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1. Introduction

One of the promising models of universal quantum com-

putation is one-way quantum computation [1–3]. The use of

continuous variables as a carrier of quantum information al-

lows to build schemes, with each access to which we obtain

a significant measurement result (deterministic schemes),
which cannot be achieved when working with discrete

variables. In addition, systems in continuous variables have

great potential in terms of their scalability [4–9]. Therefore,
in our work we will discuss one-way quantum computation

exactly in the continuous variable regime [1].

However, working with continuous quantum systems

also has a significant drawback. The main resource

for computation is squeezed states. If their squeezing

were infinitely large, the computation would be performed

without any errors. However, in practice, states with a

finite squeezing ratio are used, which leads to errors that

distort the computation results. The squeezing that is

experimentally achievable at the moment turns out to be

insufficient for universal quantum computation: the maxi-

mum experimentally achievable squeezing is −15 dB [10],
while for computation (without using surface codes and the

post-selection procedure) it is required −20.5 dB [11]. The
requirement to the resource state can be reduced by using

computation schemes that are less sensitive to the initial

error. The idea of constructing such schemes is to analyze

the computation procedure, identify the nodes that make

the most noise in the result, and reduce their contribution

to the computation error.

In [12] there was the analysis of possible strategies for

decreasing the error of arbitrary single-mode transforma-

tions. The first strategy was to correctly select the weight

coefficients of the cluster state on which the transformation

is performed. The second approach to decreasing errors

was to replace the nodes that contributed the most to

the error with non-Gaussian states obtained using a cubic

phase gate [13]. Application of these strategies allowed

to significantly decrease the errors of arbitrary single-mode

transformation.

Another necessary element for realizing universal quan-

tum computation is the two-mode entangling opera-

tion [14,15]. In contrast to single-mode operations, it is

not required to be able to perform an arbitrary two-mode

operation; it is enough to perform any entangling operation.

As the implemented two-mode transformation, we chose

the Controlled-Z (CZ) [16–18] transformation, which is

an analogue of the CNOT operation in discrete variables,

which has the maximum entangling power [19]. This raises
the question, do error decreasing strategies for single-mode

operations apply to two-mode operations? And if so, are

there any specifics for the case of two-mode operations?

These are the questions we will try to answer in this

paper.

This paper is organized as follows. In Section 2 we

describe the implementation of the CZ transformation on

a weighted four-node cluster. In the same section we will

describe the implementation of the CZ transformation on

a cluster with non-Gaussian nodes. Then in Section 3

we compare the errors in the considered schemes with

other possible implementations of the CZ transformation

on various cluster states [20]. Separately, in Section 4 we

will review a teleportation protocol with the cubic phase

gate and the homodyne phase correction, which is an

integral part of the investigated implementation of the CZ

transformation.
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2. CZ transformation implementation
schemes

The goal of the work is to implement a two-mode

entangling CZ transformation that can act on arbitrary input

states. The CZ transformation operator with the weight

coefficient g jk , which acts on the oscillators j and k , has
the form

ĈZ, jk = e2ig jk x̂ j x̂ k . (1)

This operation transforms the quadratures of the input

oscillators as








x̂out, j

x̂out,k

ŷout, j

ŷout,k









=









1 0 0 0

0 1 0 0

0 g jk 1 0

g jk 0 0 1

















x̂ in, j

x̂ in,k

ŷ in, j

ŷ in,k









. (2)

It is worth noting that implementing a CZ transformation

for two arbitrary input states is not equivalent in complexity

to entangling squeezed oscillators or entangling input states

with a cluster using a CZ transformation. In the latter

case, it is required to organize the interaction of quantum

states with clearly known properties, which is obviously

a simpler task from the point of view of its physical

implementation. In optical systems, the CZ operation on

cluster nodes is often replaced by correctly selected linear

optical transformations [21,22]. However, a CZ operation

on an arbitrary pair of states can be performed using an

already generated cluster state.

Further, we will review schemes for implementing CZ

on a four-node cluster and the possibility of reducing the

transformation error by introducing non-Gaussian nodes into

the resource cluster state.

