor

of the coil shape [10]. ow the elliptic integrals contained

instead of parameters:
”
coil length h — diameter 2a“, their

ratio h/2a.
With the introduction of the Nagaoka coefficient, the

inductance of a single-layer coil is written as follows:

L =

(

µ0
w2

h
π(2a)2

4

)

kL, (0 ≤ kL ≤ 1), (1)

where µ0 — permeability of vacuum,w — quantity of

coil turns, kL — Nagaoka coefficient. The expression in

parentheses determines the inductance Lh of the solenoid

section with length h.
The energy accumulated in the coil is

Ecoil = I 2L/2, (2)

where I is current in the coil turn.

Nagaoka coefficient introduces a correction for the finite

length of the coil and in Lorentz form has the form

kL =
8a
3πh

(

2k − 1

k3
Ec(k) +

1− k2

k3
Ka(k) − 1

)

, (3)

whereKa(k) and Ec(k) — complete elliptic integrals of the

1st and 2nd kind:

Kc(k) =

π/2
∫

0

1
√

1− k2 sin2 θ
dθ,

Ec(k) =

π/2
∫

0

√

1− k2 sin2 θ dθ,
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Figure 1. a — scheme for determining induction B; b — scheme for calculating the field of a cylinder Hp. The hatched coordinates

q(r ′, z′) are associated with the field source point. The symbol a(r, z) indicates the observation point.

with k = 2a(4a2 + h2)−1/2 module.

The inhomogeneity of the induction of short coils signif-

icantly complicates the calculations. Numerous examples

of calculations of practical systems are discussed in the

reference book [11]. Direct numerical methods for calcu-

lating the inductive parameters of coils without converting

the original integral expressions into algebraic ones are given

in [12].

Fields for internal regions of axisymmetric magnetic

systems were obtained in [13,14]. Formulas and programs

for calculating demagnetizing and 3D fields of cylinders

during azimuthal magnetization (or induction of equivalent

coils) throughout space, expressed through elliptic integrals,

were published in [15]. Analytical expressions for the3D
fields of a cylinder for arbitrary magnetization orientation

were published in [16,17].

Direct calculation of inductances and mutual inductances

of rectangular coils as current systems is complex and leads

to extremely cumbersome formulas, which makes their use

for practical calculations difficult [18–21].

This work discusses methods for calculating the induc-

tance of coils, mutual inductance and ponderomotive forces

of a densely wound coil system using an alternative method

through the 3D fields of an axially magnetized cylinder.

The winding density criterion is given in [22]. The method

is based on the equality of the internal energies of the coils

and their equivalent axially magnetized cylinders In fact,

to calculate the basic parameters of coils, there is no need

to involve labor-intensive methods of theoretical electrical

engineering and magnetostatics for current systems, if only

the equality of the surface current densities of coils and

cylinders is established. When using a cylinder model, the

calculation of a number of basic parameters of axisymmetric

magnetic and current systems is significantly simplified.

1. Computational model

1.1. Basic relationships of model quantities

The coil, the cylinder axially magnetized in the z
direction, and the coordinate systems associated with them

are shown in Fig. 1.

The magnetization of the cylinder Mz, the surface

current density of the cylinder js and the surface
”
magnetic

charges“ are related by the relations [23] js = RotMz,

σ = −DivMz . With uniform magnetization Mz = const)
Js = [Mzn] (Fig. 1, a), σ = Mzn (Fig. 1, b); n — outer

normal to the surface of the cylinder. In scalar notation

we have

Mz = j s, σ = Mz. (4)

For given coil parameters — length h, diameter 2a,
number of turns w and current per turn I , the current
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density of the winding is j = wI/h. Under the assumption

j s = j , the equivalent magnetization of an equidimensional

cylinder is equal Mz = j (Fig. 1, a), which ensures equality

of inductances of the coil Bcoil and cylinder Bcyl throughout

the entire space

The fields in the volumes of the coil and cylinder are

radically different. According to the dipole (
”
charge“)

model of magnetization, surface
”
magnetic charges“ ±σ

(arise at the ends of a uniformly magnetized cylinder

(Fig. 1, b).
”
Charges“ create a demagnetizing field Hpn the

volume of the cylinder, directed oppositely Mz, and a stray

field outside it, also denoted by the symbol Hp.

The demagnetizing field Hp plays a vital role in the

calculations of magnetic systems. Hp is determined through

the demagnetization factor of the sample Np(r).

