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Cherenkov radiation of a fast vortex from the surface of a waveguide

coupled to a Josephson junction

© A.S. Malishevskii, S.A. Uryupin

Lebedev Physical Institute, Russian Academy of Sciences,

119991 Moscow, Russia

e-mail: malish@lebedev.ru

Received June 27, 2023

Revised October 21, 2023

Accepted December 21, 2023

A system of equations for phase differences of the superconducting order parameter describing the coupled

Josephson junction, waveguide, and semi-infinite dielectric medium is obtained. For such a layered structure, the

Cherenkov radiation of a fast vortex emitted from the surface of the superconducting sandwich into the dielectric is

described. In such a structure, the fast vortex moves with velocity close to the Swihart velocity of the waveguide,

which can significantly exceed the velocity of an ordinary Josephson vortex. The characteristic emission frequencies

and radiation losses of the fast vortex are determined.
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Introduction

Over the past few decades, the search for terahertz

radiation sources has been carried out in connection with

the prospects for their use to solve a number of problems

in fundamental and applied areas of research. One of the

possibilities for creating compact sources of terahertz radia-

tion involves the use of the Josephson effect. An important

advantage of such sources is the continuity and tunability

of terahertz radiation, which was previously demonstrated

using high-temperature superconductors BSCCO [1–3]. Ra-
diation generated by systems with Josephson interaction is

usually detected near the end of an long Josephson junction

or a stack of internal junctions, or is output to a strip

line [2,4–7].

One of the sources of terahertz radiation is traveling

Josephson vortices, emitting electromagnetic waves due to

the Vavilov-Cherenkov effect [8–11]. It has been shown that

Cherenkov radiation is possible from the entire area of the

lateral surface of the layered structure [12,13]. Cherenkov

radiation of a vortex into an external dielectric is possible

if its velocity exceeds cm , i.e. the speed of light in the

dielectric. At the same time, the velocity of the vortex

is limited by the value vS of the Swihart velocity of the

Josephson junction.

Experimentally realize conditions in which vS > cm is

wright is not easy. This limitation can be bypassed if the

Josephson junction is connected to a waveguide. In such

a layered structure, the propagation of a fast vortex [14]
is possible, the velocity of which is limited by a velocity

greater than the Swihart velocity in the waveguide VSw .

At the same time, VSw can significantly exceed vS . In

connection with this, it is of interest to consider the radiation

of a Josephson vortex traveling along a Josephson junction

magnetically coupled to a plane waveguide into an external

dielectric medium.

The text is organized as follows. In Section 1, the

basic relations describing the fields in the layered structure

under consideration are obtained, and the derivation of

integro-differential equations for the phase differences of

the superconducting order parameter on the Josephson

junction and waveguide is given. Section 2 considers the

situation when the field outside the sandwich is determined

by a wave going deep into the outer dielectric. This

made it possible to write a simpler system of differential

equations for phase differences on the Josephson junction

and waveguide, and to determine the velocity domains of

the Josephson and fast vortices. In Section 3, the Poynting

vector was found to describe the radiation of a fast vortex.

An analysis is given of the dependence of the losses of such

a vortex on its velocity. The Summary provides the main

findings.

1. Basic electrodynamic relations

Let us consider a superconducting sandwich occupy-

ing the semi-infinite domain x < x s ≡ d + L1 + 2dw + L2

(Fig. 1). Inside the sandwich there is a Josephson junction

occupying the −d < x < d domain and a planar waveguide

occupying the d + L1 < d + L1 + 2dw domain. To the right

of the sandwich is a decelerating medium with dielectric

permittivity ǫm.