2.1. CZ transformation on a weighted four-node
cluster

To begin with, let us look at how the CZ transformation

is implemented on a weighted linear four-node cluster

without using non-Gaussian nodes. This will allow us to

determine the parameters at which the CZ transformation

is implemented in the circuit. In addition, such an analysis

will allow to identify cluster nodes whose contribution to

the error cannot be influenced by the weight coefficients of

the cluster state. We will subsequently replace these nodes

with non-Gaussian ones.

Let us start with constructing the cluster state itself

(Fig. 1, a). The resource for its preparation are oscillators

squeezed by y -quadrature, the quadratures of which are

described by the equations

x̂ j = er x̂0, j , ŷ j = e−r ŷ0, j , (3)

where x̂0, j and ŷ0, j — quadrature of the j oscillator in a

vacuum state. The degree of squeezing of the initial states

is considered the same and is set by the parameter r , which

determines the proportional stretching and squeezing of the

quadratures of the vacuum state of the field. Entangling the

cluster nodes is carried out using the CZ transformation.

Let us note that in a real experiment, cluster generation can

be carried out using beam splitters [21,22]. However, for

simplicity of the discussion, we will preserve the logic of

constructing the circuit with CZ transformations. Then the

input states are entangled with the generated cluster also

due to the CZ transformation.

All CZ operations commute with each other, and the

CZ transformation that interchanges the second and third

resource oscillators commutes with all homodyne measure-

ments. Due to it, it is possible to reduce the transformation

on a four-node cluster (Fig. 1, b) to the transformation on

a pair of two-node clusters (Fig. 1, c) with their further

entanglement. This will greatly simplify the analysis of the

scheme.

In this representation, homodyne measurements on the

first input state In1 and the first resource oscillator S1 with

the phases of the local oscillators θ1 and θ2 will lead to the

state quadratures in the second channel will be determined

by the equation

(

x̂ ′

2

ŷ ′

2

)

=

(

cot θ1 cot θ2
g1g4

− g4

g1

cot θ2
g1g4

− g1 cot θ1
g4

− g1

g4

)

(

x̂ in

ŷ in

)

+

(

− ŷ1

g1

ŷ2

)

+

(

I1
βg1 sin θ2

− I in,1 cot θ2
βg1g2 sin θ1

I in,1g1

βg2 sin θ1

)

. (4)

Here I in,1 and I1 — measured values of photocurrents in

the first input and first resource channels, respectively, β —
amplitude of local oscillators of homodyne detectors. A

detailed derivation of this relationship is presented in [12].
The oscillator quadratures in the third resource channel will

be given by a similar equation. After this, the oscillators in

the second and third resource channels are entangling using

the CZ operation with a weight coefficient g2, and then the

c-number components of the quadratures are compensated

based on the measurement results.

The scheme under consideration will carry out transfor-

mation (2) over the quadratures of the input oscillators, pro-
vided g4 = −g1, g5 = −g3 and θ1 = θ2 = θ3 = θ4 = π/2.

The quadratures of the output oscillators will be given by

the equation









x̂out,1

x̂out,2

ŷout,1

ŷout,2









=









1 0 0 0

0 1 0 0

0 g2 1 0

g2 0 0 1

















x̂ in,1

x̂ in,2

ŷ in,1

ŷ in,2









+











− ŷ1

g1

− ŷ4

g3

ŷ2 − g2
ŷ4

g3

ŷ3 − g2
ŷ1

g1











.

(5)
In this equation, the first term on the right side is responsible

for the transformation over the input quadratures. We

see that the weight coefficient of the implemented CZ

transformation will depend only on the weight coefficient

of the cluster state g2. At the same time, the second term

on the right side of equation (5) is the error vector δê1,

depending on the non-ideally squeezed quadratures of the

original resource oscillators from which the cluster state is

generated.
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Figure 1. (a) The structure of the cluster state used as a resource. (b) Scheme for implementing the CZ transformation on a linear

weighted four-node cluster. (c) Scheme for implementing the CZ transformation on a pair of two-node clusters. In schemes: In j —
input states, S j — oscillators, squeezed by y -quadrature; ĈZ(g j ) — CZ transformations with weight coefficients g j ; θ j — homodyne

measurement with corresponding local oscillator phase; X and Y — displacement operations that displace the corresponding field

quadratures depending on the results of the homodyne measurement.