1.2. Demagnetizing factor and 3Dof the field of
axially magnetized cylinder

Fields Hp(r) inside and outside a ferromagnet of arbitrary

shape with a known magnetization distribution M(r′)
are calculated through the gradient of the magnetostatic

potential ϕ(r) at the observation pointa(r, z) (Fig. 1, b):

Hp(r) = −∇ϕ(r) = −∇
∫

V′

M(r′)∇′
1

|r− r′| d3r′,

where r′ is radius vector of the source point q(r ′, z′), r are
radius vectors of the observation point a(r, z). The primed

and unprimed operators mean differentiation with respect

to q(r ′, z′) and a(r, z) respectively; d3r′ means a volume

element. When calculating the potential ϕ(r), the equali-

ties ∇′(1/|r − r′|) = (r − r′/|r− r′|3) = −∇(1/|r − r′|)are
used.

With a uniformly magnetized ferromagnet,

M(r′) = M = const , Hp(r) is written in the form [24]:

Hp(r) = V(M∇)

∫

V

dr ′

|r− r′| = −N̂(r)M, (5)

where0 ≤ N̂(r) ≤ 1 is tensor of demagnetizing coefficients

(factors) with components

Ni j (r) = − ∂2

∂xi ∂x j

∫

V

dr′

|r− r′| .

Thexi , xJ variables are determined by the coordinate

system used; N̂(r) — dimensionless quantity determined by

the shape of the sample establishes proportionality between

Hp(r) and M. The potential of ϕ(r) in the inner and outer

areas of the cylinder is determined differently. Outside

the cylinder, the demagnetization factor N̂(r) is zero by

definition, but is a coefficient that determines the stray

field. The demagnetizing field Hp(r
′) is inhomogeneous

throughout the sample volume and depends on its shape

and magnetization, i.e. is a function of the coordinates r′.

With uniform magnetization of the cylinder along the

axis Z Mz = const:

Hp(r) = −Mz

[

∇
∫

V′

αz ∇′
1

|r− r′| dV′

]

= −MzN̂(r), (6)

whereαz —- unit vector of the magnetization direction.

Hence the components of the demagnetizing field follow

Hpi = −NizMz, i = r, z.

Subsequent calculations were performed in a cylindrical

coordinate system. For convenience of calculations, an aux-

iliary
”
magnetostatic potential“ of two disks is introduced,

which has the dimension of length [14]:

ψ1(r) =

∫

V′

∇′
1

|r − r′| dV′ =

a
∫

0

r ′dr ′
2π
∫

0

dθ′

×









1
√

r 2 + r ′2 + (h− z)2 − 2rr ′ cos(θ − θ′)

− 1
√

r 2 + r ′2 + z2 − 2rr ′ cos(θ − θ′)









,

0 ≤ z ≤ h∧ |r | ≤ a.

Applying the Lipschitz integral and the addition theorem

for Bessel functions to (9), we obtain the total potential of

the oppositely charged end surfaces of the cylinder [25,26]:

ψ1(r, z) = 2πa

∞
∫

0

J0(tr )J1(ta)[e−tz + e−(h−z)]
dt
t
,

(0 ≤ z ≤ h) ∧ |r | ≤ a,

where J0(tr ) and J1(ta) — zeroth and first order Bessel

functions of the real argument. Finally, we obtain formulas

for the demagnetizing factors of the internal region of the

cylinder:

Nz z(r, z) = − ∂

∂z
ψ1(r, z) =

1

2
a

∞
∫

0

J0(tr )J1(ta)

× [e−tz + e−(h−z)]dt, 0 ≤ z ≤ h∧ |r | ≤ a, (7)

Nrz(r, z) = − ∂

∂r
ψ1(r, z) = −1

2
a

∞
∫

0

J1(tr )J1(ta)

× [e−tz − e−t(h−z)]dt, |r | ≤ a. (8)
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Figure 2. a — vector field of induction B. The induction lines are continuous; b — vector field Hp. The Hp field suffers rupture at the

ends of the cylinder. The demagnetizing field Hp in the volume of the cylinder is directed opposite to the magnetization Mz . Outside the

cylinder, the field and induction lines coincide.

