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An exact solution has been found for a model consisting of three identical qubits, one of which is in a free state,

and the other two are trapped in an ideal cavity and resonantly interact with the selected mode of this cavity. Based

on the exact solution, the pairwise negativities of qubits was calculated for two initial W-type qubits states and the

thermal state of the cavity field. The influence of the intensity of the thermal noise of the cavity and the parameters

that specify the initial state of the qubits on the amount of their entanglement in the process of further evolution

has been studied. It is shown that in the case of low intensities of the thermal field of the cavity, for one of the

initial states of the qubits under consideration, the phenomenon of sudden death of entanglement is observed, while

for the other initial state of the qubits such an phenomenon is absent. It has also been established that with an

increase in the intensity of the thermal field, the sudden death of entanglement occurs for both states.
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Introduction

Multi-qubit quantum entangled states are a fundamental

resource in the physics of quantum computing, quantum

communications, quantum cryptography, quantum metrol-

ogy, etc. [1–6]. The difficulties of experimental and theo-

retical description of entangled states increase significantly

with increasing number of qubits in the system. Therefore,

at present, special attention is paid to the theoretical and

experimental study of three-qubit systems (see links in [7]).
The importance of studying such systems is also due to

the fact that they can be used to create universal three-

qubit gates, which are an alternative to the universal two-

qubit gate of controlled negation and one-qubit rotations

in quantum computing. For three-qubit systems, there

are three types of pure states: separable or completely

separable, biseparable and genuine entangled states [8–13].
A state is separable if the three-qubit state vector is the

tensor product of three one-qubit state vectors. If a three-

qubit state can be represented as the tensor product of

the state vector of two entangled qubits and the state

vector of the third qubit, then we have a biseparable state.

States that are neither separable nor biseparable are called

genuine entangled. For a three-qubit system, there are

two nonequivalent classes of truly entangled states, the

so-called Greenberger−Horn−Zeilinger states (GHZ-states)
and Werner states (W-tates). For three-qubit mixed states,

there are also separable, biseparable, or genuine entangled

states. Genuine entangled GHZ-type states can be used

for deterministic teleportation or dense coding, and W-type

qubit states are used in quantum information processing.

In recent years, entangled states of the GHZ- and W-type

have been obtained experimentally for three-qubit systems

of various physical natures: superconducting Josephson

rings, ions in magnetic traps, quantum dots, etc. (see links

in [1–17]). Electromagnetic fields of cavities are usually

used to generate, monitor and control entangled states of

qubits. Accordingly, to theoretically describe the dynamics

of entanglement of qubits interacting with the electromag-

netic fields of cavities, the Tavis−Cummings model and its

generalizations are used (see links in [18]). Recently, much

attention has been paid to studying the dynamics of qubits

interacting with the thermal fields of cavities. This is due

to the fact that thermal photons are always present in

cavities, which have finite temperatures. Depending on the

physical nature of the qubits, the temperatures of the cavities

vary from nano- and millikelvins to room temperatures.

Interaction with the thermal fields of cavities leads to

Rabi oscillations of qubit entanglement parameters, which

degrades the quality of quantum information stored in the

qubit subsystem and leads to the appearance of additional

errors. This means that it is required to study in detail

the influence of the thermal noise of the cavity on the

dynamics of entanglement of qubits prepared initially in

entangled states. As a result, a large number of works

have recently been devoted to studying the dynamics of

qubit entanglement induced by thermal noise of the cavity

(see references in [7,19]). Another problem that arises when

qubits interact with the thermal fields of cavities — is the

appearance of the effect of sudden death of entanglement,

i.e., the disappearance of qubit entanglement at times

significantly shorter than the decoherence time. This effect
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was theoretically predicted by Yu and Eberly [20] while

studying the unitary dynamics of two qubits in a cavities.

Later, this effect was observed experimentally [21]. For a

three-qubit system, the opportunity of instantaneous death

of entanglement of three qubits interacting with the thermal

field of a common cavity was predicted in the work [22].
In the works [23,24] the three-qubit Tavis−Cummings

model was studied, in which two qubits are locked in a

cavity and interact with the general field of this cavity,

and the third qubit is in a free state. As a quantitative

measure of entanglement, the authors chose the negativity

of all potential pairs of qubits in a three-qubit system.

Meanwhile, in the work [23] the authors limited themselves

to considering the dynamics of the system in the case of

initial biseparable states of qubits and the vacuum state of

the field, and in the work [24] — initial genuine entangled

W-type states and Fock field states. It is of interest to

generalize the results of the works [23,24] to the case when

the qubits in the cavity interact with the general thermal

field.