Let us study the motion of a fast vortex in such a

sandwich. The magnetic field of the vortex has one

component H = (0, H, 0), and the electric field has two

components E = (Ex , 0, Ez ). To describe the fields in

such a layered system, it is necessary to study the fields

in each layer. When considering fields, we will use the
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Figure 1. Schematic representation of a section of Josephson sandwich magnetically coupled to a waveguide in the xOz plane. The

ellipse shows the region in which the magnetic field is mainly localized, considered below the fast vortex. The vortex moves with the

velocity vez . To the right of the sandwich, an electromagnetic wave is shown going deep into the outer dielectric, occupying the domain

x > x s

Fourier transform in time and coordinate z (it will use the

designations ω and k , respectively). The Fourier transform

of the magnetic field in the external dielectric is found from

the wave equation 1H(ǫm/c2)∂2H/∂t2 = 0:

H(x , k, ω) = Hs (k, ω) exp[−κ(x − x s)], x > x s , (1)

where Hs(k, ω) ≡ H(x s , k, ω), κ ≡
√

|k2 − ω2/c2
m| ×

×[η(c2
mk2 − ω2) − isgnωη(ω2 − c2

mk2)], cm ≡ c/
√
ǫm, c

is speed of light, η(x) is the Heaviside function. The

sign of the imaginary part κ corresponds to the wave

moving away from the sandwich. Relation (1) and the

rotH = (ǫm/c)∂E/∂t equation allow us to write the Fourier

transform of the z -component of the electric field at

x = x s + 0 in the following form:

Ez (x s + 0, k, ω) = −i
cκ
ǫmω

Hs(k, ω). (2)

From the London’s equation 1H = λ−2H we find the

Fourier transforms of the magnetic field in superconducting

electrodes occupying the domains d + L1 + 2dw < x < x s ,

d < x < d + L1 and x < −d, respectively:

H(x , k, ω) =
1

sinh [L2/λ(k)]

{

−Hw(k, ω) sinh

[

x − x s

λ(k)

]

+ Hs (k, ω) sinh

[

x − d − L1 − 2dw
λ(k)

]}

,

d + L1 + 2dw < x < x s , (3)

H(x , k, ω) =
1

sinh [L1/λ(k)]

{

−HJ(k, ω) sinh

[

x−d−L1

λ(k)

]

+ Hw(k, ω) sinh

[

x − d
λ(k)

]}

,

d < x < d + L1, (4)

H(x , k, ω) = HJ(k, ω) exp [(x + d)/λ(k)], x < −d, (5)

where HJ(k, ω) and Hw(k, ω) is the Fourier transforms of

magnetic fields inside the Josephson junction and waveg-

uide, respectively, λ(k) ≡ λ/
√
1 + λ2k2, λ is the London

penetration depth of magnetic field into the superconducting

electrodes. We neglect the dependence of the magnetic

fields inside the Josephson junction and the waveguide on

the x coordinate, considering 2d and 2dw small compared

to the characteristic scales of variation of these fields along

the Oz axis.

Using equation 1E = (λ2/c)rot ∂H/∂t and relations

(3)−(5), we find the Fourier transforms of the z -component
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of the electric field at the boundaries of superconductors:

Ez (x s − 0, k, ω) = i
ωλ2

cλ(k)

× Hw(k, ω)−Hs(k, ω) cosh [L2/λ(k)]

sinh [L2/λ(k)]
, (6)

Ez (d + L1 + 2dw + 0, k, ω) = i
λ2ω

cλ(k)

× Hw(k, ω) cosh [L2/λ(k)] − Hs(k, ω)

sinh [L2/λ(k)]
, (7)

Ez (d + L1 − 0, k, ω) = i
λ2ω

cλ(k)

× HJ(k, ω) − Hw(k, ω) cosh [L1/λ(k)]

sinh [L1/λ(k)]
, (8)

Ez (d + 0, k, ω) = i
λ2ω

cλ(k)

× HJ(k, ω) cosh [L1/λ(k)] − Hw(k, ω)

sinh [L1/λ(k)]
, (9)

Ez (−d − 0, k, ω) = −i
λ2ω

cλ(k)
HJ(k, ω). (10)

From the condition of continuity of Ez (x , k, ω) at x = x s ,

as well as from relations (2) and (6), we find the

connection Hs(k, ω) and Hw(k, ω):

Hs(k, ω) =
Hw(k, ω)

cosh [L2/λ(k)] − R sinh [L2/λ(k)]
, (11)

which allows to express Ez (d+L1+2dw+0, k, ω) (7)
via Hw(k, ω):

Ez (d + L1 + 2dw + 0, k, w) = i
λ2ω

cλ(k)

× Hw(k, ω)

tanh [L2/λ(k)]

R − tanh [L2/λ(k)]

R − coth [L2/λ(k)]
, (12)

where R ≡ R(k, ω) ≡ c2
mκλ(k)/ω2λ2.