Formulas for calculating the 3D coefficients Nz z(r, z) and
Nrz(r, z) in the entire space have the form

Nz z(r, z) =
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

2
a

∞
∫

0

J0(tr )J1(ta)[e−tz + e−t(h−z)]dt, if (0 ≤ z ≤ h),

1

2
a

∞
∫

0

J0(tr )J1(ta)[e−tz − et(h−z)]dt, if (z > h),

1

2
a

∞
∫

0

J0(tr )J1(ta)[e−t(h−z) − etz]dt, if (z < 0),

− 1

2

[ h− z
√

(h−z)2
+

z√
z2+a2

− h− z
|h−z| −

z
|z|

]

everywhere,

(9)

Nrz(r, z) =
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

2
a

∞
∫

0

J1(tr )J1(ta)[e−tz − e−t(h−z)]dt, if (0 ≤ z ≤ h),

1

2
a

∞
∫

0

J1(tr )J1(ta)[e−tz − et(h−z)]dt, if (z > h),

1

2
a

∞
∫

0

J1(tr )J1(ta)[etz − e−t(h−z)]dt, if (z < 0).

(10)

Cylinder induction

Bz(r, z) = µ0(Hp + Mz) = µ0Mz(1− Nz z).

Taking into account z- and r -field components and cylinder

induction

Hz(r, z) = −Mz Nz z(r, z), (11)

Hr (r, z) = −Mz nrz(r, z). (12)

Bz(r, z) =
∣

∣

∣

∣

∣

µ0Mz(1− Nz z)if (0 ≤ z ≤ h) ∧ (0 ≤ |r | ≤ a),

µ0Hz(r, z) everywhere,
(13)

Br (r, z) = µ0Hr (r, z). (14)

Evaluation by formulas (9), (10) directly near the sample

surface lead to oscillating solutions [27]. In [28,29] Nz z and

Nrz were redefined in terms of elliptic integrals Calculation

of stray fields through elliptic integrals provides stable

numerical results for any parameters of the magnetic system.

These formulas, written for characteristic areas inside and

outside the cylinder, are given in the Appendix [30].
Fig. 2 shows graphs of the vector fields of induction Bcyl

and the cylinder fields Hp in a form normalized to the

absolute value of the vectors. The shaded area indicates

the axial section of the cylinder. The graphs are plotted for

a cylinder of size h = 50 cm, 2a = 10

Fig. 3 shows graphs of changes in the demagnetizing

field Hp and induction Bz along the axis Z for the following

parameter h = 50 cm, 2a = 10 cm, Mz = 5 · 103 A/m.

Fields and induction in the X−Y plane (Fig. 1) are

calculated as follows:

Hz(x, y) = Hr (r, z)q(x, z), Hy(x, y) = Hr (r, z)g(x, z),

Hz(x, y) = Hz(r, z),

Bz(x, y) = Br (r, z)q(x, z), By(x, y) = Br (r, z)g(x, z),

Technical Physics, 2024, Vol. 69, No. 2
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Bz(x, y) = Bz(r, z),

where

r (x, y) =
√

x2 + y2, q(x, y) =
x

√

x2 + y2
,

g(x, y) =
y

√

x2 + y2
.

2. Cylinder energy. Volume-average
demagnetizing factor as Nagaoka
coefficient

The energy of the cylinder is given by the formula

Ecyl(a, h) = 2π

h
∫

0

a
∫

0

MzBz(r, z)

2
rdr dz

= 2π

h
∫

0

a
∫

0

µ0M2
z[1− Nz z(r, z)]

2
rdr dz. (15)

The induction component Br (r, z)is perpendicular to

Mzand does not contribute to the energy. With the

introduction of a volume-averaged demagnetizing factor of

the cylinder

N̄z(a, h) =
2π

πa2h

h
∫

0

a
∫

0

Nz z(r, z)dr dz, (16)

Ecyl(a, h) can be represented in equivalent form

Ecyl(a, h) = 2π

h
∫

0

a
∫

0

µ0M2
z[1− N̄z(r, z)]

2
rdr dz

= E0(a, h) − Ep(a, h), (17)

where E0 — the energy of a section length h of an infinite

long cylinder, Ep — the energy of the demagnetizing field.

The equality of energies Ecoil (2) and Ecyl(a, h) (17)
establishes a connection between the Nagaoka coefficient

kL (3) and the coefficient k1L determined by (16):

k1L = 1− N̄z(a, h). (18)

The term
”
cylinder inductance“ has no physical meaning.

