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Polar optical phonons in superlattices Si/SiO2
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A study was carried out of the dielectric properties of planar Si/SiO2 heterostructures, which play an important

role in modern electronics. Using the model of dielectric continuum, the spectra of polar phonons in Si/SiO2 binary

superlattices have been studied. Quartz and cristobalite lattices are considered as a structural model of the oxide

layer. The dependences of polar optical phonons frequencies and the high-frequency dielectric constant tensor

elements on the ratio of layer thicknesses were obtained. The results obtained open up the possibility of using

spectroscopic data to characterize the structure of superlattices.
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1. Introduction

Knowledge of the microscopic structure of a Si/SiO2

interface may facilitate an improvement of quality of various

devices utilizing a sequence of metal–oxide–semiconductor

heterojunctions. However, many years of research involving

a variety of experimental techniques [1] have not yet

provided sufficiently detailed data on the atomic structure

of this interface. The complication lies in the fact that an

ideally ordered silicon crystal is bonded at this interface to a

completely disordered amorphous oxide phase. Theoretical

methods based on quantum-mechanical calculations are

needed to gain an insight into the relation between the struc-

ture and properties of such objects. In most studies of this

kind, superlattices (periodic layered heterostructures [2])
served as a model of a planar Si/SiO2 interface. This pro-

vided an opportunity to use calculation software developed

for the study of three-dimensional crystalline structures.

Various methods for growth of binary superlattices (SLs) [3]
have been developed in more recent times, and they were

subjected to extensive experimental examination [4,5].

Considerable efforts were spent on finding a method for

monitoring the quality of an interface in grown samples.

Vibrational spectroscopy, which was proven to be an

efficient and informative technique for the examination

of semiconductor SLs [6], may serve as such a method.

However, vibrational spectroscopy is efficient only if a

reliable diagram for assignment of observed spectral lines

to characteristic vibrational modes of typical structural

fragments is available. A diagram of this kind cannot

be prepared without theoretical calculations of the phonon

spectrum. Prior theoretical studies have been focused

mostly on the spatial and electron structure of Si/SiO2 SLs

and have not covered the vibrational states of these systems.

The first studies into such vibrational states relied on the

density functional method and have been published fairly

recently [7,8].
However, the use of highly accurate quantum-mechanical

calculations in modeling of the structure and vibrational

spectra of heterostructures is limited by the time-consuming

nature of these calculations. Novel approaches (less
accurate, but physically informative and applicable to large

systems) have been researched. One such approach is

associated with the dielectric continuum model (DCM).
which has been first proposed by S.M. Rytov in [9] for

characterization of radio wave propagation in a finely

layered medium. The idea to apply this model to phonons

in SLs has been suggested in the early 1980s [10]. The first

studies were limited to isotropic media (the case of cubic

arsenide crystals) [11]. Shortly after the development of a

technique for growth of nitride SLs (late 1990s), a series of

studies generalizing DCM to the case of SLs of anisotropic

media have been published [12].
The dielectric continuum model is a quasi-classical con-

tinuum model designed to characterize the behavior of polar

optical phonons in spatially inhomogeneous systems. Within

DCM, polar phonons are treated as a polarization wave

accompanied by an electrical field:

E ∼ exp(i q · r + iωt). (1)

Retardation effects are neglected in this model; i.e., elec-

trostatic fields oscillating harmonically in time, which are

consistent with the classical description based on Maxwell

equations for a system without free charges, are considered:

rotE = 0, divD = 0, D = ε E. (2)

A heterostructure consisting of several regions occupied by

different crystalline compounds is regarded as a continuous
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medium with its permittivity at a given spatial point defined

by the dielectric function of the corresponding crystal:

ε(ω, q) = ε∞
∏

k

ω2
LO,k(q) − ω2

ω2
TO,k(q) − ω2

. (3)