In this work, we considered a system of three identical

qubits, two of which are locked in a microwave cavity and

interact with the thermal field mode, and the third qubit

can move freely outside the cavity. Truly entangled W-

type states were chosen as the initial states of the qubit

subsystem. We found an exact solution to the evolution

equation for the system under consideration, and based

on the exact solution, we calculated the negativity of pairs

of qubits. The difference in the behavior of entanglement

parameters for different types of W-states is also shown.

1. Model and its exact solution

Let us review a system consisting of three identical qubits

A, B and C . Two qubits B and C interact resonantly with the

quantized electromagnetic field of the cavity. The A qubit

can move freely outside the cavity. The Hamiltonian of the

interaction of such a system in the dipole approximation and

the rotating wave approximation can be written in the form

ĤI =
3

∑

i=2

~γ
(

σ̂+
i â + σ̂−

i â+
)

, (1)

where σ̂+
i = |+〉i〈−| and σ̂−

i = |−〉i〈+| — are raising and

lowering operators in the i qubit, â and â+ are operators

of the destruction and creation of photons in the cavity

mode, γ is a constant that characterizes the qubit-photon

interaction. We assume that all A, B and C qubits have the

same energy gaps and the interaction constants of the B and

C qubits with the cavity are the same.

We will assume that at the initial moment of time the

qubits are in one of the following genuine entangled W-type

states:

|9(0)〉ABC = cos θ|+, +,−〉 + sin θ sinϕ|+,−,+〉

+ sin θ cosϕ|−,+,+〉, (2)

|9(0)〉ABC = cos θ|−,−,+〉 + sin θ sinϕ|−, +,−〉

+ sin θ cosϕ|+,−,−〉, (3)

where the θ and ϕ determine the initial degree of entangle-

ment of qubits. As the initial state of the cavity field, we

choose a single-mode thermal field, the density matrix of

which is expressed by the formula

ρF(0) =
∑

n

pn|n〉〈n|. (4)

Here the statistical weight of pn is as follows:

pn =
n̄n

(1 + n̄)n+1
,

where n̄ — the average number of thermal photons, which

is determined by the standard Bose−Einstein formula:

n̄ = (exp[~ω/kBT ] − 1)
−1

.

Here kB — Boltzmann constant, T — cavity temperature.

Let us first find the time evolution of the system under

consideration for the Fock initial states of the field n
(n = 0, 1, 2, . . .), and then generalize the resulting solution

to the case of a thermal field. We have solved the nonsta-

tionary Schrodinger equation for initial states (2)−(3):

i~
∂|9n(t)〉

∂t
= ĤI |9n(t)〉, (5)

where |9n(t)〉 — wave function describing the state of the

system, which includes qubits and the cavity field mode, at

an arbitrary moment in time t . In this case, the solution

to equation (5) should be sought separately for different

numbers of photons in the mode n.
Let us write down the explicit form of the wave function

for the initial state of qubits (2) and the number of photons

in the mode n = 0:

|9n=0(t)〉 = X1(t)|+, +,−, 0〉 + X2(t)|+,−,+, 0〉

+ X3(t)|+,−,−, 1〉 + Z1(t)|−, +,+, 0〉

+ Z2(t)|−, +,−, 1〉 + Z3(t)|−,−,+, 1〉

+ Z4(t)|−,−,−, 2〉. (6)

In the case of the initial number of photons in the mode

n ≥ 1:

|9n≥1(n, t)〉 = B1(n, t)|+, +,+, n − 1〉

+ B2(n, t)|+, +,−, n〉 + B3(n, t)|+,−,+, n〉

+ B4(n, t)|+,−,−, n + 1〉 + G1(n, t)|−, +,+, n〉

+ G2(n, t)|−,+,−, n + 1〉 + G3(n, t)|−,−,+, n + 1〉

+ G4(n, t)|−,−,−, n + 2〉.
(7)
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Substituting the wave functions (6)−(7) and the interaction

Hamiltonian (1) into the nonstationary Schrodinger equa-

tion (5), we obtain the following systems of differential

equations:















iẊ1(t) = γX3(t),

iẊ2(t) = γX3(t),

iẊ3(t) = γ (X1(t) + X2(t)) ,



























iḂ1(n, t) = γ
√

n (B3(n, t) + B2(n, t)) ,

iḂ2(n, t) = γ
(√

n + 1B4(n, t) +
√

nB1(n, t)
)

,

iḂ3(n, t) = γ
(√

n + 1B4(n, t) +
√

nB1(n, t)
)