However, taking into account the equality of the energies

of the cylinder and the coil Ecyl(a, h) = Ecoil(a, h)
from the energy Ecyl(a, h) taking into account (4)
it is possible to calculate from (2) the inductance

of the equivalent coil L = 2Ecyl/I 2. For cylinder

and coil parameters: h = 50 cm, a = 5 cm, I = 5A,

w = 500, j = 5 · 103 A/m, Mz = 5 · 103 A/m we

obtain Ecyl(a, h) = 0.057 J, Ep(a, h) = 4.929 · 10−3 J,

E0(a, h) = 0.062 J, N̄z(a, h) = 0.08, kL = k1L = 0.92,

L = 4.64 · 10−3 H.

Fig. 4 shows graphs of the dependence of the coefficients

kL and k1L on the lengths of the coil and cylinder in the

range h = 0−100 cm
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Figure 4. Solid line kL — Nagaoka coefficient in Lorentz form.

Symbolic line — k1L, determined by the demagnetizing factor of

the cylinder, h = 0−100 cm.

3. Criterion
”
short coil“ [31]

Currently there is no generally accepted definition of coils

based on the h/a ratio criterion. The definitions range from

”
long“ h > 2ato

”
very short“ 2a ≪ h. Below we propose

a definition of a short coil based on the ratio of volumetric

energy densities Ēsyl = Esyl/hπa2 [J/m3 of an equivalent

cylinder (17).

Fig. 5 shows the dependences of the h, Ēp(a, h) of

volumetric energy densities and the demagnetizing factor

N̄z(a, h).

It follows from the graphs that the energy
”
of the long“

cylinder (h ≫ 2a) Ēcyl(a, h) — curve 1 — dominates.

However, as h decreases, starting from a certain value of

hkr , in this case h ≤ 4.5 cm, the demagnetization energy

Ēp(a, h) — curve 2 prevails. This effect occurs at N̄z ≤ 0.5

(n ≤ 4.5 cm) — curve 3. The value hk depends on the ratio

2a/h, but at the same time the value of IN̄z(a, h) = 0.5

does not change and it can be proposed as a criterion for

a short coil. This result does not follow from the current

model.
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Figure 5. Change in volumetric energy densities and the average

demagnetizing factor over the volume of the cylinder in the range

of changes in the length of the cylinder, z = 0−50 cm, 1 — energy

of the cylinder Ēcyl; 2 — demagnetizing field energy Ēp; 3 —
average demagnetizing factor over the volume of the cylinder N̄z,

N̄z = 0.5 at h = 4.5 cm.

4. Ponderomotive forces in axisymmetric
systems

4.1. Surface radial and axial forces. Thiele’s

strength function

Taking into account the equality of the internal energies

of the cylinder and coil, further, unless otherwise stated, the

terms
”
cylinder“ and

”
coil“ will be considered equivalent.

Radial Fr and axial Fz forces are determined from the

derivatives of energy Ecyl(a, h) (17) along the coordinates r
and z

Fr (a, h) = − d
da

Ecyl(a, h), Fz(a, h) = − d
dh

Ecyl(a, h).

For the parameters h = 50 cm, 2a = 10 cm,

Mz = 5 · 103 A/m we have Fr (a, h) = −2.178N,

Fz(a, h) = −0.123N, which coincides with the calculations

of the forces for the coil (w = 500, I = 5 ·A).

Radial forces tend to increase the diameter of the

magnetic system, and axial forces lead to compression of the

system at the ends. For coils, the occurrence of such forces

follows from Ampere’s law [32]. These effects for both the

coil and the cylinder follow from the law of conservation

of energy. The volumetric-averaged energy density of the

system Ē = E/hπa2, where E is defined (17), decreases

with increasing 2a, which leads to the emergence of forces

tending to increase the diameter of the cylinder. With an

increase in h , Ē grows too, which causes the occurrence of

compressive axial end stresses.

The mathematical expression for the radial force Fr (a, h)
is equivalent to the equation for F expressed through the

Thiele force function F(r, h) introduced in the theory of

stability of cylindrical magnetic domains (CMD) [33]:

F(r, h) =
2

π

(

2r
h

)2[
1

r (r, h)
Ec(r, h) − 1

]

,

Ec(r, h)

π/2
∫

0

√

1− k(r, h)2 sin2 θdθ, k(r, h) =

√

4r 2

4r 2 + h2

and Fr (r, h) = µ0/2πh2M2
zF(r, h), wherer -is the radius of

the CMD, h — the thickness of the infinite plate containing

the domain, Mz — the magnetization of the isolated

CMD (without taking into account the magnetization of

the plate). In [{]34for a quick estimate of Fr (r, h), a

simple interpolation expression Fr (r, h) = 4r /(2h + 3r ) is

proposed. In the range (0 ≤ 2r /h ≤ 10) the formula is valid

with an accuracy of several percent.