When considering fields in thin dielectric layers of the

Josephson junction and waveguide, we will use Maxwell’s

equation rotE = −(1/c)∂H/∂t . Neglecting the small

change Ex and H along the axis Ox , from this equation

we find the difference in the Fourier transforms z - of the
electric field components on opposite sides of the layers:

Ez (d + 0, k, ω) − Ez (−d − 0, k, ω)

≃ 2idkEJ,x(k, ω) =
φ0

2πc
kωϕ(k, ω), (13)

Ez (d + L1 + 2dw + 0, k, ω) − Ez (d + L1 − 0, k, ω)

≃ 2idwkEw,x(k, ω) =
φ0

2πc
kωϕw(k, ω), (14)

where φ0 the magnetic flux quantum. When writing the

right-hand sides of these formulas, the Josephson relation for

the EJ,x(z , t) = (φ0/4πcd)∂ϕ(z , t)/∂t for the tunnel layer

and a similar relation for the waveguide were used. These

relations connect the x --component of the electric field with

the phase differences ϕ and ϕw of the superconducting

order parameter at the junction and waveguide.

Substituting expressions (8) − (10) and (12) into re-

lations (13) and (14), we obtain a system of equations

that gives a connection between HJ(k, ω) and Hw(k, ω)
with ϕ(k, ω) and ϕw(k, ω):

eL1/λ(k)HJ(k, ω) − Hw(k, ω)

sinh [L1/λ(k)]
= − iφ0λ(k)kϕ(k, ω)

2πλ2
,

HJ(k, ω)

sinh [L1/λ(k)]
−

{

coth

[

L1

λ(k)

]

+
sinh [L2/λ(k)] − R cosh [L2/λ(k)]

cosh [L2/λ(k)] − R sinh [L2/λ(k)]

}

× Hw(k, ω) =
iφ0λ(k)kϕw(k, ω)

2πλ2
. (15)

The determinant of this system is equal to λ(k)D(k, ω)/λ,
where

D(k, ω) ≡ λ

λ(k)

exp [L1/λ(k)] exp [L2/λ(k)]

sinh [L1/λ(k)]

× 1− R
cosh [L2/λ(k)] − R sinh [L2/λ(k)]

, (16)

and its solution has the form

HJ(k, ω) = −i
φ0k
2πλ

[A(k, ω)ϕ(k, ω) + B(k, ω)ϕw(k, ω)],

(17)

Hw(k, ω) = −i
φ0k
2πλ

[B(k, ω)ϕ(k, ω) + C(k, ω)ϕw(k, ω)],

(18)
where

A(k, ω) ≡ 1

D(k, ω)

{

coth [L1/λ(k)]

+
sinh [L2/λ(k)] − R cosh [L2/λ(k)]

cosh [L2/λ(k)] − R sinh [L2/λ(k)]

}

, (19)

B(k, ω) ≡ 1

D(k, ω)

1

sinh [L1/λ(k)]
, (20)

C(k, ω) ≡ 1

D(k, ω)

exp [L1/λ(k)

sinh [L1/λ(k)]
. (21)

Relations (17) and (18) allow us to write the x -
component of the generalized current −(c/4π)∂H/∂z in

the Josephson junction and waveguide in terms of ϕ(z , t)
and ϕw(z , t), which, in turn, allows us to write the following
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system of coupled equations for phase differences:

ω2
J sinϕ(z , t) +

∂2ϕ(z , t)
∂t2

= 2v2S

× ∂

∂z

x
dz ′dt′

[

A(z − z ′, t − t′)
∂ϕ(z ′, t′)