Expression (3) holds true in the q → 0 limit. Index k in it

denotes the number of a polar phonon mode, and symbols

ωLO,k and ωTO,k represent the frequencies of longitudinal

and transverse modes in the direction set by vector q. Since

oxide crystals examined here are anisotropic, the frequencies

of polar phonons corresponding to different q directions

differ, varying within the limits of TO and LO values (see
Tables 1 and 2).
Let us consider a binary SL consisting of alternating

layers with thicknesses d1 and d2 and dielectric functions

ε1 and ε2. If we assume that the direction of alternation of

heterostructure layers is aligned with axis z , the components

of the dielectric constant averaged over the SL are written

in the following way in the long-wavelength limit (when

1/q ≫ d1, d2) [11]:

〈εxx〉 =
1

d
(d1εxx ,1 + d2εxx ,2), (4)

〈

1

εz z

〉

=
1

d

(

d1

εz z ,1
+

d2

εz z ,2

)

, (5)

where d = d1 + d2 is the SL period. It bears reminding that

a frequency-dependent dielectric function is considered in

DCM. Relation (4) is satisfied in the region of frequencies

corresponding to phonons polarized perpendicularly to the

SL axis. It follows from (4) that condition 〈εxx〉 = ∞
may be fulfilled either when εxx ,1 = ∞ or when εxx ,2 = ∞.

This implies that TO phonons polarized perpendicularly to

the SL axis are localized in separate layers of a layered

heterostructure. Relation (5) is satisfied in the region of

frequencies corresponding to phonons polarized along the

SL axis. It follows from (5) that condition 〈εz z 〉 = 0 may

be fulfilled either when εz z ,1 = 0 or when εz z ,2 = 0. This

implies that LO phonons polarized along the SL axis are

localized in separate layers of a layered heterostructure.

These conclusions were verified by experimental spectra

of nitride SLs. Note that the wave vector of TO phonons

polarized perpendicularly to the SL axis and LO phonons

polarized parallel to it is directed along z ; i.e., phonons

propagating along the SL axis are considered in both

cases. Such phonons are always localized in layers of a

specific type. The frequencies of these phonons provide

information regarding the state of materials in different

layers (specifically, on elastic strain in them). However,

they are less useful if one needs to analyze the SL structure

(the ratio of layers thicknesses and the interface state).
In this context, phonons propagating perpendicularly to

the SL axis (i.e., in the interface plane) are of a much greater

interest. Among these phonons are TO ones polarized

along the SL axis with their frequencies satisfying, according

to (5), the condition

d2εz z ,1 = −d1εz z ,2, (6)

and LO phonons polarized perpendicularly to the SL axis

with their frequencies satisfying, according to (4), the

condition

d1εxx ,1 = −d2εxx ,2. (7)

Having inserted functions (3) with parameters determined

from spectra of individual bulk crystals into Eqs. (6)−(7)
and set ratio d1/d2, one may determine the frequencies

of phonons propagating in the interface plane. These

frequencies depend strongly on the thickness ratio of layers,

which verifies their delocalized nature.

2. Results

We applied the dielectric continuum model, which was

used widely in the studies of vibrational spectra of arsenide

and nitride SLs, to a Si/SiO2 SL. These structures are

specific in that polar phonon modes are lacking in one of

the materials (crystalline silicon). Therefore, the dielectric

function is frequency-independent in the region of phonon

frequencies and is equal to ε∞ . When DCM is applied

to such SLs, it is assumed that ion polarization associated

with atomic displacements is always localized in SiO2 layers

and only electron polarization is present in silicon layers.

However, dielectric (silicon) layers affect polar vibrations

in oxide layers. The frequencies of these bound phonon-

photon states (polaritons) are specified by Eqs. (6)−(7).

2.1. Models of Si/SiO2 interfaces

An important factor in the construction of a model of

an interface in a planar heterostructure is the compatibility

of lattice dimensions on joined surfaces of two crystals.

In ideally matched materials, the positions of Si atoms

in adhering planes should overlap. If they do not match

but the surface densities of such sites are close, materials

may adhere with insignificant elastic strain. If the surface

densities are widely different, surfaces cannot be splicing.

We relied on the experimentally established fact that

silicon is always structured in a cubic diamond-like lattice.

Having searched through various surface options in major

modifications of silica (quartz, cristobalite, and tridymite),
we found four variants that may produce a stable interface.