,

iḂ4(n, t) = γ
√

n + 1 (B3(n, t) + B2(n, t)) ,

(8)



























iĠ1(n, t) = γ
√

n + 1 (G3(n, t) + G2(n, t)) ,

iĠ2(n, t) = γ
(√

n + 2G4(n, t) +
√

n + 1G1(n, t)
)

,

iĠ3(n, t) = γ
(√

n + 2G4(n, t) +
√

n + 1G1(n, t)
)

,

iĠ4(n, t) = γ
√

n + 2 (G3(n, t) + G2(n, t)) .
(9)

Solving systems of differential equations (8),(9) taking

into account the initial conditions

X1(0) = cos θ, X2(0) = sin θ sinϕ, X3(0) = 0;

B2(0) = cos θ, B3(0) = sin θ sinϕ, B1(0) = B4(0) = 0;

G1(0) = sin θ cosϕ, G2(0) = G3(0) = G4(0) = 0

and taking into account that Gi(n, t) → Zi(t) with the

number of photons in the mode n = 0, we obtain analytical

expressions for all time coefficients:

X1(t) = cos2
(

γt√
2

)

cos θ − sin2
(

γt√
2

)

sin θ sinϕ,

X2(t) = cos2
(

γt√
2

)

sin θ sinϕ − sin2
(

γt√
2

)

cos θ,

X3(t) = − i sin(
√
2γt)(cos θ + sin θ sinϕ)√

2
,

B1(n, t) = − i
√

n sin(γt
√
4n + 2)(cos θ + sin θ sinϕ)√

4n + 2
,

B2(n, t) =
1

2

[

(

1 + cos(γt
√
4n + 2)

)

cos θ

+ (cos(γt
√
4n + 2) − 1) sin θ sinϕ

]

,

B3(n, t) =
1

2

[

(cos(γt
√
4n + 2) − 1) cos θ

+ (1 + cos(γt
√
4n + 2)) sin θ sinϕ

]

, (10)

B4(n, t) = − i
√

n + 1 sin(γt
√
4n + 2)(cos θ + sin θ sinϕ)√

4n + 2
,

G1(n, t) =

[

2 + n + (n + 1) cos(γt
√
4n + 6)

]

cosϕ sin θ

2n + 3
,

G2(n, t) = G3(n, t) = − i
√

n+1 cosϕ sin θ sin(γt
√
4n+6)√

4n + 6
,

G4(n, t) = −
2
√

n + 1
√

n + 2 cosϕ sin θ sin2
(

γt
√

3
2

+ n
)

2n + 3
.

Let us carry out similar calculations for another initial

entangled state of the W-type (3). Let us write down the

explicit form of the wave function for the initial state of

qubits (3) at subsequent moments of time and the number

of photons in the mode n = 0:

|9n=0(t)〉 = sin θ cosϕ|+,−,−, 0〉 + Y1(t)|−, +,−, 0〉

+ Y2(t)|−,−,+, 0〉 + Y3(t)|−,−,−, 1〉.
(11)

In the case of the number of photons in the mode n = 1:

|9n=1(t)〉 = X1(t)|+, +,−, 0〉 + X2(t)|+,−,+, 0〉

+ X3(t)|+,−,−, 1〉 + Z1(t)|−, +,+, 0〉

+ Z2(t)|−, +,−, 1〉 + Z3(t)|−,−,+, 1〉

+ Z4(t)|−,−,−, 2〉. (12)

In the case of the number of photons in the mode n ≥ 2:

|9n≥2(n, t)〉 = B1(n, t)|+, +,+, n − 2〉

+ B2(n, t)|+,+,−, n − 1〉 + B3(n, t)|+,−,+, n − 1〉

+ B4(n, t)|+,−,−, n〉 + G1(n, t)|−, +,+, n − 1〉

+ G2(n, t)|−, +,−, n〉 + G3(n, t)|−,−,+, n〉

+ G4(n, t)|−,−,−, n + 1〉.
(13)

Substituting the wave functions (11)−(13) and the inter-

action Hamiltonian (1) into the nonstationary Schrodinger

equation (5), we obtain the following systems of differential

equations:















iẎ1(t) = γY3(t),

iẎ2(t) = γY3(t),

iẎ3(t) = γ (Y1(t) + Y2(t)) ,



























iḂ1(n, t) = γ
√

n − 1 (B3(n, t) + B2(n, t)) ,

iḂ2(n, t) = γ
(√

n B4(n, t) +
√

n − 1B1(n, t)
)

,

iḂ3(n, t) = γ
(√

n B4(n, t) +
√

n − 1B1(n, t)
)

,

iḂ4(n, t) = γ
√

n (B3(n, t) + B2(n, t)) .