4.2. Radial and axial stresses in multilayer
systems

The calculation diagram for ponderomotive forces for

a system of three coaxial cylinders n = 3 is shown in

Fig. 6 [35]. Further, in the formulas for the lengths of the

cylinders, the designation Ln is introduced, and the origin of

coordinates is moved to the center of the magnetic system

by replacing z′ = z + Ln/2, which ensures the symmetry of

the graphs relative to the origin of coordinates.

Further, the following notations are introduced in the

calculation formulas: M — number of layers of coils

(cylinders), n — serial number of the layer (n = 1 . . .M),
wn — number of turns ofn-th coil layer, 2a1 — — diameter

of n-th layer, 2aM — diameter of the outer layer.

To demonstrate the model, the calculations assumed

equal magnetizations and lengths of concentric cylinders

with the number of layers M = 3. To set the distance

between layers according to r a power function was se-

lected: Funck(aM, a1, n, k) = [(n− 1/M − 1)k](aM − a1),

2
a

M

Mzn

2
a

2

2
a

1

j n( = 1)

j n( =3) z0

j n( = 2)

Ln

r

Z0

Figure 6. Calculation diagram of ponderomotive forces for a

system of three cylinders (coils) n = 3. Mz(n) — magnetization

of the n-th layer of the cylinder z0 — shift n-th cylinder relative to

the origin, j (n) — surface current density n-th cylinder (coil).
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where k — exponent; k = 1 corresponds to equal distances

between layers. The radius of then-th layer is defined as

an =

∣

∣

∣

∣

∣

∣

∣

a1, if n = 1 ∨ M = 1,

no value if n> M,

a1 + Funck(aM, a1, n, k) everywhere.

Below the calculation results are presented for the

following system parameters:

an =

∣

∣

∣

∣

∣

∣

∣

∣

∣

10 cm, n = 1,

15 cm, n = 2, Ln = 20 cm, wn = 100,

Mz n = 21.5 · 103 A/m, I n = 5A/turn (n = 1, 2, 3),

20 cm, n = 3.

The energy of the selected cylinder in the fields of the

other two at z0 = 0 is equal to the sum of the mutual

energies. Thus, the energy of then-th concentric cylinder

in the i -th and j -th fields is written in the form

Eni j (Ln, an) = 2π

×
Ln/2
∫

−Ln/2

an
∫

0

Mz n[Bz i(M i , Li , ai ) + Bz j(M j , L j , a j )]

2
rdr dz

= Eni + En j , n, i , j = 1, 2, 3, (19)

where Eni + En j — mutual energies of the cylinders.

Radial and axial forces are calculated from (19) using the

formulas

Frni j =
d

dan
[Eni(Li , ai ) + En j(L j , a j )], (20)

Fz ni j =
d

dLn
[Eni(Li , ai ) + En j(L j , a j )]. (21)

Totally normalized to the surface areas, the radial 〈σrni j 〉
and axial 〈σz ni j〉 mechanical stresses N/m2) of the n-th
cylinder in the fields of i -th one and j -th one are defined as

〈σrni j 〉 =
d

dan

[

Eni(Li , ai )+En j(L j , a j )

Ln2πan

]

= 〈σrni 〉+〈σrn j 〉,
(22)

〈σz ni j〉 =
d

dLn

[

Eni(Li , ai )+En j(L j , a j )

πa2
n

]

= 〈σz ni〉+〈σz n j〉.
(23)

The mutual energies of the cylinders are equal in pairs.

The equality of mutual energies does not mean the equality

of mutual surface stresses, which is explained by the

different surface areas of the cylinders due to the difference

in their diameters.