With the relaxed structure of each of these four interfaces

examined and the corresponding formation energies esti-

mated, we chose three models: one with quartz (Q) and

two with cristobalite (C1 and C2). Fragments of SLs with

such interfaces are shown in Figure 1.

Interface C1 is obtained by joining surfaces (001) of Si

and cristobalite crystals directly. We have demonstrated [7]
that, although the difference in Si−Si distances on these sur-

faces is significant, their direct joining is perfectly realistic,

since the cristobalite lattice yields readily to compression in

plane (001). Interface C1 is extremely thin and consists of

a single layer of Si2+ atoms. Interface C2 is obtained by

joining the same surfaces with one of the crystals rotated

by 45◦ . Owing to this rotation, Si sites on joined surfaces
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Figure 1. Positioning of silicon atoms (large circles) and oxygen

atoms (small circles) in SLs with interfaces of the following types:

a — Q, b — C1, and c — C2. The boundary of an SL supercell

is indicated in black; the directions of its translation vectors are

shown on the left.

become closely positioned, but Si sties on the oxide surface

are matched with only one half of Si sites on the silicon

surface. One half of interfacial Si atoms are left with

two dangling bonds in this connection geometry. This is

a strong defect that makes the structure unstable. These

Si atoms may be replaced by O atoms, which leads to

the formation of additional Si-O-Si bridges in the interface

layer [8]. Interface C2 consists of two monolayers of Si2+

and Si1+ atoms. These Si-O-Si bridges are also present in

the region of interface Q that, just as C1, consists of only a

single layer of Si2+.

2.2. Polar phonons in Si/SiO2 SLs

In order to apply DCM to the SLs under study, one

needs to characterize the spectrum of polar phonons

polarized along the interface and perpendicularly to it. It

is assumed that the oxide material in heterostructures with

interfaces C1 and C2 (see Figures 1, b and c) has a structure
close to that of the tetragonal cristobalite modification,

so-called β̃-cristobalite with space group I 4̄2d [13]. The

Table 1. Parameters of polar phonons in β̃-cristobalite taken

from [14]

TO, cm−1 LO, cm−1

B2-mode 422 497

E ‖ z 1063 1216

130 134

E-mode 443 482

E ⊥ z 765 796

1073 1212

ε∞ 2.205

Table 2. Parameters of polar phonons in α-quartz taken from [15]

TO, cm−1 LO, cm−1

364 388

A2-mode 495 547

E ⊥ z 778 790

1080 1240

128 128

265 265

394 401

E-mode 450 509

E ‖ z 697 697

795 807

1072 1162

1162 1235

ε∞ 2.172

principal crystallographic axis of tetragonal cristobalite is

aligned with the direction of heterostructure growth. It is

worth reminding that the lattice of β̃-cristobalite belongs to

crystalline class D2d . Therefore, modes B2(TO) and E(LO)
correspond in these structures to polar phonons propagating

in the interface plane. The frequencies of polar phonons in

β̃-cristobalite are listed in Table 1.

The oxide material in the model of a heterojunction with

interface Q (see Figure 1, a) is crystallized in the structure of

α-quartz with the principal axis directed along the interface.

It is worth reminding that the lattice of quartz belongs

to crystalline class D3. Therefore, modes A2(LO) and

E(TO) correspond in Q-type structures to polar phonons

propagating in the interface plane. The frequencies of polar

phonons in quartz are listed in Table 2.

No experimental estimates of ε∞ are available for

β̃-cristobalite. This is the reason why we used the

theoretically calculated value (see Table 1). To obtain a

more accurate prediction, the ε∞ value for quartz presented

in Table 2 was taken from the experimental data from [16].
The ε∞ value in a cubic silicon crystal was set equal to the

experimental one (11.7 [17]).

As was already noted, the frequencies of phonons

propagating in the interface plane and polarized along the
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Figure 2. Frequencies of polar phonons in SLs with C1 and C2

interfaces as functions of the layer thickness ratio: d1 is the Si

layer thickness and d2 is the SiO2 layer thickness. Cases a and b

correspond to polar phonons B2(TO) and E(LO).
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Figure 3. Frequencies of high-frequency polar phonons in SLs

with Q interfaces as functions of the layer thickness ratio. Cases a

and b correspond to polar phonons A2(LO) and E(TO).