Let us evaluate the errors in the scheme under consid-

eration. To do this, let’s move from the error vector δê1
to a vector consisting of mean square error fluctuations in

each of the quadratures 〈δê21〉. We will assume that all

Gaussian resource states are squeezed in the same way, that

is, 〈δŷ2
j 〉 ≡ 〈δŷ2

s 〉 for j ∈ 1, 2, 3, 4. Since we must perform

the CZ operation with a fixed weight coefficient, g2 cannot

act as an optimization parameter. Therefore, for simplicity,

we will review the case of g2 = 1. Then the vector of mean-

square error fluctuations for such a CZ implementation has

the form

〈δê21〉 =













1
g2
1
1

g2
3

1 + 1
g2
3

1 + 1
g2
1













〈δŷ2
s 〉. (6)

As we can see, the error of the two-mode transformation

will decrease as the weight coefficients g1 and g3 increase.

Ideally, it is possible to achieve zero error in the x -
quadratures of the output states, but the error in the y -
quadratures cannot be made less than the dispersion of the

squeezed quadratures of the resource oscillators 〈δŷ2
s 〉. The

source of this error is the non-ideally squeezed quadratures

of the second and third resource oscillators, since we cannot

reduce their contribution to the error by choosing the weight

coefficients.

It can be noted that the CZ implementation under

consideration contains two teleportation schemes that carry

input states to the second and third resource oscillators. The

transformation error will directly depend on the error with

which the teleportation procedure is performed.

It is worth noting that for a two-mode transformation

there is no requirement for the relationships between the

weight coefficients of the cluster state, as was the case

for single-mode operations [12]. This is because each of

the weight coefficients is effectively involved in a separate

independent process: g1 and g3 — in teleportation of input

states In1 and In2, respectively, g2 — in entangling states

after teleportation.

2.2. CZ transformation scheme with the cubic
phase gate

As we found out in the previous section, increasing the

weight coefficients does not make it possible to decrees the

error in the y -quadratures of the output states. However,

the scheme shown in Fig. 1, c contains two teleportation

protocols using the CZ transformation as a entangling

operation [23]. It was shown in [24] that it is possible to

decrease the error in the teleportation protocol by using

non-Gaussian resource states obtained by using a cubic

phase gate. We use the same approach to decrees the

CZ transformation error. That is, we replace the cluster

nodes that make the greatest contribution to the error with

non-Gaussian resource states. Since increasing the weight

coefficients does not affect the error introduced by the

second and third resource oscillators, we will replace them

(Fig. 2, a).
The non-Gaussian resource states themselves are pre-

pared by sequentially applying operations as shown in

Fig. 2, b. To obtain the required non-Gaussian state from

a Gaussian resource oscillator with number j , first it is

required to apply a phase rotation operation by π/2:

R̂π/2,2 = ei π
2

â†

2
â2 . (7)

After this, we apply the desplacement operation along the

y -quadrature by the value α > 0, the operator of which has

the form

Ŷα, j = e2iαx̂ j . (8)

The preparation procedure is completed by the action of the

non-Gaussian operation — cubic phase gate, its operator is

determined by the equation

Q̂γ, j = e−2iγ ŷ3
j , (9)

where γ — real coefficient characterizing the degree of non-

linearity of the transformation. After such transformations,

the jth resource oscillator will go into a non-Gaussian state.