(14)















iẊ1(t) = γX3(t),

iẊ2(t) = γX3(t),

iẊ3(t) = γ (X1(t) + X2(t)) ,

Technical Physics, 2024, Vol. 69, No. 3



326 11th International Symposium on Optics and Biophotonics September 25–29, 2023, Saratov, Russia



























iĠ1(n, t) = γ
√

n (G3(n, t) + G2(n, t)) ,

iĠ2(n, t) = γ
(√

n + 1G4(n, t) +
√

nG1(n, t)
)

,

iĠ3(n, t) = γ
(√

n + 1G4(n, t) +
√

nG1(n, t)
)

,

iĠ4(n, t) = γ
√

n + 1 (G3(n, t) + G2(n, t)) .

(15)

Solving systems of differential equations (14),(15) taking

into account the initial conditions

Y1(0) = sin θ sinϕ, Y2(0) = cos θ, Y3(0) = 0;

X3(0) = sin θ cosϕ, X1(0) = X2(0) = 0;

B4(0) = sin θ cosϕ, B1(0) = B2(0) = B3(0) = 0;

G2(0) = sin θ sinϕ, G3(0) = cos θ, G1(0) = G4(0) = 0

and taking into account that Gi(n, t) → Zi(t) with the

number of photons in the mode n = 1, we obtain analytical

expressions for all time coefficients:

Y1(t) = cos2
(

γt√
2

)

sin θ sinϕ − sin2
(

γt√
2

)

cos θ,

Y2(t) = cos2
(

γt√
2

)

cos θ − sin2
(

γt√
2

)

sin θ sinϕ,

Y3(t) = − i sin(
√
2γt) (cos θ + sin θ sinϕ)√

2
,

X1(t) = X2(t) = − i cosϕ sin(
√
2γt) sin θ√

2
,

X3(t) = cos(
√
2γt) cosϕ sin θ,

B1(n, t) = −
2
√

n − 1
√

n cosϕ sin θ sin2
(

γt
√

n − 1
2

)

2n − 1
,

B2(n, t) = B3(n, t) = − i
√

n cosϕ sin θ sin(γt
√
4n − 2)√

4n − 2
,

B4(n, t) =
(n − 1 + n cos(γt

√
4n − 2)) cosϕ sin θ

2n − 1
,

G1(n, t) = − i
√

n sin(γt
√
4n + 2)(cos θ + sin θ sinϕ)√

4n + 2
,

G2(n, t) =
1

2

[

(cos(γt
√
4n + 2) − 1) cos θ

+ (1 + cos(γt
√
4n + 2)) sin θ sinϕ

]

,

G3(n, t) =
1

2

[

(1 + cos(γt
√
4n + 2)) cos θ

+ (cos(γt
√
4n + 2) − 1) sin θ sinϕ

]

,

G4(n, t) = − i
√

n + 1 sin(γt
√
4n + 2)(cos θ + sin θ sinϕ)√

4n + 2
.

(16)
To calculate any known entanglement criteria for three-

qubit systems, we need to calculate reduced two- and three-

qubit density matrices. As a first step to realize this goal, it

is required to calculate the density matrix of the complete

system
”
three qubits+ field mode“. Knowing the explicit

form of the time wave functions, we can construct the

density matrix of the complete system as:

ρABCF(t) =

∞
∑

n=0

pn|9n(t)〉〈9n(t)|, (17)

which for state (2) has the form

ρABCF(t) =
∞
∑

n=1

pn|9n≥1(n, t)〉〈9n≥1(n, t)|

+ p0|9n=0(t)〉〈9n=0(t)|, (18)

and for the (3)

ρABCF(t) =

∞
∑

n=2

pn|9n≥2(n, t)〉〈9n≥2(n, t)|

+ p1|9n=1(t)〉〈9n=1(t)| + p0|9n=0(t)〉〈9n=0(t)|. (19)

Currently, strict quantitative entanglement criteria are

established only for two-qubit systems. These include

consistency [25] and negativity [26,27]. In this work, to

assess the degree of entanglement, we will calculate the

negativity of pairs of qubits included in a three-qubit system.