∂z ′

+ B(z − z ′, t − t′)
∂ϕw(z ′, t′)

∂z ′

]

, (22)

∂2ϕw(z , t)
∂t2

=2v2Sw
∂

∂z

x
dz ′dt′

[

B(z −z ′, t−t′)
∂ϕ(z ′, t′)

∂z ′

+C(z − z ′, t − t′)
∂ϕw(z ′, t′)

∂z ′

]

, (23)

where ωJ ≡ 4π
√

c jcd/φ0ǫ is Josephson plasma frequency,

ǫ is dielectric permittivity of the Josephson junction,

jc is critical Josephson current density, vS ≡ c
√

d/ǫλ
and vSw ≡ c

√
dw/ǫwλ are the Swihart velocities of the

Josephson junction and waveguide in the limit of bulk

superconducting electrodes, respectively.

2. Fast Josephson vortex

The characteristic spatial size of the change in electro-

magnetic fields along the axis Oz is the value of ∼ 1/k .
In the future, we will assume that this size is greater

than the London penetration depth, i.e. λk ≪ 1. Let us

limit ourselves to considering the conditions when in the

external dielectric there is only a wave outgoing from the

sandwich. Under these conditions, the quantities κ and R
are purely imaginary. We also assume that the outgoing

wave is created by a Josephson vortex traveling at a constant

velocity v > cm. The last assumption allows us to limit

ourselves to the analysis of only those Fourier components

for which ω = vk .
For further presentation, it is convenient to write down

the quantities (19)−(21), clearly distinguishing the real

and imaginary parts in them. Since under the conditions

under discussion R(k, vk) = −icm

√

v2 − c2
m/v

2λk , then

from (19)−(21) we find

A(k, vk) =
exp[−(L1 + L2)/λ]

1 + |R|2
[

cosh

(

L1 + L2

λ

)

+ |R|2 sinh
(

L1 + L2

λ

)

+ exp

(

−L1 + L2

λ

)

R

]

, (24)

B(k, vk) = exp

(

−L1 + L2

λ

)

× cosh (L2/λ) + |R|2 sinh (L2/λ) + exp(−L2/λ)R
1 + |R|2 , (25)

C(k, vk) = exp

(

−L2

λ

)

× cosh (L2/λ) + |R|2 sinh (L2/λ) + exp(−L2/λ)R
1 + |R|2 . (26)

Let’s also accept that the velocity of the vortex significantly

exceeds the velocity of light in the external dielectric:

|R| ≫ coth1/2(L2/λ) > 1. (27)

Here and in subsequent inequalities, the value R depends

on 1/k — the characteristic size of the change in fields

inside the sandwich along the axis Oz . Under conditions of

small radiation losses (see below), this inequality allows us

to consider the vortex under conditions where the influence

of field penetration into the external dielectric does not

lead to a significant change in the vortex field in the

layered structure. Under these conditions, the expressions

for A(k, vk), B(k, vk) and C(k, vk)can be significantly

simplified:

A(k,vk)≃exp−(L1+L2)/λ

[

sinh

(

L1+L2

λ

)

−i
sgnk
|R| exp−(L1+L2)/λ

]

,

(28)

B(k, vk) ≃ exp−(L1+L2)/λ

[

sinh

(

L2

λ

)

− i
sgnk
|R| exp−L2/λ

]

,

(29)

C(k, vk) ≃ exp−L2/λ

[

sinh

(

L2

λ

)

− i
sgnk
|R| exp−L2/λ

]

. (30)

Using these simpler expressions, let’s write equations (22)
and (23) for the phase differences at the Josephson junction

and at the waveguide as follows:

ω2
J sinψ + v2ψ′′ = V 2

S ψ
′′ + SV 2

S ψ
′′

w − λv2V 2
S

cm

√

v2 − c2
m

× exp−L2/λ

sinh [(L1 + L2)/λ]
(exp−L1/λ ψ′′′ + ψ′′′

w ), (31)

v2ψ′′

w = V 2
Swψ

′′

w + SwV 2
Swψ

′′ − λv2V 2
Sw

cm

√

v2 − c2
m

× exp−L2/λ

sinh (L2/λ)
(exp−L1/λ ψ′′′ + ψ′′′

w ), (32)

where

ψ(z −vt)≡ϕ(z , t), ψw(z −vt)≡ϕw(z , t),

V 2
S ≡ 2v2s exp

−(L1+L2)/λ sinh[(L1 + L2)/λ],

V 2
Sw ≡ 2v2Sw exp−L2/λ sinh (L2/λ),

S ≡ sinh(L2/λ)/ sinh[(L1 + L2)/λ] < 1,

Sw ≡ exp−L1/λ < 1.

In equations (31) and (32), the terms containing the third

derivatives of the phase differences clearly depend on cm —
the speed of light in the external dielectric. It’s possible

to say that these terms describe the inverse influence of the

radiation field on the shape of the Josephson vortex. Further,

this influence is considered weak and these terms are
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neglected. Omitting terms with third derivatives, from (32)
we find that

ψ′′

w =
SwV 2

Sw

v2 −V 2
Sw

ψ′′. (33)

In this case, the condition for the applicability of such an

approximation has the form

exp(−L2/λ)

sinh(L2/λ)

v2

|v2 −V 2
Sw |

. (34)

Next, using relation (33) and considering the terms with

third derivatives small, from (31) we have

sinψ = k−2
J ψ′′, (35)

where

kJ ≡ ωJ

√

v2 −V 2
Sw

(v2 − v21)(v
2
2 − v2)

, (36)

vm≡

√

V 2
Sw + V 2

S

2
+(−1)m

√

(V 2
Sw −V 2

S )2

4
+SSwV 2

S V 2
Sw,

m = 1, 2. (37)

The third derivatives in equation (31) can be neglected, if

the inequality is satisfied

|R| ≫ exp[−(L1 + L2)/λ]

sinh[(L1 + L2)/λ]

v2V 2
S

|v2 − v21| · |v22 − v2| . (38)

Inequalities (27), (34) and (38) ensure that the influence of

radiation losses on the moving vortex is small

The solution to equation (35) is 2π, i.e. — kink soliton

ψ(ζ ) = 4 arctan[exp(−kJζ )], (39)

which corresponds to a vortex traveling at a constant

velocity v along the Josephson junction. The vortex

velocity (39) can lie in two domains: 0 < v < v1 and

VSw < v < v2. The sizes of these domains and the width

of the forbidden band between them depend on the ratio

of the renormalized Swihart velocities VS and VSw , as

well as on the parameter SSw , which determines the

magnitude of the coupling between the Josephson junction

and the waveguide. In the most interesting case, when VSw

significantly exceeds VS, and the value of SSw is not too

close to unity, we have

v1 ≃
(

1− SSw
2

)

VS, v2 ≃
(

1 +
SSw
2

V 2
S

V 2
Sw

)

VSw . (40)

It can be seen that the velocity interval 0 < v < v1
corresponds to the velocity of existence of an ordinary

Josephson vortex. At the same time, the not very wide

range of velocities VSw < v < v2 corresponds to the region

in which one can consider a fast vortex, the velocity of

which significantly exceeds VS . Such a vortex in a slightly

different layered structure was described earlier [14], but its
losses due to Cherenkov radiation have not been studied.

3. Radiation losses of a fast vortex

Derived above formulas for fields make it possible to

obtain an expression describing the radiation losses of

the layered superconducting structure under consideration.

Indeed, with v > cm and the fulfillment of the condition

|R| ≫ coth(L2/λ) somewhat more stringent than (27), it

follows from (11) that

Hs(k, vk) ≃ −i
Hw(k, vk)

sinh(L2/λ)

λkv2

cm

√

v2 − c2
m

. (41)

Under the same conditions, from (18), (29) and (30) we

find

Hw(k, vk)≃−i
φ0k
2πλ

exp−L2/λ sinh

(

L2

λ

)

[Swψ(k)+ψw(k)].