The action of a cubic phase gate deforms the uncertainty
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Figure 2. (a) The structure of the cluster state used as a resource for calculation: Gaussian nodes are shown in green, non-Gaussian

nodes in blue. (b) Scheme for preparing a non-Gaussian resource state. (c) Scheme of the implementation of the CZ transformation on

a linear weighted four-node cluster using a cubic phase gate. (d) Scheme of the implementation of the CZ transformation on a pair of

two-node clusters using a cubic phase gate. In schemes: Yα — displacement operation of y -quadrature by the value α, Q̂γ — a cubic

phase gate with the degree of the nonlinearity γ .

region of the state squeezed along the x -quadrature in such a

way that a parabola is formed on the phase plane. However,

when displaced along the y -quadrature by a positive value

α, satisfying the condition α2 ≫ 〈x̂2
j〉, the quadrature values

of the second oscillator will lie in the first quadrant of the

phase plane. In other words, only one of the branches of

the parabola will remain on the phase plane.

The complete implementation of CZ transformation using

a cubic phase gate is shown in Fig. 2, c. Just as in

the previous section, we can move on to an equivalent

transformation scheme on a pair of two-node clusters

(Fig. 2, d). Since the operations performed on input states

on two-node clusters are similar to each other, we will

only consider how In1 is transformed. After the action

of operators (7)−(9), the second resource oscillator will

go into a non-Gaussian state, the amplitude of which is

described by the equation

â2 = −ŷ2 + 3γ(α + x̂2)
2 + i(α + x̂2). (10)

In order to teleport the state In1 to the second resource

oscillator, it is required that g4 = −g1 when entangling.

After entangling by two CZ operations, the amplitudes of

the oscillators are described by the equations

â ′

in = x̂ in + i(ŷ in − g1x̂1), (11)

â ′

1 = x̂1 + i
(

ŷ1 − g1ŷ2 + 3g1γ(α + x̂2)
2 − g1x̂ in

)

, (12)

â ′

2 = −ŷ2 + 3γ(α + x̂2)
2 + i(α + x̂2 + g1x̂1). (13)

We see that the first resource oscillator now contains

the nonlinearity from the non-Gaussian oscillator due to

entanglment. Then homodyne measurements are carried

out with the phases of the local oscillators θ1 and θ2 over

the input and first resource oscillators, respectively. In this

case, we set θ2 = π/2, as was done in the previous section.

However, we will not fix the angle θ1; we will need the

ability to vary this angle in the future. The photocurrent

operators for such measurements will have the form:

î in = β sin θ1(ŷ in − g1x̂1) + β cos θ1x̂ in, (14)

î1 = β
(

ŷ1 − g1ŷ2 + 3g1γ(α + x̂2)
2 − g1x̂ in

)

. (15)

Let the measured values of photocurrents î in and î1 be equal
to I in and I1, respectively. Then the quadratures of the

second oscillator after measurements will be determined by

the equations:

x̂ ′

2 = x̂ in −
ŷ1

g1

+
I1
βg1

, (16)

ŷ ′

2 = cot θ1x̂ in + ŷ in −
I in

β sin θ1

+
1√
3γ

√

I1
βg1

+ x̂ in −
ŷ1

g1

+ ŷ2. (17)

Due to the non-Gausian resource, a root appears in

equation (17), which determines the transformation error.
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Let us note that due to the large value of the displacement

α, only the positive value of the root needs to be taken into

account.

We can decompose the root in equation (17) into a series

with respect to the parameter,

βg1

I1

(

x̂ in −
ŷ1

g1

+ ŷ2

)

, (18)

retaining only the first term in the decomposition, that is

ŷ ′

2 = cot θ1x̂ in + ŷ in −
I in

β sin θ1
+

√

I1
3γβg1

+

√

βg1

12γI1

(

x̂ in −
ŷ1

g1

+ ŷ2

)

. (19)

Termination of the series is correct under the assumption

that all moments of the decomposition parameter are small.

For Gaussian input states, it is sufficient to satisfy the

inequalities

3γα2 ≫ 〈x̂ in〉, (20)

(3γα2)2 ≫ 〈x̂2
in〉 +

〈ŷ2
1〉

g2
1

+ 〈ŷ2
2〉. (21)

Let us note that this requirement limits the applicability

of the protocol under consideration. However, it can be

satisfied for the class of input states of interest to us due to

the correct choice of the value α.