To calculate the criterion for the negativity of the pair

of qubits i and j , we will need a two-qubit density matrix

ρi j(t), which is defined as follows:

ρi j(t) = TrkTrFρABCF (i, j, k = A, B,C; i 6= j 6= k).
(20)

As is known, negativity is given by the following formula:

εi j = −2
∑

l

(µi j)
−

l , (21)

where µi j — negative eigenvalues of the reduced two-qubit

density matrix ρT
i j(t) partially transposed over the variables

of one qubit, which has the following form for states (2),(3):

ρT
i j(t) =













ρ
i j
11 0 0

(

ρ
i j
23

)∗

0 ρ
i j
22 0 0

0 0 ρ
i j
33 0

ρ
i j
23 0 0 ρ

i j
44













. (22)

Then the formula for negativity (21) is transformed into the

following expression:

εi j =

√

(ρi j
44 − ρ

i j
11)

2 + 4ρ
i j
23 − ρ

i j
11 − ρ

i j
44. (23)

For the initial state (2) and qubits A and B , the elements of

the density matrix are expressed as follows:

ρAB
11 (t) =

∞
∑

n=1

pn

[

|B1(n, t)|2 + |B2(n, t)|2
]

+ p0|X1(t)|2,
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ρAB
22 (t) =

∞
∑

n=1

pn

[

|B3(n, t)|2 + |B4(n, t)|2
]

+ p0[|X2(t)|2 + |X3(t)|2],

ρAB
33 (t) =

∞
∑

n=1

pn
[

|G1(n, t)|2 + |G2(n, t)|2
]

+ p0

[

|Z1(t)|2 + |Z2(t)|2
]

,

ρAB
44 (t) =

∞
∑

n=1

pn
[

|G3(n, t)|2 + |G4(n, t)|2
]

+ p0

[

|Z3(t)|2 + |Z4(t)|2
]

,

ρAB
23 (t) =

∞
∑

n=1

pn [B3(n, t)G∗
1 (n, t) + B4(n, t)G∗

2(n, t)]

+ p0 [X3(t)Z
∗
2 (t) + X2(t)Z

∗
1 (t)] .

For the initial state (2) and qubits B and C, the elements

of the density matrix are expressed as follows:

ρBC
11 (t) =

∞
∑

n=1

pn
[

|B1(n, t)|2 + |G1(n, t)|2
]

+ p0|Z1(t)|2,

ρBC
22 (t) =

∞
∑

n=1

pn
[

|B2(n, t)|2 + |G2(n, t)|2
]

+ p0[|X1(t)|2 + |Z2(t)|2],

ρBC
33 (t) =

∞
∑

n=1

pn
[

|B3(n, t)|2 + |G3(n, t)|2
]

+ p0

[

|X2(t)|2 + |Z3(t)|2
]

,

ρBC
44 (t) =

∞
∑

n=1

pn
[

|B4(n, t)|2 + |G4(n, t)|2
]

+ p0

[

|X3(t)|2 + |Z4(t)|2
]

,

ρBC
23 (t) =

∞
∑

n=1

pn [B2(n, t)B∗
3(n, t) + G2(n, t)G∗

2 (n, t)]

+ p0 [X1(t)X
∗
2 (t) + Z2(t)Z

∗
3 (t)] .

For the initial state (3) and qubits A and B , the elements of

the density matrix are as follows:

ρAB
11 (t) =

∞
∑

n=2

pn
[

|B1(n, t)|2 + |B2(n, t)|2
]

+ p1|X1(t)|2,

ρAB
22 (t) =

∞
∑

n=2

pn
[

|B3(n, t)|2 + |B4(n, t)|2
]

+ p1

[

|X2(t)|2 + |X3(t)|2
]

+ p0(sin θ cosϕ)2,

ρAB
33 (t) =

∞
∑

n=2

pn

[

|G1(n, t)|2 + |G2(n, t)|2
]

+ p1[|Z1(t)|2 + |Z2(t)|2] + p0|Y1(t)|2,

ρAB
44 (t) =

∞
∑

n=2

pn
[

|G3(n, t)|2 + |G4(n, t)|2
]

+ p1

[

|Z3(t)|2 + |Z4(t)|2
]

+ p0

[

|Y2(t)|2 + |Y3(t)|2
]

,

ρAB
23 (t) =

∞
∑

n=2

pn [B4(n, t)G∗
2(n, t) + B3(n, t)G∗

1(n, t)]

+ p1 [X2(t)Z
∗
1 (t) + X3(t)Z

∗
2 (t)] + p0 sin θ cosϕY ∗

1 (t).