With (n = i = j ), the internal voltage of the cylinder n-th
is obtained (15). Radial 〈σrn〉 and axial 〈σz n〉 force densities

along the cylindrical and end surfaces of the n-th in the own

field Bz n are equal

〈σrn〉 =
d

dan
En(Ln, an)/Ln2πan,

〈σz n〉 =
d

dLn
En(Ln, an)/πa2

n. (24)

For an isolated cylinder at Ln → ∞ we have the equality

〈σz〉 = 〈σz〉 [31,32].
Fig 7 shows the mutual radial mechanical stresses along

the generatrices of three cylinders in pairs.

Arrow lengths are shown to scale. The resulting

radial stresses acting on an individual cylinder are ob-

tained (taking into account the sign) by summing the

stresses according to the diagram shown in the figure.

So, 〈σr 132〉 = 〈σr 13〉 + 〈σr 12〉 = 4.06, which corresponds to

calculations using formula (22).
The energy of the system of coaxial displaced cylinder of

n-th is by a distance z0 in the Z-direction in the fields of

cylinder i -th and j -th one is equal

Eni j (Ln, an, z0) = 2π

×
Ln/2
∫

−Ln/2

an
∫

0

Mz n[Bz i(z − z0)Bz j(z − z0)]
2

rdr dz

= Eni + En j . (25)

Longitudinal (axial) forces Fz ni j(Z0) and mechanical

stresses 〈σrni j 〉 when the n-th cylinder is displaced in the Z-
direction (Fig. 6) in the fields of the i -th and j -th cylinders

are calculated by the formulas

Fz ni j(z0) = dEni j (Ln, an, z0)/dan,

〈σz ni j〉 = Fz ni j(z0)/πa2
n. (26)

Radial forces and stresses are determined similarly

Frni j (z0) = dEni j (Ln, an, z0)/dLn,

〈σrni j 〉 = Fz ni j(z0)/Ln2πan. (27)

For a cylinder system, the resulting forces and stresses

are obtained by simple summation. The results of stress

calculations not included in this work are given in [31,35].

ás ñr 1

ás ñr12 ás ñr21

ás ñr13

ás ñr 2

ás ñr23

ás ñr 3

ás ñr32

ás ñr31

a1 a2 a3

Z

r

Figure 7. Surface radial stresses of cylinders. 〈σ, 1〉, 〈σ, 2〉,
〈σ, 3〉 — stresses acting on the cylindrical surfaces of indi-

vidual cylinders in their own fields (N/m2). 〈σ, 1〉 = 2.275,

〈σ, 2〉 = 1.867, 〈σ, 3〉 = 1.588. Mutual stresses 〈σr12〉 = 2.275,

〈σr21〉 = 1.43, 〈σr23〉 = 2.078, 〈σr32〉 = 1.767, 〈σr13〉 = 1.801,

〈σr31〉 = 0.818 [35].
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Parameters of the magnetic systemn = 3 (z0 = 0) [35]

Radius Energy Radial Axial Reciprocal Reciprocal Inductance Reciprocal

and number cylinder voltage voltage energy radial coils, inductance

cylinder En, J cylinder, cylinder, cylinders tension, Ln, 10
3 H coils,

an, cm 〈σr 〉, N/m2 〈σz〉, N/m2 Eni , J 〈σrni j 〉, N/m2 Mni , 10
3 H

a1 = 10 0.017 −2.276 −3.406 E12 = 0.013 〈σ, 312〉 = −2.585 L1 = 1.359 M12 = 1.058

a2 = 15 0.033 −1.867 −3.013 E13 = 0.011 〈σ, 213〉 = −3.509 L2 = 2.643 M13 = 0.86

a3 = 20 0.052 −1.588 −2.714 E23 = 0.026 〈σ, 123〉 = −4.06 L3 = 4.149 M23 = 2.075

5. Mutual inductance of coaxial coils [30]

Below a diagram for calculating mutual inductance in

a system of three coaxial coils (n = 3) (Fig. 1) is given.

Calculations were performed for the input parameters

introduced in Section 4.2.

The essence of the method is to calculate the mutual

energy between pairs of cylinders. Calculating the energy

and mutual energy of the cylinders is the most important

intermediate step in calculating the mutual inductance of

the coils. The energy of then-th cylinder with radius an in

the field of the i -th with radiusai is determined by (19).
The self (n = i ) and mutual inductances of the coils are

calculated from the energies and mutual energies of the

cylinders [36]:

Mni =
2Ecyl(n, i )

I nI i
. (28)

Taking into account the equality of the mutual energies of

the cylinders, it is sufficient to perform Mnicalculations only

for one pair of the system. The energy of n-th cylinder

and the self-inductance n of the Lth coil are calculated

using formulas (2), (19), (30), if we give in the latter.n = i .
Paired mutual inductances, i.e. inductance N of connected
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circuits, determined from energies, are calculated using

known formulas [37].