SL axis satisfy Eq. (6). These are B2(TO) modes in

the silicon/cristobalite SL and E(TO) modes in the sili-

con/quartz SL. At the same time, the frequencies of phonons

propagating and polarized in the interface plane satisfy

Eq. (7). These are E(LO) modes in the silicon/cristobalite

Table 3. Diagonal components of the dielectric tensor of a series

of Si/Q SLs with different d1 (Si) and d2 (SiO2) values

SL
ε(calc)

d1 , Å d2, Å
ε(DCM)

εx εy εx εx εy

2× 1 8.344 8.108 4.382 10.834 8.872 8.470 4.463

1× 1 6.323 6.082 3.487 5.380 8.888 6.582 3.554

1× 2 4.897 4.634 2.955 5.401 17.666 5.019 3.041

SL and A2(LO) modes in the silicon/quartz SL. Note that

polar phonons with a wave vector directed along the SL axis

(B2(LO) and E(TO) modes of cristobalite and A2(TO) and

E(LO) modes in quartz) are not considered in the present

study.

Having solved Eqs. (6) and (7) at various ratios of d1 and

d2, we determined the frequencies of phonons listed above

as functions of the layer thickness ratio. Dimensionless

quantity p = d1/(d1 + d2) was chosen as a parameter

characterizing the SL structure. Since index 1 corresponds

to Si, it is evident that limits p = 0 and p = 1 correspond to

the cases of pure SiO2 and pure Si, respectively. The results

are presented in Figures 2 and 3.

2.3. Refraction index anisotropy in SLs

The ideas of DCM were applied above to polar phonons.

However, the key equations of this model (Eqs. (4)−(5))
are equally applicable to other excitation types. Specifically,

they may be used to characterize the propagation of light

waves in an off-resonance frequency interval. Within

this approach, Eqs. (4)−(5) may be regarded as relations

providing an opportunity to estimate elements of the SL

dielectric tensor in terms of the permittivity of component

materials and structural parameters d1 and d2.

With experimental data on dielectric constants lacking,

the idea behind this approach may be verified via ab initio

quantum-mechanical calculations. All the SLs considered

above have been studied theoretically (see [7,8,14] for

details). Let us examine the results of such calculations

using the silicon/quartz (Si/Q) SL as an example. The

structure, vibrational spectra, and dielectric susceptibilities

of a series of Si/Q SLs with different layer thicknesses were

investigated theoretically through computer modeling. The

calculated values of diagonal components of the dielectric

tensor of these SLs determined within the quantum-

mechanical approach are denoted in Table 3 as ε(calc).
It is evident that transverse polarizabilities (εx , εy ) are

close for all SLs and are significantly higher than the

longitudinal polarizability (εz ). All tensor components

decrease appreciably with increasing oxide layer thickness.

We turned to DCM to find an explanation for these trends.

The same quantities were evaluated using formu-

lae (4)−(5). Theoretical estimates of dielectric constants

of bulk crystals (εx = εy = εz = 13.391 for silicon and

εx = εy = 2.489, εz = 2.458 for quartz) were used to apply
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these relations. The values of diagonal components of the di-

electric tensor of these SLs calculated by formulae (4)−(5)
are denoted in Table 3 as ε(DCM). It can be seen that

they agree quite closely with calculated data. Thus, it is

fair to say that the dielectric continuum model provides

an opportunity to reproduce both the anisotropy of the SL

permittivity tensor and its changes upon variation of the

layer thickness ratio. As far as we know, this results is the

first example of application of DCM to characterization of

the high-frequency component of the dielectric function of

binary SLs.