As a result, the quadratures of the input state are

transformed as follows:

(

x̂ ′

2

ŷ ′

2

)

=

(

1 0

cot θ1 +
√

g1β

12γI1
1

)

(

x̂ in,1

ŷ in,1

)

+

(

− ŷ1

g1
√

g1β

12γI1

(

ŷ2 − ŷ1

g1

)

)

+

( I1
βg1

− I in
β sin θ1

+
√

I1
3γβg1

)

. (22)

As you can see, the first term, which describes the transfor-

mation itself performed on the input state, contains a matrix

element that depends on the measurement results. This

results in occasional unwanted transformation distortion. If

we do not compensate for this distortion, it will lead to an

increase in the error of the transformation being performed.

It is possible to compensate for this distortion by choosing

the correct measurement basis. Let us note that the value of

the photocurrent I1 is obtained as a result of measurements

on the state in the first channel. If we measure the first

oscillator before the input one, we can adjust the phase of

θ1 so that

cot θ1 = −
√

g1β

12γI1
. (23)

This allows to teleport without uncontrolled distortion.

Thus, by implementing a two-mode CZ transformation,

we can correct the uncontrolled distortion caused by the

presence of a cubic phase gate in the second resource

channel directly from measurements taken on states in the

first input and first resource channels. This situation differs

significantly from the case of single-mode operations [12].
An arbitrary single-mode transformation on a four-node

cluster can be reduced to two sequential operations on

two-node clusters. If we replace one of the nodes of the

first cluster with a non-Gaussian state, it will lead to the

appearance of distortion as in equation (22). Since we need

to be able to implement any single-mode transformation, we

should be able to set any phase values for homodyne detec-

tors. Because of this, it is not possible to compensate for

the distortion by correcting the phase during measurements

in the first transformation on a two-mode cluster and it is

required to eliminate it by choosing a basis in subsequent

measurements. If we introduced a non-Gaussian resource

into the second cluster state, we would not be able to

compensate for the distortion caused by it. As a result, it is

possible to replace only one node of the original four-node

cluster with a non-Gaussian state without consequences.

For a two-mode transformation, it is possible to replace

both nodes with non-Gaussian states, the contribution to the

error from which cannot be suppressed due to the weight

coefficients of the cluster state.

The transformation over the second input state In2 is

performed in the same way. After this, the oscillators

in the second and third resource channels are entangled

using the CZ operation with a weight coefficient g2, and

then the c-number components of the quadratures are

compensated based on the measurement results. As a result,

the quadratures at the output of such a CZ transformation

scheme will be determined by the equation









x̂out,1

x̂out,2

ŷout,1

ŷout,2









=









1 0 0 0

0 1 0 0

0 g2 1 0

g2 0 0 1

















x̂ in,1

x̂ in,2

ŷ in,1

ŷ in,2









+















− ŷ1

g1

− ŷ4

g3
√

g1β

12γI1

(

ŷ2 − ŷ1

g1

)

− g2
ŷ4

g3
√

g3β

12γI4

(

ŷ3 − ŷ4

g3

)

− g2
ŷ1

g1















. (24)

As we can see, the input quadratures are transformed

in the same way as in the scheme without non-Gaussian

operations (2), but the errors in the y -quadratures are

significantly different.

Let us evaluate the errors that arise in the proposed

scheme. The displacement of squeezed states during the

preparation of non-Gaussian states will be reviewed identical

and equal to α. To evaluate, we take the values of the

measured photocurrents equal to their average values, that

is I1 = 〈î1,m〉 ≈ 3βγg1α
2 and I4 = 〈î4,m〉 ≈ 3βγg3α

2.