For the initial state (3) and qubits B and C, the elements

of the density matrix are as follows:

ρBC
11 (t) =

∞
∑

n=2

pn
[

|B1(n, t)|2 + |G1(n, t)|2
]

+ p1|Z1(t)|2,

ρBC
22 (t) =

∞
∑

n=2

pn
[

|B2(n, t)|2 + |G2(n, t)|2
]

+ p1

[

|X1(t)|2 + |Z2(t)|2
]

+ p0|Y1(t)|2,

ρBC
33 (t) =

∞
∑

n=2

pn
[

|B3(n, t)|2 + |G3(n, t)|2
]

+ p1[|X2(t)|2 + |Z3(t)|2] + p0|Y2(t)|2,

ρBC
44 (t) =

∞
∑

n=2

pn

[

|B4(n, t)|2 + |G4(n, t)|2
]

+ p1

[

|X3(t)|2 + |Z4(t)|2
]

+ p0

[

(sin θ cosϕ)2 + |Y3(t)|2
]

,

ρBC
23 (t) =

∞
∑

n=2

pn [B2(n, t)B∗
3(n, t) + G2(n, t)G∗

3(n, t)]

+ p1 [X1(t)X
∗
2 (t) + Z2(t)Z

∗
3 (t)] + p0Y1(t)Y

∗
2 (t).

2. Results and discussion

The results of computer simulation of the negativity of

qubit pairs for the initial states of qubits (2) and (3) and

various model parameters are presented in Fig. 1−10.

Figure 1 shows the dependence of the entanglement

parameter εAB of the qubits A and B on the dimensionless

time γt for the genuine entangled initial state of qubits (2)
with, ϕ = π/4, θ = arccos[1/

√
3] and various values of the

average number of photons in the cavity mode. The figure

clearly shows that at some times the entanglement abruptly

disappears and remains zero for a finite time before being

reborn. This means there is an sudden death effect of the

entanglement in the system. The figure also shows that

as the average number of thermal photons increases, the

maximum degree of qubit entanglement decreases rapidly.
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Figure 1. Graph of the dependence of the negativity criterion

εAB (γt) on the reduced time γt for qubits A and B and

the initial genuine entangled state (2). Parameters ϕ = π/4,

θ = arccos[1/
√

3]. Average number of thermal photons in

the mode: n̄ = 0.001 (solid line), n̄ = 1 (dashed line), n̄ = 2.5

(dotted line).

0

5

0

1.0

0.5

10

15
0

0.5

1.0

1.5

ε
(γ
t,

 θ
)

A
B

γt

θ

Figure 2. 3D-graph of the dependence of the negativity εAB (γt, θ)
on the reduced time γt and the parameter θ for qubits A and B
in the case of an initial genuine entangled state (2) and fixed

values of the average number of thermal photons n̄ = 0.001 and

the parameter ϕ = π/4.

Let us note that the disappearance of entanglement of a

free qubit and a qubit in the cavity with increasing intensity

of the thermal field occurs in the three-qubit model under

consideration much faster than in the two-qubit model, in

which one of the qubits is free and the second is locked in

the thermal cavity [28] .

Figure 2 shows 3D- the dependence of the negativity

εAB(γt, θ) for the same qubits on the reduced time γt
and the parameter θ for the same initial state (2) and

fixed values of the average number of thermal photons

n̄ = 0.001 and the parameter ϕ = π/4. Figure 3 shows

3D- the dependence of the negativity εAB(γt, ϕ) for the

same qubits on the reduced time γt and the parameter ϕ

for the same initial state (2) and fixed values of the average

number of thermal photons n̄ = 0.001 and the parameter

θ = arccos[1/
√
3]. It is clearly seen in Figs. 2 and 3 that for

the selected initial state of qubits, sydden death and birth of

entanglement take place for any values of the parameters

θ and ϕ. It is also worth noting that the duration of

the time intervals between the sudden death and sudden

birth of the entanglement strongly depends on the initial

parameters θ and ϕ. The graphs also show that the smaller

the ϕ (Fig. 3) and the larger the θ (Fig. 2), the greater

the maximum degree of entanglement. Thus, the length

of time without entanglement and the maximum degree of

entanglement depend significantly on the initial state of the

qubits. Figure 4 shows the dependence of the entanglement

parameter of the qubits B and C on the dimensionless

time γt for the genuine entangled initial state of the qubits

(2), the parameters ϕ = π/4, θ = arccos[1/
√
3] and various

values of the average number of photons in the cavity mode.