The given general method for calculating energies was ap-

plied in [27,30,31] to calculate longitudinal ponderomotive

forces, mutual inductance of the coil system and surface

mechanical stresses. All calculated values correspond to the

data of the work [11].

The results of calculations of the parameters of magnetic

systems for n = 3 are summarized in the table. The notation

〈σr ni j 〉 means the radial stresses acting on the In–th layer

of the cylinder (coil) in the fields of the i -th and j th layers.

Fig. 8 shows graphs of axial forces Fz acting on the n- th
in the cylinder’s fields i -th and j -th when it is displaced in

the Z direction relative to the origin by a distance z0 and

the corresponding mutual inductances M equivalent coils

(Fig. 6).

Fig. 9 illustrates the change in surface radial 〈σrni j 〉 and

axial mechanical stresses 〈σz ni j〉 when the n-th cylinder is

displaced in the Z-direction (Fig. 6) in the fields of the i -th
and j -th cylinders.
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6. Inductance of a rectangular coil

Inductance is calculated from the energy of a straight

hollow axially magnetized cylinder (torus) with winding

thickness t . The energy is equal to the difference between

the energies of cylinders with radii a + t/2 and a − t/2,
defined by (17). The cylinders have opposite directions of

magnetization Mz . According to (18), this energy is the

energy of the equivalent coil:

Et(a, t, L) = 2π

L/2
∫

−L/2

a+t/2
∫

a−t/2

MzBz(a, t, L)

2
rdr dz. (29)

For a coil with a radius along the middle turn

a = 5 cm, length L = 20 cm, w = 500 winding thick-

ness t = 2 cm and current in the turn I = 5A

(Mz = 1.25 · 104 A/m) energy Et(a, t, L) = 0.108 J. Coil

inductanceLt = 2Et/I 2 = 8.621 · 10−3 H. The inductance of

the coil along the middle Lmid = 10.095 · 10−3 H. Correc-

tion for winding thickness 1L = 1.472 · 10−3 H) The results
are consistent with the data given in example 6−7 [11].

Conclusion

The work shows the advantages of the presented method

for calculating multicomponent axial axisymmetric systems

in terms of simplicity and versatility. In terms of calculations

of ponderomotive forces, the method is applicable both to

current axisymmetric coils and to magnetic cylinders. The

presented numerical results correspond to the values of the

parameters given in [11], from which the input parameters

of a number of test calculations were borrowed. Compliance

with models of other authors has been established. Calcu-

lations of systems with parallel and non-coinciding axes are

possible. These calculations are not conceptually new and

are not presented in the work. In any case, the energy

of the selected cylinder or its part (torus) in the fields of

other elements of the system is calculated. The model does

not impose any restrictions on the relative arrangement of

the elements of the system being calculated, or on their

geometric and magnetic parameters.

Radial and axial forces (voltages) acting on the surface

of the cylinder (coil) are calculated from the energy

stored in the magnetic field of the cylinder, bypassing the

stage of calculating the inductance. The independence of

demagnetizing coefficients from external fields allows the

use of the energy approach to calculate complex systems

composed of individual elements, for example, cylinders,

coils and/or rectangular prisms.
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Appendix

Demagnetizing factors and 3D-fields of
the cylinder, expressed through elliptic
integrals [30]

Demagnetization coefficients (9), (10) can be written

through elliptic integrals

Nz(r, z) = 4π

[

1− zk1Kc(k1)

4π
√

ar
− 30(α1, β1)

4

− (L − z)k2Kc(k2)

4π
√

ar
− 30(α2, β2)

4
, (A1)

Nrz(r, z) = 4π

(

1

π

)
√

a
r

{(

1

k1

)[(

1− k2
1

2

)

Kc(k1)

− Ec(k1)

]

−
(

1

k2

)[(

1− k2
2

2

)

Kc(k2) − Ec(k2)

]}

,

(A2)
where 30(α, β) — Heyman’s lambda function — com-

plete elliptic integral of the third kind; 30(α, β) is ex-

pressed through complete Kc(k), Ec(k) and incomplete

F(β, k), E(β, k) elliptic integrals of the 1st and 2nd

kind [37].