3. Discussion

Let us first point out a general trend in the obtained

results: as p increases, the frequencies of TO modes rise,

while the frequencies of LO modes decrease. In the p = 0

limit (i. e., in the case of infinitely thin silicon layers or,

alternatively, when these layers are lacking), the frequencies

of SL polar modes assume the values of the corresponding

modes in bulk oxide crystals. This appears to be logical and

physically meaningful. In the contrary limit case of p = 1

(i. e., when oxide layers are infinitely thin or, alternatively,

thick silicon layers are interleaved with thin oxide films),
the frequencies of SL polar modes tend to the values of

alternative modes in bulk oxide crystals: the frequencies

of TO modes tend to the frequencies of LO modes, and

vice versa. At first glance, this seems strange. However,

it is worth reminding that a similar effect was observed in

the spectra of AlAs/GaAs SLs [18]. In contrast to the SLs

studied here, arsenide SLs feature polar phonons in both

materials, but their corresponding frequency intervals are

widely spaced. In view of this, optical vibrations of atoms

in neighboring layers mix only weakly, and all modes are

divided into AlAs-like and GaAs-like. These are the TO-

and LO-like modes that depend on the layer thickness ratio

in the same way as phonons in Si/SiO2 SLs do.

An explanation for the observed mutual transformation

of TO and LO modes may be provided if one takes into

account the facts that each of these modes is localized in a

single layer (in the present case, SiO2 at all times) and that

the problem becomes equivalent to the problem of polar

vibrational states of atoms in a sample having a shape of a

plane-parallel plate (slab). This problem has been examined

in detail both theoretically [19] and experimentally. One of

the findings made in these studies was that TO vibrations

polarized perpendicularly to the slab plane transform into

LO vibrations in the limit of an infinitely thin plate, while

LO vibrations polarized parallel to the slab plane transform

into TO vibrations. This is exactly the case in Si/SiO2 SLs.

It should be stressed once more that heterostructures

considered here differ from binary semiconductor SLs (such
as GaAs/AlAs or GaN/AlN) examined earlier in having

zero polar phonons in the material of one of the layers

(specifically, silicon). Therefore, in the limit case when

the thickness of the other layer (in the present case, the

oxide layer) tends to zero, the spectrum of polar phonons

in such SLs should transform into the spectrum of silicon.

In other words, we need to understand that the spectrum

should vanish completely in practice, and this implies that

the intensities of all modes should turn to zero. What is

the physical meaning of modes the frequencies of which are

indicated in Figures 2 and 3 in the p → 1 limit? Case

p → 1 corresponds to a heterosystem with bulk silicon

layers separated by very thin oxide films. Polar vibrations

are present in the film material, and their spectrum is fairly

anisotropic. The curve values in Figures 2 and 3 at p → 1

are exactly the frequencies of polar vibrations in thin oxide

films separating thick silicon layers. The intensities of such

modes is proportional to the film thickness and decreases in

the p → 1 limit.

4. Conclusion

The interface structure in Si/SiO2 heterostructures has

a strong influence on the electrooptical characteristics of

functional components of silicon electronics. The issue

of express nondestructive quality testing of such interfaces

is crucial. Vibrational spectroscopy may be one of the

methods for this. In the present study, the applicability

of the dielectric continuum method to spectra of polar

optical phonons in Si/SiO2 superlattices with several types

of interfaces was investigated.

Since polar phonons are lacking in a Si crystal, we

proposed a modification of the mathematical framework of

the dielectric continuum method for systems wherein the

dielectric properties of one of the materials are characterized

by a function with zero dispersion. The solutions of

obtained equations for two major structural models of the

Si/SiO2 heterojunction, which present the oxide material in

the form of β̃-cristobalite and α-quartz, were examined. It

was found that Si/SiO2 superlattices support polar modes

localized in the bulk of an oxide layer: polar modes B2(LO)
and E(TO) in Si/cristobalite heterosystems and A2(TO) and

E(LO) polar modes in Si/quartz superlattices. Other polar

modes localized at the interface are also present in the same

systems: polar modes B2(TO) and E(LO) in Si/cristobalite

superlattices and A2(LO) and E(TO) polar modes in

Si/quartz superlattices. In short-period superlattices, the

frequencies of modes of the latter type depend on the layer

thickness ratio and may be used to probe spectroscopically

the structure of the studied samples. The obtained results

revealed physical meaningfulness and predictive validity of

the proposed approach.
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