It is clearly seen that for the parameter of entanglement of
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Figure 3. 3D-graph of the dependence of the negativity

εAB (γt, ϕ) on the reduced time γt and the parameter ϕ for qubits A
and B in the case of an initial genuine entangled state (2) and fixed

values of the average number of thermal photons n̄ = 0.001 and

the parameter θ = arccos[1/
√

3].
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Figure 4. Graph of the dependence of the negativity εBC(γt) on

the reduced time γt for qubits B and C and the initial genuine

entangled state (2). Parameters ϕ = π/4, θ = arccos[1/
√

3].
Average number of thermal photons: n̄ = 0.001 (solid line), n̄ = 1

(dashed line), n̄ = 2.5 (dashed line).
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Figure 5. Graph of the dependence of the negativity εi j (γt)
on the reduced time γt in the model

”
three qubits in a common

cavity“ for any pair of qubits and the initial genuine entangled

state (2). Parameters ϕ = π/4, θ = arccos[1/
√

3]. Average

number of thermal photons: n̄ = 0.001 (solid line), n̄ = 1 (dashed
line), n̄ = 2.5 (dashed line).
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Figure 6. Graph of the dependence of the negativity εAB(γt) on

the reduced time γt for qubits A and B and the initial genuine

entangled state (3). Parameters ϕ = π/4, θ = arccos[1/
√

3]. The
average number of photons: n̄ = 0.001 (solid line), n̄ = 1 (dashed
line), n̄ = 2.5 (dashed line).

qubits located inside the cavity, the effect of sudden death

of entanglement also occurs. However, unlike the A and B
qubits, the B and C qubits turn out to be entangled even

in the case of intense thermal fields of the cavity. In this

case, the duration of time intervals during which there is no

entanglement, decreases. For comparison, Fig. 5 shows the

time dependence of the negativity of the qubits A and B
(or A and C) for three identical qubits locked in an ideal

cavity and resonantly interacting with the general thermal

field, for an initial state of the form (2 ) (the corresponding

formulas for the negativity of pairs of qubits are given in our

work [7]). A comparison of the figures shows that for the

model under consideration, the behavior of the negativity of

a pair of qubits locked in a cavity is similar to the behavior

of any pair of qubits in a system of three qubits located in

a common cavity.

Figure 6 shows the dependence of the entanglement

parameter of the qubits A and B on the dimensionless

time γt for the genuine entangled initial state of the

qubits (3), ϕ = π/4, θ = arccos[1/
√
3] and various values

of the average number of photons in the cavity mode.

The figure shows that for qubits A and B and the initial

state of qubits (3), in contrast to the initial state (2), in

the case of low intensities of the thermal field, the effect

of sudden death of entanglement is absent. This result

is consistent with the results of the work [24], in which

the dynamics of qubit entanglement was studied as part

of the model under consideration for the initial state of

qubits of the form (3) and the vacuum state of the cavity

field (n̄ → 0). Meanwhile, the effect of sudden death of

entanglement occurs with an increase in the intensity of the

thermal noise of the cavity. It can be seen that the time

intervals during which there is no entanglement for different

intensities are significantly less than in the case of the initial

state of qubits (2). Figure 7 shows 3D- the dependence of

the negativity εAB(γt, θ) for the same qubits on the reduced

time γt and the parameter θ for the same initial state (3)
and fixed values of the average number of thermal photons

n̄ = 0.001 and the parameter ϕ = π/4. Figure 8 shows 3D-

the dependence of the negativity εAB(γt, ϕ) for the same

qubits on the reduced time γt and the parameter ϕ for

the same initial state (3) and fixed values of the average

number of thermal photons n̄ = 0.001 and the parameter

θ = arccos[1/
√
3]. It is clearly seen in Figs. 7 and 8 that

for the selected initial state of the qubits in the case of low

intensities of the thermal field of the cavity, the effect of

sudden death of entanglement is absent for any values of

the parameters θ and ϕ, which fundamentally distinguishes

the behavior of the entanglement parameter of the selected

qubits in the situation under consideration from the case

when the qubits are initially prepared in state (2).

Figure 9 shows the dependence of the entanglement

parameter of the qubits B and C on the dimensionless

time γt for the genuine entangled initial state of the
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Figure 7. 3D-graph of the dependence of the negativity εAB (γt, θ)
on the reduced time γt and the parameter θ for qubits Aand B
in the case of an initial genuine entangled state (3) and fixed

value of the average number of thermal photons n̄ = 0.001 and

the parameter ϕ = π/4.
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Figure 8. 3D-graph of the dependence of the negativity

εAB (γt, ϕ) on the reduced time γt and the parameter ϕ for qubits A
and B in the case of an initial genuine entangled state (3) and fixed

values of the average number of thermal photons n̄ = 0.001 and

the parameter θ = arccos[1/
√

3].
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Figure 9. Graph of the dependence of the negativity criterion