(42)
Next, taking into account relation (33), from (41) and

(42) for the Fourier transform of the magnetic field at the

sandwich boundary we have

Hs(k, vk)=−φ0 exp(−L2/λ)

2π

v2k2

cm

√

v2 − c2
m

Swv2

v2 −V 2
Sw

ψ(k).

(43)
From here, taking into account expression (1), after the

inverse Fourier transform we obtain the distribution of the

magnetic field in the external dielectric

H(x , ζ ) ≃ φ0 exp(−L2/λ)

2π

v2

cm

√

v2 − c2
m

× Swv2

v2 −V 2
Sw

ψ′′

[

ζ +

√

v2

c2
m
− 1 (x − x s)

]

, x > x s , (44)

where ζ = z − vt . Here, from Maxwell’s equation

curlH = (ǫm/c)∂E/∂t for the electric field components we

have

Ex(x , ζ ) =
c
ǫmv

H(x , ζ ), Ez (x , ζ )=−
√

v2−c2
m√

ǫmv
H(x , ζ ),

x > x s . (45)

These relations allow us to find the Poynting vector

S ≡ (c/4π)[EH] in the external dielectric

S =
φ2
0 exp(−2L2/λ)

16π3

v3

v2 − c2
m

(

Swv2

v2 −V 2
Sw

)2

×
{

ψ′′

[

ζ +

√

v2

c2
m
− 1(x − x s )

]}2(
√

v2

c2
m
− 1 ex + ez

)

,

x > x s . (46)

By integrating the x -component (46) over ζ on any plane

x = const > x s , we find the loss of vortex energy due to

radiation per unit time per unit length along the axis Oy .
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Figure 2. Dimensionless energy losses of a fast vortex due to

the electromagnetic radiation. The curves are plotted for L2 = λ,

λ/λJ = 0.01, cm = 2vS , vSw = 3vS and for three different values

of L1 — λ/2, λ and 3λ/2

For a vortex(39) traveling along a Josephson junction, the

radiation loss power is given by the expression

φ2
0 exp(−2L2/λ)

6π3

v3k3
J

cm

√

v2 − c2
m

(

Swv2

v2 −V 2
Sw

)2

. (47)

The dependences of the radiation loss power (47) on the

vortex velocity are shown in Fig. 2. In this case, the

loss power is dimensionless by the amount φ2
0vS/4π

3λλ2J .

This pattern corresponds to fast vortices moving at ve-

locities greater than VSw . For selected system parameters

VSw ≃ 2.79vS .

From Fig. 2 it can be seen that, with the remaining

parameters of the system fixed (see caption to Fig. 2),
with increasing thickness L1 of the

”
middle“ electrode, the

losses of the fast vortex to radiation increase. In order

to understand the reasons for this behavior of these U-

types curves, let’s find their minimum. To do this, let us

approximately write (47) in a narrow range of velocities of

a fast vortex

φ2
0ω

3
JV 3

Sw

6π3cm

exp [−2(L1 + L2)/λ]
√

v2 −V 2
Sw(v22 − v2)3/2

. (48)

Note that this value has a minimum at

vmin =
√

3V 2
Sw + v22/2, equal to

2

35/2π3

φ2
0ω

3
JV 3

Sw

cmv
4
S sinh

2 (L2/λ)
exp2L1/λ ∝ exp2L1/λ . (49)

This exponential dependence of the loss minimum on L1 is

clearly visible in Fig. 2. When moving away from vmin to

left and to right
”
hierarchy“ for loss-velocity curves will be

preserved.