As in the previous section, we take g2 = 1, and the

variances of the squeezed quadratures of resource oscillators

are the same and equal to 〈δŷ2
s 〉. Then the vector of mean
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Figure 3. (a) Scheme of the implementation of the CZ transformation on a unweighted four-node linear cluster. (b) Scheme of the

implementation of the CZ transformation on a pair of two-node clusters. BS — a symmetrical beamsplitter.

square error fluctuations will have the form

〈δê22〉 =















1
g2
1
1
g2
3

g1β

12γI1

(

1 + 1
g2
1

)

+ 1
g2
3

g3β

12γI4

(

1 + 1
g2
3

)

+ 1
g2
1















〈δŷ2
s 〉

=















1
g2
1
1

g2
3

1
36γ2α2

(

1 + 1
g2
1

)

+ 1
g2
3

1
36γ2α2

(

1 + 1
g2
3

)

+ 1
g2
1















〈δŷ2
s 〉. (25)

The first term in the y -quadrature errors turns out to

be inversely proportional to the measured values of the

photocurrents I1 and I4, which increase with increasing

displacement α. Thus, we can reduce the contributions to

the transformation error from all resource oscillators: from

some — due to the weight coefficients of the cluster state,

and from others — using a cubic phase gate. Theoretically,

this allows to obtain an arbitrarily small transformation error.

3. Comparison of errors of various CZ
transformation implementations

Now it is required to compare the errors of different

implementations of the CZ transformation on cluster states.

We will compare the considered schemes with each other

and with the implementations detailed in [20]. The first

scheme from [20] (Fig. 3, a) is an implementation of the CZ

transformation on an unweighted four-node linear cluster.

This implementation is standard for performing two-mode

operations on clusters, since the smallest transformation

error is achieved when computing on cluster states with

the number of nodes twice the number of input nodes [25].
In it, the entangling of input states with the cluster is carried

out using beamsplitters. This deprives us of the opportunity

to manipulate the weight coefficients of the cluster state and,

through them, influence the error. The mean square error

vector for this scheme is determined by the equation:

〈δê23〉 =









2

2

3

3









〈δŷ2
s 〉. (26)

Another scheme implements the CZ transformation on a

pair of two-node clusters (Fig. 3, b). This scheme provides

the smallest error among those considered by the authors

in [20], for it

〈δê24〉 =









2

2

2

2









〈δŷ2
s 〉. (27)

To compare errors for different CZ implementations, we will

study the ‖ · ‖∞ norm as a measure of errors. This norm

looks like

‖ 〈δê2k〉 ‖∞= max
j

[

{〈δê2k〉 j}
]

. (28)

Now let us discuss the parameter values for error

evaluation. In [12] it was shown that with the maximum

currently achievable squeezing level −15 dB [10] the values

of the weight coefficients of the CZ transformation can lie

in the range [0, 5]. Since the transformation errors for each

of the quadratures in equations (6) and (25) decrease with

increasing weight coefficients g1 and g3, then to estimate

the norm of errors we will take their maximum possible

values g1 = g3 = 5. To evaluate the error in a scheme with

non-Gaussian states, we take the value of the nonlinearity

coefficient of the cubic phase γ = 0.1 [26,27] and the

displacement α = 5
√
5 (i. e. 36γ2α2 = 45). This displace-

ment value satisfies the condition α2 ≫ 〈x̂2
j〉 required for

the correct operation of the protocol and is feasible in

practice [24].
The results of the numerical evaluation are shown in

Fig. 4. As you can see, the biggest error will be for imple-

mentation on an unweighted cluster. The CZ transformation

scheme on a pair of two-node clusters demonstrates an

error one and a half times less than the previous case. In

the absence of the opportunity of manipulating the cluster

weight coefficients, such an implementation provides the
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Figure 4. Error in various implementations of the CZ transfor-

mation: a — on an unweighted four-node linear cluster, b — on

a pair of two-node clusters, c — on a weighted four-node linear

cluster, d — with a cubic phase gate.

smallest transformation error [20]. At the same time, the

implementation of the CZ transformation on a weighted

cluster state, which we reviewed in Section 2.1, allows

decreasing the error by increasing the weight coefficients

of the cluster state. However, even ideally, the error cannot

be less than 〈δŷ2
s 〉. This scheme provides the smallest error

among the implementations we have reviewed that contain

only Gaussian transformations. Finally, replacing the nodes

in the cluster state that make the largest contribution to

the transformation error reduces the amount of noise from

all non-ideally squeezed resource oscillators. This strategy

allows reducing the error norm by approximately 16 times.