εBC (γt) on the reduced time γt in the model (1) for the second B
and third C qubits of the initial genuine entangled state (3) for

the initial parameters ϕ = π/4, θ = arccos[1/
√

3] with a change

in the average number of thermal photons: n̄ = 0.001 (solid line),
n̄ = 1 (dashed line), n̄ = 2.5 (dotted line).

qubits (3), the fixed values of the parameters ϕ = π/4,

θ = arccos[1/
√
3] and various values of the average number

of photons in the cavity mode. For the selected initial state

of the qubits in the case of low thermal field intensities for

the B and C qubits, the effect of sudden entanglement death

is also absent for any values of the ϕ, θ parameters, as well

as for the A and B qubits. The effect of sudden death of

entanglement in the case of the B and C qubits also occurs

only with an increase in the intensity of the thermal noise of

the cavity. Meanwhile, as in the case of the A and B qubits,

the time intervals during which there is no entanglement are

significantly shorter for various field intensities than in the

case of the initial state of the qubits (2).

Finally, for comparison, Fig. 10 shows the time depen-

dence of the negativity of the qubits A and B (or A and C)
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Figure 10. Graph of the dependence of the negativity εi j(γt)
on the reduced time γt in the model

”
three qubits in a common

cavity“ for any pair of qubits and the initial genuine entangled

state (3). Parameters ϕ = π/4, θ = arccos[1/
√

3]. Average

number of thermal photons: n̄ = 0.001 (solid line), n̄ = 1 (dashed
line), n̄ = 2.5 (dotted line).

for three identical qubits locked in an ideal cavity and ly

interacting with the general thermal field, for an initial state

of the form (3). Comparison of Figs. 10 and 9 shows that

there is a similarity in the behavior of the negativity of a

pair of qubits locked in a cavity and any of the pairs of

qubits in a three-qubit system in a common cavity. The

difference lies in the increase for the last of the considered

cases in the maximum negativity values in the peak region

and the decrease in the time during which there is no

entanglement in the case of intense thermal fields of the

cavity. Comparing the behavior of negativity for two initial

states of W-type qubits, one can notice that for the model

under consideration, the initial genuine entangled state (3)
is much more stable with respect to the destructive action

of the thermal field for all pairs of qubits than the initial

state (2), as is the case in the model with three locked

qubits.

Conclusion

In this work, we studied the dynamics of a system of

three identical qubits, one of which is in a free state, and

the other two are locked in an ideal cavity and interact

resonantly with the electromagnetic field mode of this cavity.

We obtained an exact solution of the quantum Liouville

equation of the considered model for the initial genuine

entangled states of W-type qubits and the thermal field

of the cavity. Based on the exact solution, analytical

expressions are found for the negativity of pairs of qubits: a

free qubit-locked qubit and two locked qubits. Calculations

are carried out for two genuine entangled normalized W-

states of the form (2) and (3), which can be converted from

one to the other by means of local operations and classical

coupling (LOCC) transformation, and thermal states of

the electromagnetic field of the cavity for different average

Technical Physics, 2024, Vol. 69, No. 3



11th International Symposium on Optics and Biophotonics September 25–29, 2023, Saratov, Russia 331

numbers of photons. It is shown that the thermal field of the

cavity does not completely destroy the initial entanglement

of qubits even for relatively high intensities of the thermal

noise of the cavity. It has also been established that for low

intensities of the thermal field of the cavity, the effect of

sudden death of entanglement occurs only in the case when

the qubits are initially prepared in state (2). There is no

effect for state (3) under such conditions. As the intensity

of the thermal field of the cavity increases, sudden death of

qubit entanglement occurs for both the initial state (2) and

state (3). Calculations also showed that the duration of the

time intervals between sudden death and the resumption of

qubit entanglement significantly depends on both the choice

of the type of W-state and the degree of initial entanglement

of qubits, i.e., on the choice of parameters θ and ϕ. It

has been shown that the initial state of qubits (3) is more

resistant to the effects of thermal noise than the initial

state (2). This is also true for the model with three locked

qubits in a cavity.

For a two-qubit system, in which one of the qubits is

free and the second is locked in a thermal cavity, we

have previously shown that taking into account the dipole-

dipole interaction of qubits, detuning, Kerr nonlinearity

and a number of other mechanisms makes it possible to

exclude the effect of sudden death of qubit entanglement,

which arises due to interaction with the thermal field of the

cavity [19,28]. Studying the influence of these mechanisms

on the effect of sudden death of entanglement for the model

reviewed in this work will be the subject of our subsequent

studies.
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