30(α1, β1) =
( 2

π

)[

Ec(k1)F
(

β1,

√

1− k2
1

)

+ Kc(k1)E
(

β1,

√

1− k2
1

)

− Kc(k1)F
(

β1,

√

1− k2
1

)

]

,

30(α2, β2) =
( 2

π

)[

Ec(k2)F
(

β2,

√

1− k2
2

)

+ Kc(k2)E
(

β2,

√

1− k2
2

)

− Kc(k2)F
(

β2,

√

1− k2
2

)

]

,

integrals

Kc(k) =

π/2
∫

0

(1− k2 sin2 θ)1/2dθ

and

Ec(k) =

π/2
∫

0

√

1− k2 sin2 θdθ.

Modules Kc(k), Ec(k) are equal

k2
1 = 4ar [z2+(a + r )2]−1, k2

2 = 4ar [(h−z)2+(a + r )2]−1.

Incomplete integrals F(β, k), E(β, k) with additional

modules m and amplitudes β are written in the form

F(β,m) =

β
∫

0

1
√

1− m2 sin2 θ
dθ,
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E(β,m) =

β
∫

0

√

1− m2 sin2 θdθ, m1 =
√

1− k2
1,

m2 =
√

1− k2
2, α1 = arcsin k1, α2 = arcsin k2,

β1 = arcsin
z

√

z2 + (a − r )2
,

β2 = arcsin
h− z

√

(h− z)2 + (a − r )2
,

where α1, α2, β1, β2 are main arcsin values.

Formulas (A1), (A2) determine the demagnetizing fac-

tors Nz z and Nrz in the volume of the cylinder. When

calculating fields outside the cylindrical region, it is nec-

essary to redefine the calculation formulas. Below are the

relations for the coefficients Nz z and Nrz , which allow one to

calculate the fields and induction of the cylinder in the entire

space. Formulas are written separately for characteristic

areas inside and outside the cylinder, determined by the

ranges of change z and r [30]:

Nzz(r, z) =
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

if (0 ≤ z ≤ h) ∧ (|r | ≤ a)
[

1− zk1Kc(k1)

4π
√

ar
−30(α1, β1)

4
− (h−z)k2Kc(k2)

4π
√

ar
−30(α2, β2)

4

]

0 if (0 ≤ z ≤ h) ∧ (r = 0)

− zk1Kc(k1)

4π
√

ar
+
30(α1, β1)

4
− (h−z)k2Kc(k2)

4π
√

ar
−30(α2, β2)

4

if (z < 0) ∧ (0 < |r |) < a

− zk1Kc(k1)

4π
√

ar
−30(α1, β1)

4
− (h−z)k2Kc(k2)

4π
√

ar
+
30(α2, β2)

4

if (z > h) ∧ (0 < |r |) < a

− zk1Kc(k1)

4π
√

ar
+
30(α1, β1)

4
− (h−z)k2Kc(k2)

4π
√

ar
+
30(α2, β2)

4

if (0 < z < h) ∧ (|r | > a)

− zk1Kc(k1)

4π
√

ar
−30(α1, β1)

4
− (h−z)k2Kc(k2)

4π
√

ar
+
30(α2, β2)

4

if (z < 0) ∧ (|r | ≥ a)

− z1k1Kc(k1)

4π
√

ar
+
30(α1, β1)

4
− (h−z)k2Kc(k2)

4π
√

ar
−30(α2, β2)

4

if (z > h) ∧ (|r | ≥ a)

− 1

2

[ h− z
√

(h− z)2+a2
+

z√
z2+a2

− h− z
|h− z| −

z
|z|

]

if r = 0

0 everywhere,

(A3)

Nrz(r, z) =
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

( 1

π

)(

√

a
r

)

{

( 1

k1

)

[

(

1− k2
1

2

)

Kc(k1) − Ec(k1)

]

−
( 1

k2

)

[

(

1− k2
2

2

)

Kc(k2) − Ec(k2)
]

}

if r > 0

−
( 1

π

)(

√

a
r

)

{

( 1

k1

)

[

(

1− k2
1

2

)

Kc(k1) − Ec(k1)

]

−
( 1

k2

)

[

(

1− k2
2

2

)

Kc(k2) − Ec(k2)

]}

if r < 0

0 everywhere.

(A4)

The last formula (line) in (PC) is written for the

demagnetizing factor on the axis.
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