4. Teleportation protocol with the cubic
phase gate and the homodyne phase
correction

Let us discuss another result that we obtained as a side

effect when analyzing the implementation of CZ with non-

Gaussian states in Section 2.2. As already mentioned,

the CZ transformation scheme discussed in the previous

section contains two teleportation schemes. However, the

teleportation protocol with cubic phase gate used in this

scheme differs from that proposed earlier in [24]. Let us

discuss in more detail the modification of the quantum state

teleportation protocol that we used in this work and analyze

the quality of teleportation.

Let us recall how the original teleportation protocol with

the cubic phase gate from [24] works. Its scheme is shown

in Fig. 5, b. The input state teleportation requires two

auxiliary oscillators that are initially squeezed in orthogonal

quadratures. First, the state in the second channel is

displaced the y -quadrature by the value α > 0 and the cubic

phase gate operation with the degree of nonlinearity γ is

applied to it. Next, using CZ transformations, first the

resource oscillators are sequentially entangling, and then the

input and first resource oscillators; the weight coefficients of

the CZ transformations should be g and −g , respectively.
After it, y -quadratures are measured in the input and

first resource channels and, based on the measurement

results, the c-number components of the quadratures of the

unmeasured state are compensated. The state quadratures

at the output of this scheme are determined by the equation

x̂ ′

out = x̂ in −
ŷ1

g
, (29)

ŷ ′

out = ŷ in +

√

g
12γY1

(

x̂ in −
ŷ1

g
− x̂2

)

, (30)

where Y1 — the measured value of y -quadrature of the

first resource oscillator, and ŷ1 and x̂2 are — squeezed

quadratures of the resource oscillators. In these equation,

the first terms correspond to the desired teleportation

transformation, and the rest determine the transformation

error. As we can see, the y -quadrature error depends

on the x -quadrature of the input state, which is generally

unknown. As a result, it is this term that makes the greatest

contribution to the transformation error.

Now let us consider the teleportation protocol with the

cubic phase gate, which is an integral part of the CZ

transformation from Section 2.2. Its scheme is show in

Fig. 5, d. In this modified protocol, we adjust the θ1
phase value to compensate for uncontrolled distortion of

teleportation results. The phase value θ1 is determined by

the equation

cot θ1 = −
√

g
12γY1

. (31)

From equation (22) it follows that the quadratures of the

output state in this case have the form

x̂out = x̂ in −
ŷ1

g
, (32)

ŷout = ŷ in +

√

g
12γY1

(

ŷ2 −
ŷ1

g

)

. (33)

Comparing these equations with equations (29) and (30),
we see that the x -quadrature errors are the same, and in the

y -quadrature error for the protocol with phase correction

there is no contribution from the x -quadrature of the input

state. It is this term that makes the greatest contribution to

the transformation error. Moreover, it was the dependence

of the error on the input state that was the main limiting

factor of the protocol from the work [24]. Here we get rid

of this limitation.

To characterize the error level, let us proceed to the

values of the mean square fluctuations of the telepor-

tation error in each quadrature, which are defined as

〈δê2x 〉 = 〈(x̂out − x̂ in)
2〉 and 〈δê2y 〉 = 〈(ŷout − ŷ in)

2〉. As

before, we will assume that 〈δŷ2
j〉 ≡ 〈δŷ2

s 〉 for j = 1, 2, and

we will evaluate the value of the measured quadrature as

its average, i.e. Y1 = 〈ŷ1〉 ≈ 3γgα2. Then the mean square

error fluctuations will be given by the equations

〈δê2x 〉 =
1

g2
〈δŷ2

s 〉, (34)
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Figure 6. Mean square error y -quadrature of the teleported state

depending on the displacement of the non-Gaussian resource α:

orange — for the protocol with the phase correction, blue —
for the protocol without the phase correction when teleporting

the vacuum state. The red dotted line indicates the level of

teleportation error in the original scheme. The squeezing level

of resource oscillators is −15 dB.