The reason for the counterintuitive behavior of quan-

tities (48) and (49) with increasing thickness L1 is as

follows. Let the magnitude of the phase difference at the

Josephson junction be fixed. Then in the region of fast

vortex velocities, but without approaching too close to the

velocities VSw and v2, in accordance with (33) we have:

ψw ∝ exp(L1/λ)ψ. Therefore, the magnetic field inside the

waveguide is ∝ ψ′

w , and the field on the surface of the

sandwich is ∝ ψ′′

w . Accordingly, the radiation losses of the

vortex ∝ (ψ′

w)2 ∝ exp(2L1/λ). Note that this behavior of

losses is due to the fact that in our formulation of the

problem the fields in the Josephson junction and in the

waveguide were taken into account nonperturbatively.

Note that the appearance of the factor k3
J on the right

side of (47) is due to the fact that in the case of a

vortex (39) the contribution to the integral from Sx is

given by a relatively extended interval of the axis Ozof
the order of several k−1

J . This, in turn, leads to the

fact that the magnitude of radiation losses (49) depends

on the width of the tunnel layer as ∝ 1/
√
2d. This

compares favorably with our situation from considering

radiation from the end of the junction, when the radiation

power behaves as ∝
√
2d, which is associated with a

mismatch between the wave impedance of the Josephson

junction and the wave impedance of standard external

waveguides [15,16], which, in turn, leads to the reflection

of an electromagnetic wave from the end of the transi-

tion.

Recall that when deriving relation (47), in addition to

the condition |R| ≫ coth(L2/λ), the inequalities λk ≪ 1,

(34) and (38) were used. Under fixed system parameters,

these conditions indicate how closely the vortex velocity

can approach the velocities of cm, v1, VSw and v2. The

degree of this approximation is determined by the small

parameter λ/λJ , the magnitudes L1/λ and L2/λ, as well as

the velocity relationships cm, vS and vSw .

Note that the fast vortex emits electromagnetic waves

in the terahertz range. Indeed, the Cherenkov radiation

spectrum of the sandwich under consideration is ω = kv
Since for the vortex (39) k ∼ kJ , then the characteristic

frequencies of the radiation are ∼ vkJ . In the case of a fast

vortex, due to (36) and (40), the characteristic frequencies

are & ωJ , i.e. for typical superconductors fall within the

terahertz region.

Cherenkov radiation of electromagnetic waves from the

surface of an external superconducting electrode into a

dielectric medium is possible if the velocity of the vortex

exceeds cm. On the other hand, the characteristic velocities

of the fast vortex is ∼ VSw . The condition VSw > cm leads to

the following inequality for the dielectric permittivity of the

external medium: ǫm > [exp(L2/λ)/2 sinh(L2/λ)](λ/dw)ǫw .

Note that due to the fact that the width of the waveg-

uide 2dw significantly exceeds the width of the tunnel inter-

layer 2d, this inequality can be satisfied for a wider range

of media than a similar inequality for a superconducting

sandwich: ǫm > (λ/d)ǫ. In this sense, we can say that a

fast vortex is easier to emit than an ordinary Josephson

vortex.
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Conclusion

The basic principles of the electrodynamics of a multilayer

system consisting of a coupled Josephson junction, a

plane waveguide and a semi-infinite dielectric medium

are formulated. For such a system, integro-differential

equations are obtained for the phase differences of the

superconducting order parameter at the Josephson junction

and at the waveguide. In the case when the field from

the superconducting sandwich propagates deep into the

external dielectric in the form of an electromagnetic wave,

the system of equations for phase differences is reduced to

differential equations. This made it possible to determine

the permissible range of velocities for the existence of a

traveling Josephson vortex, and also to indicate in them the

range of velocities of a fast vortex, which moves faster than

an ordinary Josephson vortex.

It is shown that vortices traveling along a supercon-

ducting sandwich can create electromagnetic radiation in

the external dielectric medium, emitted from the entire

lateral surface of the sandwich. This radiation is associated

with the Vavilov-Cherenkov effect and occurs at vortex

velocity greater than the speed of light in the medium.

For a fast vortex, the characteristics of Cherenkov radiation

emitted from the surface of a superconducting sandwich

into the medium are analyzed. Namely, the characteristic

frequencies of radiation, the Poynting vector and the

dependence of radiation losses on the vortex velocity are

determined.
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