〈δê2y 〉 =
1 + g2

12γgY1

〈δŷ2
s 〉 =

1 + g2

36γ2α2g2
〈δŷ2

s 〉. (35)

The dependence for estimating the mean square fluctua-

tion of the error y -quadrature 〈δê2y 〉 on the displacement α

is shown in orange in Fig. 6. In the calculations, γ = 0.1,

squeezing of resource oscillators −15 dB and g = 5 were

taken. For comparison, the y -quadrature error 〈δê2old〉 for

the scheme without the homodyne phase correction for the

vacuum state teleportation for the same parameters is shown

in blue. Red indicates the mean square error fluctuations

for the original teleportation scheme 〈δê2or 〉 = 2〈δŷ2
s 〉 [23].

Since at small α the approximations in which the analyzed

equations were obtained cease to hold, the dependence in

Fig. 6 is plotted for α > 5. As we can see, the modified

teleportation protocol with the cubic phase gate outperforms

its previous version from [24] and the original protocol

for any α sufficient to perform the allowed approxima-

tions. Thus, correct selection of the phase in homodyne

measurements can significantly decrease the error in the

teleportation protocol with the cubic phase gate.

5. Conclusion

It is shown that the introduction of non-Gaussian nodes

into the cluster state, obtained using a cubic phase gate,

makes it possible to decrease the error when implementing

a two-mode entangling CZ transformation on a linear four-

node cluster. Moreover, in contrast to the implementation

of arbitrary single-mode operations [12] we have the

opportunity to reduce the contribution to the error from

all resource oscillators. For some oscillators this is achieved

by increasing the weight coefficients of the cluster state, and

for others by introducing a cubic phase gate into the scheme.

Theoretically, this allows to obtain an arbitrarily small

transformation error. Numerical estimates for realistic values

of the scheme parameters show that the use of a cubic phase

gate allows to decrease the transformation error by an order

of magnitude relative to a similar implementation containing

only Gaussian operations.

Another difference between the implementation of a two-

mode CZ transformation and single-mode operations is that

it does not require the relationships between the weight

coefficients of the cluster state. As a consequence, the task

of finding the optimal weight coefficients of the cluster state

that ensure the minimum error turns out to be trivial.

The implementation of the CZ transformation under

consideration contains a teleportation protocol. This allowed

to identify the opportunity of modifying the teleportation

protocol with the cubic phase gate, which was proposed

earlier [24]. Correct selection of phases during measurement

allows to compensate for the distortion caused by the

presence of a non-Gaussian operation and which makes

the main contribution to the protocol error. As a result,

teleportation in the protocol with the cubic phase gate

and the homodyne phase correction turns out to be more

accurate than in the initial protocol with the cubic phase

gate and in the original protocol, and also allows for smaller

values of quadrature displacement for error correction.

We cannot but mention the complexity associated with

the experimental implementation of the proposed scheme.

Its key element is a cubic phase gate, the practical

implementation of which is still a challenge for experi-

menters. The first idea of generating cubic phase states

was proposed by Gottesman, Kitaev and Preskill back in

2001 [13,22,28]. However, this method turned out to be

difficult to implement experimentally, since it required the

operation of displacing quadratures by an value far from

what is actually achievable in experiment. Because of this,

the cubic phase gate remained for a long time just an

abstract mathematical transformation. However, in recent

years the situation has changed. More and more works

are appearing devoted to new methods for generating states
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of the cubic phase [26,29,30] and implementing the cubic

phase gate itself [31–35]. Particularly significant successes

were achieved in the microwave frequency range — it was

in this range that for the first time it was possible to generate

a cubic phase state [27]. Thus, the cubic phase gate is

gradually evolving from a purely theoretical transformation

into a real-life device.
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